
Hindawi Publishing Corporation
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 245968, 8 pages
doi:10.1155/2012/245968

Research Article

An Integrative Approach to Infer Regulation Programs in
a Transcription Regulatory Module Network

Jianlong Qi,1 Tom Michoel,1 and Gregory Butler2

1 Freiburg Institute for Advanced Studies, University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany
2 Department of Computer Science and Software Engineering, Concordia University, 1455 de Maisonneuve Boulevard W,
Montreal, QC, Canada H3G 1M8

Correspondence should be addressed to Gregory Butler, gregb@encs.concordia.ca

Received 27 October 2011; Accepted 12 February 2012

Academic Editor: Yong Lim

Copyright © 2012 Jianlong Qi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The module network method, a special type of Bayesian network algorithms, has been proposed to infer transcription regulatory
networks from gene expression data. In this method, a module represents a set of genes, which have similar expression profiles
and are regulated by same transcription factors. The process of learning module networks consists of two steps: first clustering
genes into modules and then inferring the regulation program (transcription factors) of each module. Many algorithms have been
designed to infer the regulation program of a given gene module, and these algorithms show very different biases in detecting
regulatory relationships. In this work, we explore the possibility of integrating results from different algorithms. The integration
methods we select are union, intersection, and weighted rank aggregation. Experiments in a yeast dataset show that the union and
weighted rank aggregation methods produce more accurate predictions than those given by individual algorithms, whereas the
intersection method does not yield any improvement in the accuracy of predictions. In addition, somewhat surprisingly, the union
method, which has a lower computational cost than rank aggregation, achieves comparable results as given by rank aggregation.

1. Introduction

There is a complex mechanism in cells that controls which
genes are expressed. Transcription factors, which are a special
type of protein and capable of regulating the expression of
other genes by binding to their upstream regions, play a
crucial role in this mechanism. Transcriptional regulatory
relationships between transcription factors and their targets
can be represented by a network, called a transcription reg-
ulatory network, where each vertex denotes a gene and each
edge denotes a regulatory relationship.

Identifying transcription regulatory networks is critical,
because it facilitates understanding biological processes in
cells. Gene expression data, which measure mRNA levels of
genes, are widely used for inferring transcription regulatory
networks [1]. Bayesian networks, a type of probabilistic
graphical model [2], have been proposed to infer transcrip-
tion regulatory networks from gene expression data [3, 4].
Despite their success in learning regulatory networks, models
inferred by the Bayesian networks tend to overfit the data

because, in a gene expression dataset, the number of variables
is normally large compared to the number of samples.
To cope with this problem, Segal et al. [5] designed the
module network method, which is a special type of Bayesian
network algorithm. In this method, each module represents
a set of variables that share (1) a single variable or a set
of variables as their parents and (2) local distributions.
Compared to standard Bayesian network algorithms, this
design significantly reduces the number of parameters to be
learned and consequently leads to more accurate inferences.
The module network method has yielded promising results
in learning regulatory networks [5–7].

Given a gene expression dataset and a list of candidate
transcription factors, the process of learning module net-
works consists of two tasks: clustering genes into modules
and inferring the regulation program (transcription factors)
of each module. Segal et al. [5] designed an expectation-
maximization-based [8] learning algorithm that alternates
between these two tasks. Moreover, Joshi et al. [9] separated
the two tasks, where they grouped genes into modules

2 Journal of Biomedicine and Biotechnology

before learning the regulation program of each module.
Experimental results showed that the separation improves
the performance of the module network method in inferring
regulatory networks.

Many techniques have been applied to infer the regula-
tion program of a given gene module, that is, the second
task in learning module networks, such as logistic regression
[9], moderated t-statistics [10] from LIMMA [11], Gibbs
sampling [12], and linear regression [13]. A common char-
acteristic of these methods is that they are able to calculate
the confidence (i.e., regulatory score) for the assignment of
a transcription factor to a gene module, which is referred
to as a regulator-module interaction. Consequently, their
results can be sorted into an ordered list of regulator-module
interactions according to their regulatory scores. The higher
the ranking of a regulator-module interaction in the ordered
list given by a method, the more confidence this method
assigns to the interaction. In addition, since these methods
resort to distinct techniques, they show very different biases
in detecting regulatory relationships. For example, in the
nitrogen utilization module in yeast, LeMoNe [9] favors
regulatory relationships where transcription factors and
genes are globally coexpressed, while the LIMMA-based
method [10] favors regulatory relationships where transcrip-
tion factors and genes are locally coexpressed. This suggests
that integrating results from different regulation program
learning algorithms can be a promising direction in better
inferring regulatory networks [14].

In this work, we extend our previous work [10] by inte-
grating its results with those given by two other learning
algorithms [9, 13]. To the best of our knowledge, this is the
first of such an attempt. The integration methods we select
are union, intersection, and weighted rank aggregation [15].
Experimental results indicate that the union and weighted
rank aggregation methods produce more accurate predic-
tions than those given by individual algorithms, whereas the
intersection method does not yield any improvement in the
accuracy of predictions.

The rest of this paper is organized as follows: Section 2
describes the dataset, integration methods, and regulation
program learning algorithms studied in this work. Section 3
presents experimental results. Section 4 summarizes the
main results and discusses future work.

2. Material and Method

2.1. Data Set and Reference Database. The yeast stress dataset
has been used as a benchmark to validate the performance
of module network learning algorithms [5, 9]. This dataset
consists of 173 arrays and measures the budding yeast’s
response to a panel of diverse environmental stresses [16].
The conditions covered by the dataset consist of temperature
shocks, amino acid starvation, nitrogen source depletion,
and so on. In previous work [5, 17], 2355 differentially
expressed genes in the dataset were selected and these genes
were clustered into 69 gene modules. Genes in the modules
show functional enrichment. For example, a module for
nitrogen utilization was obtained. This module consists of
47 genes mostly involved in two pathways: the methionine

pathway (regulated by MET28 and MET32), and the nitrogen
catabolite repression (NCR) system (regulated by GLN3,
GZF3, DAL80, and GAT1). Both pathways relate to the
process by which the budding yeast uses the best available
nitrogen source in the environment [18, 19].

In this work, we apply three algorithms [9, 10, 13] to infer
regulators of these modules using a list of 321 transcription
factors prepared by Segal et al. [5] as candidate transcription
factors. Then, we integrate the results of these algorithms by
methods described in Section 2.2. The regulatory relation-
ships recorded in YEASTRACT [20] (released on April 27,
2009) are used as the reference database to validate results
given by individual algorithms and our integration methods.

2.2. Integration Methods. We apply union, intersection,
and weighted rank aggregation integration methods to
integrate results from different regulation program learn-
ing algorithms. The union and intersection methods are
straightforward. The former determines the ranking of a
regulator-module interaction using the highest ranking given
by all candidate learning algorithms. In contrast, the latter
determines the ranking of an interaction using the lowest
ranking. For example, given a regulator-module interaction,
which is the 1st, 3rd, and 5th items in rankings given by
three individual learning algorithms, respectively, the union
method assigns the 1st as its ranking, while the intersection
method assigns the 5th as its ranking. After determining the
ranking of each interaction, these methods can each produce
an ordered list of regulator-module interactions by sorting
interactions by their rankings.

In comparison, the weighted rank aggregation method
[15] is much more computationally intensive than the union
and intersection methods. Given a set of learning algorithms
M, this integration algorithm searches for an ordered list δ∗,
that is, simultaneously as close as possible to the list produced
by each algorithm inM. Let Lm = (Am

1 ,Am
2 , . . . ,Am

k) represent
an ordered list of k regulator-module interactions produced
by the algorithm m. Let rm(A) denote the rank of the
interaction A under m. Finally, let m(i) (i = 1, 2, . . . , k)
denote the P value (weight) that algorithm m assigns to the
interaction ranked at the ith position in the ordered list. This
can be represented by the following minimization problem:

δ∗ = arg min Φ(δ), (1)

where

Φ(δ) =
∑

m∈M
d(δ,Lm) (2)

represents the sum of the distances between an ordered list
δ and the lists from all algorithms. The distance between δ
and Lm is determined by the weighted Spearman’s footrule
distance:

d(δ,Lm) =
∑

A∈Lm∪δ

∣∣∣m
(
rδ(A)

)
−m(rm(A))

∣∣∣

×
∣∣∣rδ(A)− rm(A)

∣∣∣.

(3)

To determine δ∗, we apply the cross-entropy Monte Carlo
algorithm [21].

Journal of Biomedicine and Biotechnology 3

2.3. Regulation Program Learning Algorithms. We select
LeMoNe [9], Inferelator [13], and the LIMMA-based meth-
od [10], as candidate regulation program learning algo-
rithms. In this section, we describe how to apply these
algorithms to the yeast stress dataset. In addition, in order to
apply the weighted rank aggregation to integrate their results,
for each algorithm, we also define how to calculate the P
value for the assignment of a regulator to a module.

2.3.1. LeMoNe. For each gene module in the yeast stress
dataset, LeMoNe [9] sampled 10 regression trees and then
calculated regulatory scores for assigning transcription fac-
tors to this module based on these trees. Regulatory scores of
all regulator-module interactions were downloaded from the
supplementary website of [9].

We calculate the LeMoNe-based P value for the assign-
ment of a regulator r to a module as follows. First, given a
regression tree T of this module, we define the P value of
the split with r and a splitting value z at an internal node t
in T (i.e., P value(t)(r, z)) as the probability of observing a
split with a higher average prediction probability than this
split at the node t. The average prediction probability of a
split is defined as in equation (4) of [9]. Then, the P value for
assigning r to t is defined as:

P value(t)(r) = wt

|Z|
∑

z∈Z
P value(t)(r, z), (4)

where wt is the number of experimental conditions in t
divided by the total number of conditions in the data, and
Z represents the set of possible splitting values for r in t.
Furthermore, given a set of regression trees F, the LeMoNe-
based P value for assigning r to this module can be calculated
as:

P value(r) = 1
|F|

∑

T∈F

∑

t∈T
P value(t)(r). (5)

2.3.2. Inferelator. Inferelator [13] uses linear regression and
variable selection to identify transcription factors of gene
modules. In each gene module in the yeast stress dataset,
we fit a linear model to the mean of the module’s genes in
each condition using the 321 candidate transcription factors
as predictor variables. The regulatory score for assigning a
regulator to the module is decided by the absolute value of
the regulator’s regression coefficient in the fitted model.

The Inferelator-based P value for the assignment of a
regulator to a module is defined as follows. First, we per-
mute the values of the expression value matrix from the
row direction (gene). Second, we apply Inferelator to the
permuted dataset using the original gene modules. Third, we
fit the distribution of nonzero coefficients obtained from the
permuted dataset by the Weibull distribution defined as:

pdf(x) = k

λ

(
x

λ

)k−1

e−(x/λ)k , (6)

with k = 0.889 and λ = 0.015 (Figure 1). Last, we define the
Inferelator-based P value for a regulator-module interaction
with a regulatory score S as the probability of observing a
value more than S from the Weibull distribution (6).

0 0.1 0.2 0.3 0.4
Magnitude of coefficients

D
en

si
ty

Empirical distribution of coefficients based on permuted data

Approximate fit by the Weibull distribution

50

40

30

20

10

0

Figure 1: Probability density function of coefficients (regulatory
scores) based on permuted data and the approximated fit by the
Weibull distribution. The solid line denotes the empirical probabil-
ity density function of regression coefficients obtained by Inferelat-
or in the permuted expression data, while the dotted line denotes
the probability density function of the Weibull distribution (6) with
k = 0.889 and λ = 0.015.

2.3.3. LIMMA-Based Method. In our previous work [10],
moderated t-statistics proposed in LIMMA [11] were applied
to infer transcription factors of gene modules. For each gene
module in the yeast dataset, ten condition clusterings were
sampled by a two-way clustering algorithm [17]. Then the
regulatory score for assigning a transcription factor to this
module was calculated by summing the transcription factor’s
standardized moderated t-statistics based on the sampled
condition clusterings.

We next describe how to define the method’s P value for
the assignment of a transcription factor to a module. First, we
randomly generate ten condition clusterings, each of which
consisted of two clusters. We then calculate the regulatory
score for each candidate transcription factor based on these
randomly generated clusterings. Moreover, we record the
regulatory score of a randomly selected transcription factor.
The above process is repeated to obtain 100,000 randomly
generated regulatory scores. Last, the probability density
function of these randomly generated scores is approximated
by the stretched exponentials [22] defined as:

pdf(x) =
⎧
⎨
⎩
hmax exp

[−br(x − xmax)cr
]
, for x ≥ xmax,

hmax exp
[−bl(xmax − x)cl

]
, for x < xmax,

(7)

with hmax = 0.127, br = 0.024, bl = 0.083, cr = 2.45, cl =
1.70, and xmax = −0.050. As shown in Figure 2, the approx-
imated fit is very close to the empirical distribution of the
randomly generated regulatory scores, so the P value for a
regulator-module interaction with a regulatory score S can
be defined as the probability of observing a value more than
S from the approximated fit.

4 Journal of Biomedicine and Biotechnology

Regulatory scores

D
en

si
ty

0

0.05

0.1

0.15

Empirical distribution of randomly generated regulatory scores

Approximate fit by the stretched exponentials

−20 −10 0 10 20

Figure 2: Probability density function of randomly generated regu-
latory scores and the approximated fit by the stretched exponentials.
The solid line denotes the empirical probability density function
of regulatory scores obtained by the LIMMA-based method based
on randomly generated condition clusterings, while the dotted line
denotes the stretched exponentials (7) with hmax = 0.127, br =
0.024, bl = 0.083, cr = 2.45, cl = 1.70, and xmax = −0.050.

Note that the assignment of a regulator to a module
is associated with a P value for each regulation program
learning algorithm, and the P value is required by the
weighted rank aggregation method to integrate results from
different learning algorithms. In contrast, the assignment
is also associated with a P value based on records in the
reference database, YEASTRACT. This P value is calculated
by the hypergeometric distribution and is used to evaluate
the performance of individual learning algorithms and
integration methods.

3. Results and Discussion

3.1. Results of Individual Learning Algorithms. We applied
each regulation program learning algorithm described in
Section 2.3 to calculate the regulatory score for assigning a
regulator to a module. Then we sorted all of its regulatory
scores between 321 candidate transcription factors and 69
modules in descending order. This led to an ordered list of
22,149 regulator-module interactions for each method.

In addition, for each regulator-module interaction, we
used the hypergeometric distribution to calculate the P
value of this interaction, using regulatory relationships in
YEASTRACT as the reference database. This P value is based
on the number of genes regulated by the regulator in the
dataset, the number of genes regulated by the regulator in
the module, and the number of genes in the module, and is
used to determine if the regulator-module interactions is a
true positive.

Moreover, for a given ordered list of regulator-module
interactions, we define the precision of the top i items in this
ordered list as:

P(i) = T(i)
i

, (8)

LIMMA

Inferelator

LeMoNe

P
re

ci
si

on

Number of selected regulatory relationships

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1009080706050403020100

Figure 3: Comparison of precision of three candidate learning algo-
rithms. For each algorithm, the figure shows the precision (8) when
the top i (i = 1, 2, . . . , 100) regulator-module interactions in the
rank given by the algorithm are selected.

where T(i) denotes the number of interactions with P values
less than 0.05 in the top i items (i.e., the number of true
positives among these i interactions).

In Figure 3, we show the precision of the top i regulator-
module interactions (i = 1, 2, . . . , 100) in the ordered lists
obtained by Inferelator, LeMoNe, and the LIMMA-based
method. When less than 20 interactions are selected, the
LIMMA-based method outperforms the other two methods.
Most true positives given by LIMMA-based method are for
the module of nitrogen utilization. However, Inferelator and
LeMoNe outperform the LIMMA-based method when the
number of selected interactions is in the range of 20 and 50.
In addition, when more than 50 interactions are selected, the
three methods show similar performance in the yeast dataset.

3.2. Results for the Weighted Rank Aggregation. The weighted
rank aggregation method searches for a synthesized list that
is simultaneously as close as possible to the ordered lists
from LeMoNe, Inferelator, and the LIMMA-based method.
However, it is not feasible to directly apply this integration
method on a list with 22,149 interactions due to the extensive
computational workload. Hence, we resort to a tradeoff by
integrating the top k (k ≤ 22, 149) interactions in the
ordered lists given by these algorithms. This is, for a given
ordered list and k, interactions ranked lower than k (i.e.,
k + 1, k + 2, . . . , 22, 149), are associated with a same weight
(P value) of one. The larger k, the closer the list produced
by the rank aggregation is to the lists given by the three
candidate algorithms, but the rank aggregation costs more
computation time. For example, it takes 12 hours and 48
hours for k = 75 and k = 100, respectively, on a HP
Rackmount server with AMD Opteron processors (×86,
64 bit, dual core) and 16 GB memory.

Journal of Biomedicine and Biotechnology 5

Number of selected regulatory relationships

P
re

ci
si

on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1009080706050403020100

k = 100

k = 75 k = 25

k = 50

Figure 4: Comparison of precision given by the rank aggregation at
k = 25, 50, 75, and 100.

In order to select a proper value for k in the yeast
dataset, we applied the rank aggregation ten times for k =
25, 50, 75, 100, respectively. For each k, this led to 10 ordered
lists, and we calculated the average of the precision of the
top i (i = 1, 2, . . . , k) interactions in these ten lists. As shown
in Figure 4, when k increases from 25 to 50 and then to 75,
the precisions obtained by the rank aggregation method are
improved, but the precisions at k = 75 and k = 100 are about
the same. This indicates that after k reaches 75, considering
more interactions from the ordered lists of the candidate
algorithms can no longer improve the performance of the
rank aggregation method. Hence, k is set to 100 in our tests
using the yeast dataset.

3.3. Comparison of Integration Methods and Individual Algo-
rithms. In this section, we compare the performance of
integration methods with individual algorithms. In order to
make the comparison clear, for a given i (i = 1, 2, . . . , 100),
we define the baseline precision as that obtained by selecting
the maximum of the precisions of the top i interactions given
by all individual algorithms. That is, given a set of individual
learning algorithms M, it is determined as:

P∗(i) = max
m∈M

(
pm(i)

)
, (9)

where pm(i) denotes the precision of top i interactions in
the ordered list given by algorithm m (8). Note that baseline
precision represents an upper optimistic bound that cannot
be achieved by individual algorithms as we can only use one
of them at a time. Hence, even if the precision obtained by an
integration method is only comparable to baseline precision,
it still shows that this integration method yields a better
overall performance than those of individual algorithms.

We compare the precision of the top 100 predictions
from the three integration methods with baseline precisions

Baseline

Rank aggregation

Union

Intersection

Number of selected regulatory relationships

P
re

ci
si

on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1009080706050403020100

Figure 5: Comparison between precisions of integration methods
and baseline precisions. For each of the three integration methods,
the figure shows the precision (8) when the top i (i = 1, 2, . . . , 100)
regulator-module interactions in the rank given by the integration
method are selected. For a given i, the baseline precision denotes the
maximum of precisions obtained by individual learning algorithms
(9).

(Figure 5). The union and rank aggregation methods gen-
erate better or similar results compared to the baseline
precision. In addition, somewhat surprisingly, the union
method, which has a lower computational cost than rank
aggregation, achieves comparable results as given by rank
aggregation. The first twenty interactions from union and
rank aggregation are shown in Tables 1 and 2, respectively.

On the other hand, we observe that baseline precisions
are generally better than precisions given by the intersection
method. The intersection method sorts interactions by their
lowest rankings from all candidate algorithms, so it tends
to assign interactions with moderate confidences from all
algorithms with high ranks. We speculate that this may have
affected its performance. For example, as shown in Table 3,
its first 20 interactions include several not highly ranked
by any algorithm, such as the twelfth interaction (RDS2 to
module 16) ranked 219th, 125th, and 273rd by the LIMMA-
based method, LeMoNe, and Inferelator, respectively; and
the eighteenth interaction (DAL81 to module 58) ranked
as 199th, 310th, and 190th by the LIMMA-based method,
LeMoNe, and Inferelator, respectively.

We also compare areas under precision curves for the
top 100 predictions given by the integration methods and
individual learning algorithms (Table 4). The union and
weighted rank aggregation methods achieve better results
than those from the individual learning algorithms, but the
intersection method only yields a comparable result with the
individual learning algorithms. These results indicate that
we should be cautious to apply the intersection method to
integrate results from algorithms of different natures.

6 Journal of Biomedicine and Biotechnology

Table 1: Top twenty regulator-module interactions as given by the union method. ∗Records represent true positives at the P value threshold
of 0.05.

Rank Regulator-module P value
Ranks from individual algorithms

LIMMA LeMoNe Inferelator

1
DAL80-11∗ 3.47e − 10 1 130 88

IME4-46 1.00e + 00 48 1 2906

HAP1-13 1.00e + 00 3076 169 1

4
HAP4-7∗ 1.67e − 30 50 9 2

MET32-11∗ 1.21e − 13 2 30 7

DAL80-51∗ 0.00e + 00 4 2 10281

7
PHD1-36∗ 5.20e − 03 3 342 5

HAP4-30 5.33e − 02 23 3 32

MET32-27 1.00e + 00 9680 3702 3

10
TOS8-24∗ 1.45e − 02 49 4 111

GAT1-59∗ 2.55e − 03 802 5059 4

12
XBP1-10∗ 1.08e − 02 59 5 602

DAL82-48 1.00e + 00 5 49 7771

14
UGA3-11 2.35e − 01 6 509 59

USV1-28 1.00e + 00 190 6 10281

SKO1-57 1.00e + 00 4663 10026 6

17
GAT1-11∗ 4.24e − 05 34 7 28

ACA1-48 1.00e + 00 7 1048 7773

19
PDR3-13 3.90e − 01 12 8 10281

DAL80-40 1.00e + 00 8 367 27

Table 2: Top twenty regulator-module interactions as given by the weighted rank aggregation method. ∗Records represent true positives at
the P value threshold of 0.05.

Rank Regulator-module P value
Ranks from individual algorithms

LIMMA LeMoNe Inferelator

1 HAP4-7∗ 1.67e − 30 50 9 2

2 GAT1-11∗ 4.24e − 05 34 7 28

3 MET28-11∗ 5.92e − 10 27 24 16

4 HAP4-30 5.33e − 02 23 3 32

5 MET32-11∗ 1.21e − 13 2 30 7

6 DAL80-51∗ 0.00e + 00 4 2 10281

7 DAL81-6 6.67e − 01 21 14 1193

8 PDR3-13 3.90e − 01 12 8 10281

9 PHD1-36∗ 5.20e − 03 3 342 5

10 IME4-46 1.00e + 00 48 1 2906

11 TOS8-24∗ 1.45e − 02 49 4 111

12 GAL80-41∗ 7.45e − 09 7107 10 52

13 DAL81-55 4.17e − 01 14 16 285

14 MET32-40∗ 1.00e − 02 52 5329 37

15 CUP2-10∗ 1.12e − 02 553 32 18

16 YAP5-51 1.00e + 00 37 746 40

17 XBP1-10∗ 1.08e − 02 59 5 602

18 YAP6-25 8.63e − 02 26 26 5444

19 UGA3-40 1.00e + 00 22 33 93

20 UGA3-11 2.35e − 01 6 509 59

Journal of Biomedicine and Biotechnology 7

Table 3: Top twenty regulator-module interactions as given by the intersection method. ∗Records represent true positives at the P value
threshold of 0.05.

Rank Regulator-module P value
Ranks from individual algorithms

LIMMA LeMoNe Inferelator

1 MET28-11∗ 5.92e − 10 27 24 16

2 MET32-11∗ 1.21e − 13 2 30 7

3 HAP4-30 5.33e − 02 23 3 32

4 GAT1-11∗ 4.24e − 05 34 7 28

5 HAP4-7∗ 1.67e − 30 50 9 2

6 OAF1-22 5.37e − 02 73 45 87

7 UGA3-40 1.00e + 00 22 33 93

8 TOS8-24∗ 1.45e − 02 49 4 111

9 DAL80-11∗ 3.47e − 10 1 130 88

10 GAL4-22∗ 7.44e − 03 155 85 115

11 MET32-51 1.00e + 00 28 224 113

12 RDS2-16 1.00e + 00 219 125 273

13 YRR1-24∗ 4.06e − 04 273 21 230

14 DAL81-55 4.17e − 01 14 16 285

15 GZF3-11∗ 8.34e − 04 31 188 297

16 TOS8-49 5.55e − 02 87 308 85

17 SWI4-55 3.67e − 01 39 63 310

18 DAL81-58 1.00e + 00 199 310 190

19 BAS1-63 1.00e + 00 33 88 312

20 IME4-3 4.52e − 01 317 58 245

Table 4: Comparison of areas under precision curves for the top 100 predictions given by the integration methods and individual learning
algorithms. The precision curves for the integration methods are shown in Figure 5, while the precision curves for the individual learning
algorithms are shown in Figure 3.

Integration methods Individual algorithms

Rank aggregation Union Intersection LIMMA Inferelator LeMoNe

Area under curve 42.63 41.12 36.09 36.72 35.79 35.18

4. Conclusions

A metalearner approach was applied to infer transcription
factors of coexpressed gene modules in a yeast stress dataset,
with the regulatory relationships recorded in YEASTRACT
as the gold standard. We integrated the predictions of three
existing inference techniques [9, 10, 13] by three different
methods: union, intersection, and weighted rank aggrega-
tion. Experimental results show that integrated predictions
based on union or rank aggregation have higher precision
than any of the individual methods. The justification of this
work is that the results generated by different algorithms are
not identical and often have clearly different influences from
the datasets used. The experiments confirm our expectation
that integrating the output of several algorithms results in
higher quality predictions. To the best of our knowledge,
this is the first such an attempt. Consequently, this work
may point out a promising direction for module network
learning.

An interesting extension of this work is to investigate if
integrating results from more algorithms can lead to even

better performance. In particular, we expect that when more
algorithms are combined, we may see significant difference
between the union and weighted rank aggregation methods.
The experiments in this work are conducted on a yeast
dataset, and results are validated by the regulatory relation-
ships recorded in YEASTRACT, which does not represent a
complete reference database of the regulatory network in the
yeast. Hence, another direction for future work is to perform
experiments on expression data from other species (e.g., E.
coli [23]) to verify if results are consistent with those we
obtained in the yeast dataset. In addition, we are interested in
performing experiments on synthetic datasets (e.g., DREAM
[24]), where complete reference networks are available.

References

[1] J. Tegnér, M. K.S. Yeung, J. Hasty, and J. J. Collins, “Reverse
engineering gene networks: integrating genetic perturba-
tions with dynamical modeling,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 100,
no. 10, pp. 5944–5949, 2003.

8 Journal of Biomedicine and Biotechnology

[2] D. Heckerman, “A tutorial on learning with Bayesian net-
works,” in Learning in Graphical Models, pp. 301–354, MIT
Press, 1999.

[3] N. Friedman, M. Linial, and I. Nachman, “Using Bayesian net-
works to analyze expression data,” Journal of Computational
Biology, vol. 7, no. 3-4, pp. 601–620, 2000.

[4] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller, “Rich
probabilistic models for gene expression,” Bioinformatics, vol.
17, no. 1, supplement 1, pp. S243–S252, 2001.

[5] E. Segal, M. Shapira, A. Regev et al., “Module networks:
identifying regulatory modules and their condition-specific
regulators from gene expression data,” Nature Genetics, vol. 34,
no. 2, pp. 166–176, 2003.

[6] J. Li, Z. J. Liu, Y. C. Pan et al., “Regulatory module network of
basic/helix-loop-helix transcription factors in mouse brain,”
Genome Biology, vol. 8, no. 11, article no. R244, 2007.

[7] E. Bonnet, T. Michoel, and Y. van de Peer, “Prediction of a
gene regulatory network linked to prostate cancer from gene
expression, microRNA and clinical data,” Bioinformatics, vol.
26, no. 18, Article ID btq395, pp. i638–i644, 2010.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,”
Journal of the Royal Statistical Society. Series B, vol. 39, no. 1,
pp. 1–38, 1977.

[9] A. Joshi, R. De Smet, K. Marchal, Y. Van de Peer, and T.
Michoel, “Module networks revisited: computational assess-
ment and prioritization of model predictions,” Bioinformatics,
vol. 25, no. 4, pp. 490–496, 2009.

[10] J. Qi, T. Michoel, and G. Butler, “Applying linear models
tolearn regulation programs in a transcription regulatory
module network,” in Proceedings of the 9th European Confer-
ence on Evolutionary Computation, Machine Learning and Data
Mining in Bioinformatics, pp. 37–47, 2011.

[11] G. K. Smyth, “Linear models and empirical Bayes methods for
assessing differential expression in microarray experiments,”
Statistical Applications in Genetics and Molecular Biology, vol.
3, article3, 2004.

[12] J. Qi, T. Michoel, and G. Butler, “A regression tree-based Gibbs
sampler to learn the regulation programs in a transcription
regulatory module network,” in Proceedings of the IEEE
Symposium on Computational Intelligence in Bioinformatics
and Computational Biology, pp. 206–215, 2010.

[13] R. Bonneau, D. J. Reiss, P. Shannon et al., “The inferelator: an
algorithn for learning parsimonious regulatory networks from
systems-biology data sets de novo,” Genome Biology, vol. 7, no.
5, article no. R36, 2006.

[14] T. Michoel, R. De Smet, A. Joshi, Y. Van de Peer, and K.
Marchal, “Comparative analysis of module-based versus direct
methods for reverse-engineering transcriptional regulatory
networks,” BMC Systems Biology, vol. 3, no. 1, article no. 49,
2009.

[15] V. Pihur, S. Datta, and S. Datta, “Weighted rank aggregation
of cluster validation measures: a Monte Carlo cross-entropy
approach,” Bioinformatics, vol. 23, no. 13, pp. 1607–1615,
2007.

[16] A. P. Gasch, P. T. Spellman, C. M. Kao et al., “Genomic expres-
sion programs in the response of yeast cells to environmental
changes,” Molecular Biology of the Cell, vol. 11, no. 12, pp.
4241–4257, 2000.

[17] A. Joshi, Y. Van de peer, and T. Michoel, “Analysis of a Gibbs
sampler method for model-based clustering of gene expres-
sion data,” Bioinformatics, vol. 24, no. 2, pp. 176–183, 2008.

[18] B. Magasanik and C. A. Kaiser, “Nitrogen regulation in
Saccharomyces cerevisiae,” Gene, vol. 290, no. 1-2, pp. 1–18,
2002.

[19] T. S. Cunningham, R. Rai, and T. G. Cooper, “The level
of DAL80 expression down-regulates GATA factor-mediated
transcription in Saccharomyces cerevisiae,” Journal of Bacteriol-
ogy, vol. 182, no. 23, pp. 6584–6591, 2000.

[20] P. T. Monteiro, N. D. Mendes, M. C. Teixeira et al.,
“YEASTRACT-DISCOVERER: new tools to improve the anal-
ysis of transcriptional regulatory associations in Saccharomyces
cerevisiae,” Nucleic Acids Research, vol. 36, supplement 1, pp.
D132–D136, 2008.

[21] V. Pihur, S. Datta, and S. Datta, “RankAggreg, an R package
for weighted rank aggregation,” BMC Bioinformatics, vol. 10,
no. 1, article no. 62, 2009.

[22] G. Stolovitzky, R. J. Prill, and A. Califano, “Lessons from the
DREAM2 challenges: a community effort to assess biological
network inference,” Annals of the New York Academy of
Sciences, vol. 1158, pp. 159–195, 2009.

[23] J. J. Faith, B. Hayete, J. T. Thaden et al., “Large-scale mapping
and validation of Escherichia coli transcriptional regulation
from a compendium of expression profiles,” PLoS Biology, vol.
5, no. 1, pp. 54–66, 2007.

[24] R. J. Prill, D. Marbach, J. Saez-Rodriguez et al., “Towards a
rigorous assessment of systems biology models: the DREAM3
challenges,” PLoS One, vol. 5, no. 2, Article ID e9202, 2010.

	Introduction
	Material and Method
	Data Set and Reference Database
	Integration Methods
	Regulation Program Learning Algorithms
	LeMoNe
	Inferelator
	LIMMA-Based Method

	Results and Discussion
	Results of Individual Learning Algorithms
	Results for the Weighted Rank Aggregation
	Comparison of Integration Methods and Individual Algorithms

	Conclusions
	References

