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Whole genome analysis identifies 
the association of TP53 genomic 
deletions with lower survival in 
Stage III colorectal cancer
Li C. Xia1, Paul Van Hummelen1, Matthew Kubit2, HoJoon Lee1, John M. Bell2, 
Susan M. Grimes2, Christina Wood-Bouwens1, Stephanie U. Greer1, Tyler Barker3, 
Derrick S. Haslem3, James M. Ford1, Gail Fulde3, Hanlee P. Ji1,2* & Lincoln D. Nadauld3*

DNA copy number aberrations (CNA) are frequently observed in colorectal cancers (CRC). There is an 
urgent need for CNA-based biomarkers in clinics,. n For Stage III CRC, if combined with imaging or 
pathologic evidence, these markers promise more precise care. We conducted this Stage III specific 
biomarker discovery with a cohort of 134 CRCs, and with a newly developed high-efficiency CNA 
profiling protocol. Specifically, we developed the profiling protocol for tumor-normal matched tissue 
samples based on low-coverage clinical whole-genome sequencing (WGS). We demonstrated the 
protocol’s accuracy and robustness by a systematic benchmark with microarray, high-coverage whole-
exome and -genome approaches, where the low-coverage WGS-derived CNA segments were highly 
accordant (PCC >0.95) with those derived from microarray, and they were substantially less variable if 
compared to exome-derived segments. A lasso-based model and multivariate cox regression analysis 
identified a chromosome 17p loss, containing the TP53 tumor suppressor gene, that was significantly 
associated with reduced survival (P = 0.0139, HR = 1.688, 95% CI = [1.112–2.562]), which was validated 
by an independent cohort of 187 Stage III CRCs. In summary, this low-coverage WGS protocol has high 
sensitivity, high resolution and low cost and the identified 17p-loss is an effective poor prognosis marker 
for Stage III patients.

Extensive copy number aberrations (CNA) are a hallmark of cancers with genome instability and are observed 
among a wide variety of epithelial malignancies originating from the colon, breast, cervix, prostate, bladder and 
stomach1. High levels of CNAs are associated with cancer progression and poor prognosis. Thus, there is general 
interest in profiling CNAs as potential biomarkers associated with specific clinical outcome.

The focus of our study was colorectal cancer (CRC), the third most common cancer world-wide, with ~1.8 
million estimated new cases yearly. The majority of CRCs demonstrates an extensive CNAs and as a result, are 
designated as belonging to the chromosomal-instability (CIN) molecular subtype. To accurately profile CNAs 
and evaluate their prognostic significance in CRC, a variety of methods have been used which include karyo-
typing, fluorescent in-situ hybridization (FISH), and chromosomal microarrays, such as comparative genomic 
hybridization (CGH) arrays and single nucleotide polymorphisms (SNP) arrays.

Citing some examples, with karyotyping, Bardi et al. found that loss of chromosome 18 was correlated with 
shorter overall survival in early-stage patients (N = 150)2. Personeni et al.3 using FISH identified that changes in 
EGFR copy number predicted overall survival for EGFR-targeted therapy in a metastatic CRC cohort (N = 87). 
Using SNP-arrays, Sheffer et al. identified deletions of 8p, 4p, and 15q were associated with poor survival in a 
mixed-stage cohort (N = 130)4. Other microarray-based studies5–7 using smaller numbers of patients (N <100) 
identified various CNAs associated with poor survival that included sub-arm losses of 1p, 4p, 5, 6, 8p, 10, 14q, and 
18. In contrast, based on CGH-array analysis, Rooney et al.8 reported that no specific CNA was significantly asso-
ciated with survival in Duke’s C-stage CRCs (N = 29). The lack of concordance among these studies reflects the 
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clinical stage variation among the study cohorts, the inherent limits of the molecular methods used for detecting 
CNAs and suggests clinical stage-specific variation among the study cohorts.

More recently, researchers have employed whole genome (WGS), whole exome (WES), and targeted sequenc-
ing for high-resolution analysis to profile CNAs. WGS has significant advantages over the other approaches 
because it provides whole-genome coverage without targeting and capturing as compared to other methods 
including microarrays and exomes. Exome and targeted sequencing have technical biases due to the extra DNA 
amplification and hybridization steps. Furthermore, these methods with their emphasis on gene targets cover 
only a small proportion (<3%) of the genome and thus miss significant portions of the noncoding genome 
which are noncoding. Conducting high-coverage WGS is costly even when considering recent cost reductions in 
sequencing. It also generates large data sets that incur significant informatics cost.

To overcome some of the challenges of conducting cancer WGS studies on populations for CNA profiling, 
we developed a low-coverage whole genome approach that provided highly accurate genome-wide copy number 
results. As a result, this leads to a significantly lower per sample cost than conventional WGS. For this study, we 
used an average sequencing coverage of 2–4x, which is chosen in the range established by The Cancer Genome 
Atlas (TCGA)9 and the 1000 Genomes Project studies10. This low-coverage WGS, however, does not identify 
somatic mutations or determine copy number neutral loss-of-heterogeneity events, which should be ascertained 
by parallel assays, such as WES or targeted sequencing panels. Our study was solely focused on identifying CNAs 
that were associated with prognosis using this low-coverage WGS approach.

We optimized the WGS approach for sequencing formal fixed paraffin embedded (FFPE) samples, thus ena-
bling our approach to be widely used for archival pathology biopsies. We verified the accuracy of CNA segments 
generated with this approach using a systematic benchmark with microarray, WES and high-coverage WGS. 
Overall, development of this low-coverage WGS enabled us to analyze the entire genome for CNAs while reduc-
ing the sequencing cost and bioinformatic workload.

We applied this WGS approach to a Stage III CRC cohort. Among the different clinical stages of CRC, there 
is a particular interest in identifying CNAs that indicate poor prognosis for individuals with Stage III disease, 
where local lymph node involvement is present without imaging or pathologic evidence of distal metastasis. These 
patients routinely receive adjuvant chemotherapy and yet, there is a significant fraction that show recurrence 
despite receiving adjuvant treatment after complete resection of their cancers. Identifying Stage III patients at 
high risk for recurrence may prove useful in targeting these individuals for more effective adjuvant regimens and 
developing more sensitive screening protocols for detecting early metastasis.

We conducted a WGS analysis on a discovery cohort of Stage III CRCs (N = 134). We determined whether any 
specific CNAs were associated with a poor survival within the cohort. We validated our results with an independ-
ent cohort of Stage III CRCs from the Cancer Genome Atlas project (N = 187). Our findings provided additional 
evidence to support that specific CNAs are predictive for CRC progression, having identified a specific genomic 
deletion that is predictive for lower overall survival.

Results
Copy number calling.  We benchmarked genome segmentation by bioinformatics tools such as CNVkit and 
Bic-seq on low-coverage WGS data. To do so, we randomly selected a WGS data set of 10 tumor-normal matched 
CRCs from the TCGA (Fig. 1). Their copy number analysis data were also publicly available from SNP microar-
rays. Using either caller, we observed that the WGS-derived genome segments were highly correlated with the 
microarray segments, which were considered as ground-truth (Fig. 2). The genome-wide tile-based average PCC 
were, 0.966 and 0.963 for CNVkit and Bic-Seq, respectively, and the gene-based ones were 0.943 and 0.938. We 
observed no statistically significant difference between PCC metrics of CNVkit and Bic-seq (Wilcoxon’s P = 0.68). 
We selected CNVkit because of its consistent performance with a relatively smaller median absolute deviation (i.e. 
intra-tile deviation metrics): 0.0088 vs 0.0113.

We examined the potential variability and bias as related to low average coverage. For this evaluation, we 
sequenced eight pilot tumor-normal pairs at a higher coverage (~30x) and randomly down-sampled these 
same samples to ~3x. We found a high correlation between the low- and high-coverage WGS segments with 
an average PCC at 0.93 (Fig. 2). We identified that only three samples that had PCC < 0.9 all had tumor purity 
<40% (Wilcoxon’s P = 0.036), suggesting that the sensitivity of detection was variable in samples with a lower 
overall tumor fraction. Our results point to low-coverage WGS derived segments are highly concordant with 
high-coverage WGS derived segments, which is also apparent from visual inspection of the segmentation tracks 
compared for the same sample (Supplementary Fig. S1).

We compared genome segmentation results between low-coverage WGS and WES platforms. There was gen-
eral agreement between methods although the WES CNV estimates had a higher level of noise. Within a genome 
tile size of 100 kb, we did not generally expect abrupt copy number changes within a tile; therefore, the intra-tile 
CNR deviation were a result of experimental variability as related to the sequencing preparation. We found that 
the mean intra-tile copy number ratio deviation (as measured by median absolute deviation) was much higher 
in WES derived segmentations compared to the low-coverage WGS (Wilcoxon’s P = 0.00018). Specifically, the 
intra-tile deviation metric was as small as <0.1 for WGS while it was 1.09 for WES. Our results identified that 
WES-derived segments was highly variable, which is apparent from visual inspection of the segmentation tracks 
compared to WGS from the same sample (Supplementary Fig. S2).

Copy number features associated with clinical parameters.  Using a discovery cohort of 134 
tumor-normal pairs, we conducted WGS analysis and identified CNAs. The cohort consisted of Stage III CRCs 
originating from patients that were diagnosed between 2001 and 2015 (Table 1). We examined demographic 
(gender, ethnicity, age) and relevant clinical variables (treatment, sideOfColon, cancerGrade, recurrence, BMI, 
smokingStatus) associated with overall survival. The right side of colon was defined as any of “ascending colon”, 
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“appendix”, “cecum”, “hepatic flexure”, “transverse” and the left side of colon was defined as any of “descend-
ing colon”, “rectosigmoid junction”, “sigmoid colon”, “splenic flexure”. Treatment was defined as a binary vari-
able, which is a ‘yes’ if a patient received adjuvant chemotherapy – that is any treatment occurred with either 
5-fluoruracil-based” (5-FU) or capecitabine regimen.

Among these Stage III CRC patients, 74 (55%) received adjuvant chemotherapy – treatment occurred with 
either 5-fluoruracil-based (5-FU) or capecitabine regimen. Patients undergoing adjuvant chemotherapy had a sta-
tistically significant improved survival as expected11,12, with a relative reduction of death risk >58% (HR = 0.416, 
95% CI = [0.239, 0.724], P = 0.00195). These patients had a median overall survival of more than a year longer 
than that of patients who did not receive any therapy.

Stage III CRC patients with a primary tumor located in the left colon had a statistically significant improved 
survival with a relative reduction of death risk >42% (HR = 0.576, 95% CI = [0.342, 0.971], P = 0.0382). These 
patients had a median overall survival that was approximately one-half year (181 days) longer than that of patients 
had tumor occurred to the right of the colon.

Analysis of recurrent arm-level CNAs.  We observed extensive focal- and arm-level CNAs among the 
Stage III CRC discovery cohort (Fig. 3). As has been widely reported and is seen with samples exhibiting CNAs, 
>85% of CRC are CIN phenotype and this percentage is even higher for advanced CRCs for CIN’s known to be 
associated with poor prognosis. The Gistic2 analysis revealed that more than half of the samples showed CNA 
gains of chr7, chr8q, chr13q and chr20q. Approximately half of the samples had CNA loss in chr17p and chr18.

The frequency of recurrent CNA gains or losses identified in the discovery cohort were concordant with the 
frequency observed in the TCGA stage III validation cohort. With a q-value of <0.25 and a 99% confidence as 
our statistical thresholds (Gistic2), we identified 21 arm-level CNAs that were statistically significant (Fig. 4). 
Seventeen CNAs were also significantly recurrent in the Stage III TCGA cohort. These included amplifications 

Figure 1.  The study design and whole genome sequencing analytical workflow. (A) The whole-genome 
sequencing (WGS) analysis share the same sample preparation, DNA extraction and quality control steps as 
WES (color shaded light green). The prepared genomic DNA libraries are pooled for WGS directly, while they 
require additional PCR amplification and hybridization steps to generate exomic libraries for pooled WES. (B) 
We integrated CNVkit, Gistic2 and various R packages to perform copy number segmentation, CNA calling and 
biomarker discovery analyses.
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of chr1q, chr7, chr8q, chr13q and chr20, and deletions of chr1p, chr4, chr5q, chr15q, chr17p, chr18, chr21q and 
chr22q. Overall, the concordance of statistically significant recurrent arm-level CNAs between the two cohorts 
was >81%.

Chromosome arm 17p loss is associated with poor overall survival.  We applied lasso-regularized 
multivariate cox regression to select for significant arm-level events predictive of patients’ overall survival 
(Methods). We identified the loss of chr17p as the single and most significant arm-level event associated with 
overall survival. This significance was apparent using a non-zero regression coefficient. By our final multivariate 
model (Eq. 2), the loss of chr17p was a significant predictor of lower overall survival (P = 0.0160, HR = 1.706, 
95% CI = [1.104–2.635]). Any patient carrying 17p deletion was associated with a 68.8% increased risk of death. 
In addition, an increased risk was evident examining the resulting Kaplan-Meijer curves when patients were 
stratified by their 17p loss status (Fig. 4).

Other factors including gender, ethnicity and age at diagnosis were not associated with overall survival. 
After adjusting for 17p-loss, the patients having left sided CRC still had a relative reduction of death risk >33%. 
However, the effect ceased to be statistically significant with a marginal value (P = 0.0727). This result was likely 
due to a sensitivity limit imposed by the sample size. Nonetheless, patients receiving adjuvant therapy, i.e. treat-
ment, (P = 0.002, HR = 0.478, 95% CI = [0.299–0.765]) were benefitting from a significant reduction of risk of 
death (52.2%) after adjusting for 17p-loss. This statistically significant difference in survival is also visible as an 
enrichment of shorter survival patients within the strata of carrying 17p-loss (Fig. 3).

Figure 2.  Benchmarks to evaluate low-coverage WGS approach and bioinformatics. (A) Pearson’s correlation 
coefficients (PCC) between low-coverage WGS and microarray segments as stratified by segmentation tools; 
(B) PCC between low-coverage and high-coverage WGS as stratified by tumor purity; (C) The means of robust 
standard deviation (MAD) as stratified by low-coverage WGS and WES analysis platforms.

Discovery Cohort 
(n = 134) Patient Characteristics

Count (%)/Mean 
(Range)

Hazard 
Ratio 95% CI p-value significance

Age At Diagnosis 73 (22–93) 0.997 (0.9715, 1.0034) 0.795 n.s.

Gender
Male (Reference) 66 (49%)

Female 68 (51%) 0.935 (0.5523, 1.0701) 0.801 n.s.

Ethnicity
White (Reference) 128 (96%)

Hispanic 2 (1%) 1.236 (0.7066, 2.1606) 0.458 n.s.

Smoking Status
Smoker (Reference) 36 (27%)

Nonsmoker 92 (69%) 0.631 (0.3637, 1.0951) 0.102 n.s.

Body weight BMI 29 (18–60) 1.001 (0.9487, 1.0552) 0.984 n.s.

Treatment
Chemotherapy (Reference) 74 (55%)

Refused/Not recommended 43 (32%) 0.416 (0.2393, 0.7249) 0.002 **

Tumor Grade
High 58 (43%) 1.271 (0.7667, 2.1082) 0.352 n.s.

Low (Reference) 76 (57%)

Tumor Side
Right Colon (Reference) 90 (72%)

Left Colon 44 (28%) 0.576 (0.3423, 0.9707) 0.038 *

Recurrence
None 50 (37%) 0.652 (0.3579, 1.1892) 0.163 n.s.

Recurrence (Reference) 72 (54%)

Overall Survival >5-year from diagnosis 16 (12%)

Table 1.  Summary statistics and multivariate cox regression results for the Stage III colorectal cancer discovery 
cohort. 1Statistical significance is based on the fitted multivariate cox model (Eq. 1). n.s.: not significant, 
*P < 0.05, **P < 0.01. 2Treatment is any treatment received after surgical resection. Chemotherapy: if received 
any forms of 5FU, Folfox, or Capecitabine. 3Missing data for each variable was <13%.
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For our validation analysis, we employed the same multivariate Cox model to the TCGA cohort data. 
Using this completely independent data set, we confirmed that the loss of 17p was associated with poor sur-
vival (P = 0.0126, HR = 2.357, 95% CI = [1.202–4.621]). A patient with Stage III CRC and a 17p deletion had 
a 135% increased risk of death in the TCGA cohort. No other genomic, demographic and clinical factors were 
significant, including gender, ethnicity and age at diagnosis, except for treatment (P = 0.00141, HR = 0.322, 95% 
CI = [0.161–0.646]). Receiving adjuvant chemotherapy treatment was associated with a 67.8% improvement of 
survival, a result that was concordant with our findings from the discovery cohort and previous clinical trials.

Using our discovery cohort, we examined whether patients treated with adjuvant treatment had a lower over-
all survival based on 17p copy number. A 17p-loss was associated with an increased death risk at HR = 1.457, 
CI = [0.855,2.482], P = 0.166. Thus, a trend towards lower survival in the setting of adjuvant therapy was noted 
but the sample size was too small to reach statistical significance.

Chromosome arm 17p loss is associated with increased chromosomal instability.  TP53, a crit-
ical tumor suppressor involved in genome stability, is located on the 17p arm. Somatic alterations on TP53 were 
found to increase genome instability across cancer types in the literature, see Donehower et al.13 for a recent exam-
ple. To determine if increased chromosomal instability is a potential mechanism explaining 17p-loss’s association 
with shorter survival, we performed additional analyses.

First, we excluded the microsatellite instability (MSI) subtype patients from our discovery cohort and repeated 
the survival analysis. MSI tumors are genome stable, thus lacking CIN and have better survival. We excluded 11 
(~9%) MSI patients from our discovery cohort, who were either clinically tested as MSI-high by polymerase 
chain reaction (PCR) -based amplification of microsatellite repeats or tested positive for mismatch repair (MMR) 
Immunohistochemistry, which includes MLH1, MSH2, MSH6, and PMS2 proteins.

We repeated our analysis with the multivariate model (Eq. 2) on the remaining 123 CIN patients and the loss 
of chr17p was found to be a significant predictor of lower overall survival with a slightly higher risk (P = 0.0124, 
HR = 1.785, 95% CI = [1.134–2.811]). Any patient carrying 17p deletion was associated with a 78.5% increased 
risk of death. The increased risk was also clear by examining the resulting Kaplan-Meijer curves when the remain-
ing CIN patients were stratified by their 17p loss status (Supplementary Fig. S3).

We also compared the focal- and arm-level CINs (as represented by the total counts of CNAs) between 
patients carrying or not carrying the 17p loss (Fig. 4). We consistently found consistently higher CIN scores in 
patients carrying the 17p loss (one sided T-test, P = 2.6e-9 for focal and P = 2e-10 for arm-level CIN, respec-
tively). This increase is notable in Fig. 3, where more than >63% patients who had chr17p loss also had significant 
copy number changes globally indicative of a significant CIN phenotype (in the upper 50% percentile of CIN).

Discussion
There is a broad interest in determining which CNAs indicate poor prognosis for individuals with Stage III CRC. 
This study represents one of the most comprehensive copy number analysis of Stage III CRC with the benefit 
of using WGS and its associated complete genome coverage and higher resolution. With these WGS results, we 
identified stage-specific CNA prognostic markers for Stage III CRC. Our analysis identified the loss of chromo-
some 17p arm, spanning TP53, as a potential biomarker for poor survival in Stage III CRC. Our results were 
independently validated by the TCGA cohort. Patients with 17p/TP53 deletion in their CRC tumors have 1.6 
times relative death risk in general (1.8 times for non-MSI), as compared to those tumors which do not. Previous 
studies of CRC have used cohorts with mixed clinical stages. For example, nearly all of the studies included a 

Figure 3.  Copy number profiles of the discovery cohort. Copy number ratios (CNR) are shown for upper split 
panel: patients had chr17p loss; and lower split panel patients had no chr17p loss – all based on Gistic2 calls. 
Row color coding: black for shorter survival patients (the lower 50%) and grey for longer survival patients (the 
upper 50%).
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higher number of CRCs from Stage I and II patients compared to Stage III and IV patients. Furthermore, nearly 
all the previous studies did not conduct an independent validation using a separate population of CRC patients 
with an independent validation study. The majority of these studies used low resolution molecular methods with 
reduced sensitivity for CNAs.

Interestingly, 17p loss has been previously reported to be prognostic marker for poor survival in other cancers, 
including brain tumors14–16, bone tumor17, periampullary cancer18, pancreatic cancer19, leukemia20, and in CRC21 
evaluated with FISH. These results suggest that 17p loss may be generally useful for predicting patient outcomes. 
Other large-scale copy number events have been previously identified as prognostic markers for colorectal can-
cers, e.g. 18q deletion for stages II and III colon cancers22,23, which also lend support to the argument that CNA 
profiling may be useful for CRC management. While we did observe a slightly increased hazard (HR = 1.28) for 
patients carrying the 18q-loss in our cohort, the association did not reach statistical significance. This limitation 
came from the study being underpowered per the sample size.

We identified that chromosome arm 17p CNAs occurred consistently in both the discovery and validation 
cohorts. Minor differences were noted between the two cohorts, as the discovery cohort had chr16p and chr19 
amplifications and chr21p deletion while the validation cohort had chr2q amplification and chr14q deletion. 
These minor differences are likely attributable to the limited cohort size such that not enough samples were avail-
able in either cohort for determining the statistical significance of recurrent events presented at lower frequency. 
It may also reflect the population specific genetics for CRC progression – additional studies will be required to 
clarify these differences.

We also detected a trend for 17p/TP53 loss as a predictive biomarker for poorer adjuvant chemo-therapy 
response in Stage III CRC. Although the finding did not achieve statistical significance due to the small cohort 
size, there are several pieces of additional evidences in the literature for consideration. For example, a recent 
publication, Oh et al.24 has found a low-expression of TP53 protein was associated with poor cancer-specific sur-
vival in Stage III and high-rick Stage II CRC patients (N = 621) who were treated with oxaliplatin-based adjuvant 
chemotherapy. Additionally, using the TCGA cohort, we found TP53 copy number loss were significantly associ-
ated with lower mRNA expression level (P < 1e-15, one tailed T-test on Z-normalized mRNA expression levels, 
see Supplementary Fig. S4). All together, these findings suggested that the loss-of-function of TP53 protein, as 
genetically determined by the focal TP53 gene loss or arm-level chr17p loss, has important prognostic value for 
late stage CRC patients receiving adjuvant therapies.

To explain the effect of 17p loss, a likely mechanism is increased chromosomal instability, which was observed 
co-occurring with 17p loss. We analyzed the association between focal and arm-level chromosomal instability 
and 17p loss and found they were significantly associated with each other. In addition, other studies have shown 
that 17p loss-of-heterogeneity was correlated with CRC’s metastatic potential25. Similar findings were reported 
for other cancer types like brain tumor26 and esophagus cancer27. It has been reported that allelic loss of 17p allelic 
loss was highly correlated with TP53 mutations28. All of these findings suggest that the loss of 17p is directly 
related to higher CIN.

The loss of 17p thus could also be an indicator for the loss of TP53 function which is known to contrib-
ute to CIN in CRC. Vogelstein et al. theorized that the TP53 genetic alteration occurs at relatively later stage 
of colon cancer and is responsible for promoting tumor invasion to surrounding normal tissue29. Previously, 
point mutations involving TP53 were associated with poor survival in colorectal cancers30, as indicator of TP53 
loss-of-function31. Our observation of extensive presence of 17p loss in Stage III CRCs provides additional sup-
porting evidence to this conclusion.

Figure 4.  Arm-level chr17p loss predicts for poorer survival in Stage III CRC. (A) Venn diagram for shared 
arm-level CNAs between the discovery and TCGA validation cohorts. (B) The Kaplan–Meier plots of the 
Stage III CRC discovery cohort as stratified by patients’ status of carrying the chr17p arm loss (SCNA_CHR_
ARM_17p_del = 1 for yes, otherwise 0). Also shown are box plots for comparing (C) number of focal CNAs 
(D_N_Focals) and (D) number of arm-level CNAs (D_N_Arms) between patients carrying or not carrying the 
chr17p loss.
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Identifying copy number variation with high coverage WGS data have been studied extensively in basic and 
clinical research settings32–34. For example, in a recent systematic benchmark, Trost et al. reported good perfor-
mance of using >20x WGS data for identifying small-scale CNVs (1–100 kb)35. The potential of using lower 
coverage WGS for characterizing germline CNVs and somatic CNAs has also been explored by others with cell 
line, blood, and fresh or archived tissue samples before. Citing a few examples, Zhou et al. showed WGS at 1x to 
5x coverage outperforms array-base analysis for detecting large-scale CNVs in the NA12878 cell line36. In a larger 
study, Dong et al. showed ~50% diagnostic yields of detecting pathogenic germline CNVs when applying ~0.25x 
coverage WGS to more than five hundred miscarriage tissue or blood samples37. Using ~1x coverage WGS and 
samples from six multiple myeloma patients, Elnenaei et al. found >90% sensitivity and specificity when findings 
were compared to the FISH results. Kader et al. found that their modified low-coverage WGS at 1.6 to 1.8x achieve 
highly concordant CNA detection with array-based analysis in two Merkel cell carcinomas derived FFPE samples.

However, to date, there are very few if any studies which have demonstrated the scalability and robust perfor-
mance of lower coverage WGS for profiling focal and arm-level CNAs (>100 kb) for hundreds of achieved, het-
erogenous cancer tissue in one study. In this work, we leveraged the generally higher resolution of WGS analysis 
while using a cost-effective low-coverage approach. To compensate for DNA degradation and potential low purity 
associated with FFPE clinical tissue samples, we aimed for 2–4x, which is at the high-end of coverage compared 
to other studies. To correctly identify somatic CNAs, we adopted a panel of normals approach to filter out any 
population specific copy number variable regions and germline events. To maximize cost-efficiency for assaying 
hundreds of samples, we adopted a pooling strategy with robot-assisted sample preparation.

We also considered the overall cost of this assay for potential clinical implementation as a routine test 
(Supplementary Fig. S5). Notably, the per-sample cost for WGS analysis, as calculated in US dollars, was related to 
the extent of sample multiplexing. When combining 10 samples together, the cost ranged from $480 - $960, while 
it decreases to $77–$144 per sample, assuming a batched size of 500 tumor biopsies. The lowest cost per-sample 
involved using the NovaSeq 6000 + S4 Flowcell platform with 2.4 Terabyte output – this enables sequencing 
400 samples. Compared to per-sample microarray cost, approximately $200 per Affymetrix SNP-array 6.0, the 
per-sample WGS cost was determined to be lower when multiplexing samples on the HiSeq X and NovaSeq 
platforms.

Our results showed that, performance-wise, the low-coverage WGS consistently produced high concordance 
segmentation with microarray and high-coverage WGS. It has less noise and bias as compared to WES-based 
results. The low-coverage WGS provides thousands of read pairs per 100 kb segment, a substantive amount 
enough to enable sensitive CNA detection. This provides an improved resolution compared to SNP microarrays 
in which there are approximately 60 probes per 100 kb segment. At a given scale, routine clinical sequencing of 
FFPE biopsies can be done cost effectively. Thus, our cost-analysis showed that using low-coverage WGS is now 
competitive to microarray analysis for both performance and cost.

As WGS studies become less expensive, we foresee that in the future low-coverage WGS may prove to be 
replacing clinical microarray testing for cancers38, developmental disabilities, congenital anomalies39–41, autism 
spectrum disorder42, and many other genetic diseases32. Citing the benefits of WGS, a recent study compared 
the performance of low-coverage WGS versus microarrays on rare and undiagnosed cases. The conclusion of 
this study was that robust identification of CNVs was highly feasible with low-coverage WGS43. In another 
study, low-coverage WGS also found successful application in preimplantation genetic diagnosis of monogenic 
disease44.

Methods
Discovery cohort ascertainment.  The Institutional Review Boards (IRB) from Stanford University and 
Intermountain Healthcare approved the study. A total of 134 patients were recruited through the Intermountain 
Cancer Center (St. George, Utah, USA). Selection criteria involved those diagnosed with Stage III CRC in 2001–
2015. We excluded patients who survived less than 90 days after the initial diagnosis and died from non-cancer 
causes. We collected relevant clinical information from patient medical records, including age of diagnosis, gen-
der, ethnicity, body mass index (BMI), and smoking status (Table 1 and Supplementary Table 1).

DNA extraction from clinical samples.  All clinical samples were acquired with informed consent under 
an approved institutional review board protocol from the Intermountain Healthcare. We collected matched pri-
mary colorectal adenocarcinoma tumor and normal colon tissue samples from each patient (Fig. 1). All sam-
ples were determined to have greater than 60% tumor content in pathology review. We used a two-millimeter 
punch from a tumor or normal FFPE tissue block. The DNA was isolated from tissue using the Maxwell-16 and 
Promega-AS1030 DNA purification kit (Promega, Wisconsin, USA). The genomic DNA was quantified via the 
Qubit (Thermo-Fisher Scientific, Massachusetts, USA) and quality assessment was performed with the LabChip 
GX (PerkinElmer, Massachusetts, USA).

Sequencing.  For sequencing library preparation, 500 nanograms of DNA from each sample was sheared 
using a Covaris E220 (Covaris, Massachusetts, USA) with microtube plates and following parameters: intensity 
level of five, duty cycle of 10%, cycles per burst of 200, and treatment time of 55 seconds. The DNA was then 
purified with a 0.8X AMPure XP (Beckman-Coulter, California, USA) bead cleanup to maintain a large insert 
size for sequencing. We used this total yield of purified DNA for the Kapa Hyper Prep Kit for Illumina (Roche, 
Basel, Switzerland). The standard KAPA protocol was followed with eight cycles of PCR amplification and a 0.8X 
post-amplification cleanup. We used 10 base pair dual-index sequencing adapters to allow for index swapping 
detection.

We measured the library quality with the LabChip GX and quantity with the Qubit (Supplementary Table 2). 
The libraries were pooled and sequenced on an Illumina MiSeq (Illumina, California, USA) for paired-end 
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300 basepair reads. The sequencing libraries were re-pooled and normalized based on the MiSeq data before 
paired-end 300 basepair sequencing on an Illumina NovaSeq 6000 system achieving 2–4x coverage per sample. 
Sequence reads were aligned to the human reference genome GRCh37/hg19 with the Burrows-Wheeler Aligner45.

Copy number segmentation.  For determining which copy number segmentation tool provided accurate 
results on WGS from FFPE-extracted DNA, we evaluated the copy number callers, CNVkit46 and BicSeq47 – 
both are readily available as open source scripts. Segmentation involves defining the intervals that are affected 
by a copy number change. As test data set, we downloaded the low-coverage (~5x) WGS and the SNP-array 
data of 10 randomly selected (Supplementary Table 3) CRC tumor-normal pairs from TCGA. Using the WGS 
data, we inferred the genome segments with CNVkit and BicSeq, and estimated log copy number ratio per seg-
ment (CNR). For each sample, we correlated the WGS-estimated segmental CNRs to the microarray CNRs using 
100-kb genome-wide tiles. We computed the Pearson’s correlation coefficient (PCC) between the two set of esti-
mates and summarized PCC over all samples by mean and standard deviation. We compared the metric differ-
ence between groups using the two-sided T-test. We also conducted a gene-based PCC analysis using the same 
data.

Next, we evaluated how WGS coverage reduction affects genome segmentation. We applied ~30X 
high-coverage WGS analysis to eight patients with the identical protocol to low-coverage WGS. The high-coverage 
sequence data were down-sampled to low-coverage (~3x) data. We performed genome segmentation using 
CNVkit on both the high- and low-coverage WGS data. We computed and compared the PCC metrics for high- 
and low-coverage CNRs based on tumor purity.

WES and targeted sequencing are other common choices for CNA analysis. We also benchmarked 
low-coverage WGS to high-coverage WES (~300x) in a random subset of 10 patients. We performed genome 
segmentation using CNVkit on both the high-coverage WES and low-coverage WGS data. We computed and 
compared the intra-tile deviation metrics of estimated segmental log CNRs based on 100 kb genome tiles.

Integrated copy number analysis pipeline.  We integrated CNVkit46, Gistic248, coxph, survival and glm-
net49,50 packages of R into our final copy number analysis bioinformatics pipeline (Fig. 1). We used the data from 
the genome segments inferred by CNVkit to Gistic2, a cohort CNA caller. We ran Gistic2 with the following argu-
ments: “-refgene hg38.UCSC.add_miR.160920.refgene.mat -maxspace 10000 -ta 0.1 -td 0.1 -qvt 0.25 -broad 1 -brlen 
0.7 -twoside 1 -conf 0.99 -genegistic 1 -armpeel 1 -savegene 1 -res 0.05 -smallmem 1 -js 4”. We set the noise cut-off 
for both deletion and amplification to 0.1. Coupling CNVkit with Gistic248 enabled us to identify recurrent arm 
and focal-level CNAs with statistical significance. We also integrated and ggplot2, survminer, ggpubr, inferCNV R 
packages51 for data visualization.

To control for false positives, we identified error-prone CNA regions that demonstrated a high level of CNV 
background noise using normal DNA samples which had no somatic copy number changes. We ran genome seg-
mentation and CNA calling on all normal DNA samples 10 times and each time with one random normal sample 
as reference. We compiled all of the CNA calls and identified regions that demonstrated copy number changes 
in >10% of samples in each run for >5 runs. These changes were likely the result of false copy number calls that 
were specific to FFPE-extracted DNA, amplification bias or sequencing artifacts. We filtered out the false positive 
segments from those noisy regions before conducting the Gistic2 analysis.

Stage III-specific biomarker discovery.  We first fitted a multivariate cox model with relevant clinical and 
demographical covariates to identify any such variables was associated with survival. The full model is as follows:

+ + + + + +
+ +
~time status gender ethnicity age treatment colonSide cancerGrade

recurrence BMI smokingStatus
( , )

(1)

Next, we created binarized CNA variables for each arm-level deletion or amplification (e.g. chr1pdel or chr-
1pamp for chr1) using the Gistic2 output. The variable is coded one if the CNA amplitude exceeds the noise cut-off, 
otherwise zero. We fitted a multivariate cox regression model with lasso-regularization to select for candidate 
CNA biomarkers52, including all the 88 arm-level CNA variables, gender, ethnicity, age and treatment.

Finally, we tested the lasso-selected candidate CNA variables’ significance by the following multivariate cox 
regression model:

+ + + + +~time status candidateCNA gender ethnicity age treatment colonSide( , ) (2)

The resulting p-values were adjusted by the Bonferroni correction and significant results were declared with 
Bonferroni-adjusted P < 0.05.

Biomarker validation.  CNA biomarkers were validated with an independent cohort of 187 Stage III CRCs 
from TCGA (Supplementary Table 4). We downloaded the overall survival time, survival status, SNP-array based 
segments, and other clinical data for these patients in the validation cohort. The genome segmentation data was 
formatted for Gistic2 analysis. With this independent validation dataset, we tested the same multivariate model 
(Eq. 2), including these candidate CNA markers in question. A candidate marker was declared statistically signif-
icant only if the Bonferroni-adjusted P < 0.05.

Chromosomal-instability analysis.  We measured chromosomal instability (CIN) at focal and arm levels 
by counting the total number of such events sample-wise. We denoted the arm-level CIN by the variable D_N_
Arms, which is calculated as the total number of arm-level CNAs per sample. Similarly, we denoted focal-level 
CIN by the variable D_N_Focals, which is calculated as the total number of focal-level CNAs per sample. We 

https://doi.org/10.1038/s41598-020-61643-6


9Scientific Reports |         (2020) 10:5009  | https://doi.org/10.1038/s41598-020-61643-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

applied a T-test to determine if any significant difference in CIN in patient groups as stratified by chr17pdel status 
using the D_N_Focals and D_N_Arms measures.

Ethics approval and consent to participate.  The Institutional Review Boards from Stanford University 
and Intermountain Healthcare approved the study. The study was performed in accordance with the Declaration 
of Helsinki. All samples were acquired with informed consent under an approved institutional review board pro-
tocol from the Intermountain Healthcare.

Data availability
The copy number segmentation and survival data of the 134 stage-III colorectal cancer cohort are available with 
the supplementary files associated with this paper. The copy number segmentation and survival data of TCGA 
colorectal cancer cohort are available from the National Cancer Institute’s Genomic Data Commons (https://gdc.
cancer.gov).
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