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Disrupted global metastability 
and static and dynamic brain 
connectivity across individuals in 
the Alzheimer’s disease continuum
Aldo Córdova-Palomera1, Tobias Kaufmann1, Karin Persson2,3, Dag Alnæs1, 
Nhat Trung Doan1, Torgeir Moberget1, Martina Jonette Lund1, Maria Lage Barca2,3, 
Andreas Engvig1,4, Anne Brækhus2,3,5, Knut Engedal2,3, Ole A. Andreassen1, Geir Selbæk2,6,7 & 
Lars T. Westlye1,8

As findings on the neuropathological and behavioral components of Alzheimer’s disease (AD) continue 
to accrue, converging evidence suggests that macroscale brain functional disruptions may mediate their 
association. Recent developments on theoretical neuroscience indicate that instantaneous patterns 
of brain connectivity and metastability may be a key mechanism in neural communication underlying 
cognitive performance. However, the potential significance of these patterns across the AD spectrum 
remains virtually unexplored. We assessed the clinical sensitivity of static and dynamic functional brain 
disruptions across the AD spectrum using resting-state fMRI in a sample consisting of AD patients 
(n = 80) and subjects with either mild (n = 44) or subjective (n = 26) cognitive impairment (MCI, SCI). 
Spatial maps constituting the nodes in the functional brain network and their associated time-series 
were estimated using spatial group independent component analysis and dual regression, and whole-
brain oscillatory activity was analyzed both globally (metastability) and locally (static and dynamic 
connectivity). Instantaneous phase metrics showed functional coupling alterations in AD compared to 
MCI and SCI, both static (putamen, dorsal and default-mode) and dynamic (temporal, frontal-superior 
and default-mode), along with decreased global metastability. The results suggest that brains of AD 
patients display altered oscillatory patterns, in agreement with theoretical premises on cognitive 
dynamics.

Dementia is a highly prevalent syndrome with a large economic and societal impact, characterized by the pro-
gressive impairment of cognition, behavioral changes and reduced quality of life1. Alzheimer’s disease (AD), the 
most common form of dementia, has complex and heterogeneous etiopathogenic underpinnings, including both 
genetic and environmental factors2. While some clinical, cognitive and neuropathological components of AD are 
widely acknowledged1,3,4, a unified frame for the intricate architecture of AD is still needed in order to make sense 
of the pathways from molecular changes to clinical phenomenology, which is critical for early identification of 
at-risk individuals.

Converging evidence suggests that large-scale brain oscillatory activity disruptions, frequently assessed 
using resting-state functional magnetic resonance imaging (fMRI), may reflect key mechanisms bridging the 
gap between neuropathology and cognitive alterations in AD5. Virtually all the resting-state fMRI literature on 
oscillatory alterations in AD has focused on measures of coupling between different brain regions averaged across 
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a scanning session –the so-called (static) functional connectivity. For example, AD patients have been shown to 
exhibit stronger hippocampal connectivity within the default mode network and weaker hippocampal-cingulate 
co-activation6. Furthermore, suggesting that the clinical manifestation may be mirrored in preclinical stages in 
individuals with high genetic risk, young and middle-aged carriers of the AD-associated APOE-epsilon4 allele 
have shown higher hippocampal synchronization within the default mode network7,8. However, results across 
studies are largely mixed, suggesting both increases and decreases in coupling associated with aging and AD9.

Importantly, recent conceptual, theoretical and methodological advances may shed light on these mixed find-
ings; among them, the observation that time-varying coupling and de-coupling of brain regions embeds infor-
mation that may be important in clinical settings10,11. This novel and biologically feasible framework has been 
conceptualized in the communication through coherence theory, which postulates that cognition is linked to neural 
communication emerging from coherent oscillatory activity, and that cognitive functions require a flexible set of 
signaling processes occurring on top of the anatomical backbone of the brain12–14. Namely, in order to fully benefit 
from the fixed anatomical connections, neural ensembles should traverse distinct dynamic states for adequate 
cognitive and other mental functions to arise15,16. Consequently, brain disorders typically implicating cognitive 
and emotional functions are expected to be characterized by a reduced dynamic repertoire17: a smaller set of brain 
functional configurations. Of note, the underlying neurobiological mechanisms can take place at different times-
cales, including the very slow frequencies measured non-invasively via fMRI15, and can be measured by analyzing 
variations in synchrony among regions over time18,19.

In this study, we aim to test this conjecture by assessing the potential clinical sensitivity of brain oscillatory 
characteristics across the AD spectrum in a sample of patients with AD, individuals with mild cognitive impair-
ment (MCI), and those with only subjective memory complaints (also known as subjective cognitive impairment, 
SCI). Time-series from functional “seeds” defined with independent component analysis (ICA) were estimated 
using dual regression7, and potential alterations in brain oscillatory activity were analyzed using two methods: 
1) the standard, averaged coupling between pairs of resting-state fMRI signals20, and 2) phase-based metrics of 
coupling and de-coupling across time: metastability (whole-brain dynamics) and pairwise synchrony changes 
(dynamics of paired brain regions)11. Phase-based metrics of coupling have conventionally been used in electro-
encephalography studies, in measures such as the phase-locking value21–23, and have only recently been adapted 
for fMRI signal analysis of time-varying connectivity10,11,24. To the best of our knowledge, no previous study has 
evaluated this type of phase-based dynamic alterations in fMRI activity in an aging and neurodegeneration con-
text. Based on established knowledge about the anatomical distribution of the pathophysiology and resting-state 
fMRI alterations in AD, and also considering theoretical concepts on the relevance of a wide set of time-varying 
connectivity, we hypothesized that patients with AD exhibit altered sFC and dFC, both at the whole-brain level 
and at specific brain nodes implicating temporal, parietal and subcortical structures, reflecting a graded pattern 
of differences corresponding with disease severity.

Results
Demographic and clinical data.  The demographic data summarized in Table 1 and Fig. 1 shows statisti-
cally significant differences in the distribution of age, years of education and MMSE scores across the different 
diagnostic categories. Briefly, patients with AD (71.5 ±​ 7.9 years) were older than the MCI (63.5 ±​ 11.1) and SCI 
(63.6 ±​ 9.6) groups. Also, patients with AD had lower MMSE scores (22.8 ±​ 4.8) than MCI (28.2 ±​ 2.1) and SCI 
(29.4 ±​ 0.6), and shorter education. There were no differences in sex distribution between groups. The correlation 
coefficients between age, MMSE and education indicate small/medium effect sizes25, which justifies their inclu-
sion as covariates without strong collinearity issues.

Statistical analysis of average coupling (sFC).  Figure 2 (top) displays regression coefficients and 
unadjusted p-values obtained from logistic regression analysis of diagnosis pairs (ADvsMCI, ADvsSCI and 
MCIvsSCI), using each of the 325 partial correlation coefficients as independent variable, and controlling for gen-
der, age, headcoil and motion. Network-based statistics (NBS) analysis using data from all participants showed 
a 39-edge subnetwork with diagnose-dependent disruptions (p =​ 0.037) (Fig. 3, uppermost heatmap). As shown 

Age MMSE score Years of education Sample size (n)

Mean (SD) Range
Mean 
(SD) Range

Mean 
(SD) Range male/female

AD 71.5 (7.9) 53–91 22.8 (4.8) 5–30 12.4 (3.1) 7–19 35/45

MCI 63.5 (11.1) 42–85 28.2 (2.1) 20–30 14.3 (2.8) 9–20 26/18

SCI 63.6 (9.6) 49–84 29.4 (0.6) 28–30 15 (3.3) 9–22 12/14

Between-group differences (test statistics)

t p t p t p Χ2 p

ADvsMCI 4.6 9.5e-6* −​6.6 1.1e-9* −​3.3 0.001* 2.1 0.148

ADvsSCI 4.2 6.7e-5* −​7 2.2e-10* −​3.6 4.5e-4* 1.7e-4 0.989

MCIvsSCI −​0.04 0.968 −​2.9 0.005* −​0.9 0.351 0.6 0.423

Table 1.  Clinical and demographic information. Notes: Between-group differences were assessed with 
either two-tailed t-tests (continuous variables) or chi-square (Χ2, contingency tables, 1 degree of freedom). 
Abbreviations: SD, standard deviation; *statistically-significant p-value.
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by the sum of F-statistics in Fig. 3 (bottom), the brain nodes with the largest contributions to the statistical sig-
nificance of that subnetwork were IC13 (putamen), IC14 (dorsal), IC11 (default-mode) and IC6 (default-mode).

Figure 4 (top) shows the partial correlation coefficients (z-transformed) of the 39 edges constituting the men-
tioned network. Notice that the plot contains unadjusted data, which are not directly comparable to the F-statistics 
derived from NBS multivariate tests; visual analysis of the boxplot notches (namely, non-overlapping notches as 
evidence of median differences26) indicates that the largest between-group differences are in the following IC 

Figure 1.  Correlation matrix chart of demographic features. Entries in the upper triangle correspond 
to Pearson’s correlation coefficients, and the number of “*” represents the significance level (**p <​ 10−2, 
***p <​ 10−3).

Figure 2.  Logistic regression results for sFC and dFC at the 325 IC pairs. The results represent raw p-values 
were obtained from logistic regression models adjusting by gender, age, in-scanner motion and headcoil. The 
horizontal red line indicates the p-value threshold (0.05) in the corresponding logarithmic scale. Colorbars 
display regression coefficients for the different pairs.
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pairs: 36 (IC2-13: 0 <​ AD <​ MCI =​ SCI), 116 (IC6-7: 0 <​ MCI =​ SCI <​ AD), 137 (IC7-9: AD <​ MCI =​ SCI <​ 0), 
160 (IC8-14: AD <​ MCI =​ SCI =​ 0), 166 (IC8-20: AD >​ MCI =​ SCI >​ 0), 207 (IC11-13: 0 <​ AD <​ MCI =​ SCI), 
214 (IC11-20: AD =​ SCI <​ 0 <​ MCI), 216 (IC11-22: 0 <​ MCI <​ AD =​ SCI), 217 (IC11-23: 0 <​ MCI <​ AD =​ SCI), 
222 (IC12-14: AD <​ MCI <​ SCI <​ 0), 239 (IC13-18: 0 =​ AD <​ MCI =​ SCI), 254 (IC14-21: 0 <​ AD =​ SCI <​ MCI), 
261 (IC15-17: 0 <​ MCI <​ AD =​ SCI), 265 (IC15-21: 0 <​ AD =​ SCI <​ MCI), 281 (IC17-18: 0 <​ MCI <​ AD =​ SCI) 
and 307 (IC20-23: 0 <​ MCI <​ AD =​ SCI). Notice that, from the previous list, IC pairs 137, 222, 261, 281 and 307 
show, on average, large z-transformed correlations (absolute value >​ 1), and all other IC pair coefficients were 

Figure 3.  IC pairs in the statistically significant sub-networks (sFC and dFC) from NBS. Heatmap matrices: 
the entries represent F-statistics of the 28-edge network with NBS significance. Non-significant entries were set 
to 0. Notes: *sum of F-statistics from the statistically significant results, illustrating the relative importance of 
each IC; **average of “sum of F” over dFC and sFC.

Figure 4.  Raw sFC and dFC values at the IC pairs with significance from the NBS tests. The trends shown 
here corresponds to the direct measures of pairwise coupling (see Methods), whereas the test results discussed in 
the text show that the association between diagnostic status and dFC persists even after adjustments for gender, 
age, and headcoil. Notes: *coefficient of variation (standard deviation divided by mean) of the normalized phase 
differences (see Methods); **z-transformed value of the regularized regression coefficients.
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reduced via regularized partial correlation, as explained in Methods. These results indicate the presence of both 
increases and decreases in functional coupling which could discriminate between diagnostic categories.

Statistical analysis of time-varying connectivity (dFC).  The 325 dFC measures were largely uncor-
related with each other, and showed only weak correlations with their sFC counterparts (Figure S1), further 
justifying their inclusion as alternative phenotypes. Coefficients and p-values of the different IC pairs, derived 
from logistic regression tests over pairs of diagnoses, are shown in Fig. 2 (bottom). While most of the test statis-
tics at p <​ 0.05 indicate decreased dFC with increased disease severity (negative-valued coefficients depicted as 
dark blue dots), none of these results survives a stringent Bonferroni correction. However, after multiple-testing 
adjustments using NBS on the three-diagnose data, there was a 30-edge dFC sub-network with alterations related 
to disease severity (p =​ 0.018) (Fig. 3, lowermost heatmap). The brain regions with the largest contributions to 
the statistical significance were related to the temporal/auditory (IC 25), frontal (IC 15) and default-mode (IC2 
and IC11) areas.

The dFC values (coefficients of variation) at the 28 altered edges, grouped by diagnosis, are shown in Fig. 4 
(bottom). As mentioned for the case of sFC, Fig. 4 displays unadjusted data, which are not directly compara-
ble to the F-statistics derived from NBS multivariate tests; nevertheless, the different distributions of dFC val-
ues depending on diagnosis can be appreciated. Visual analysis of boxplot notches26 suggests that the strongest 
between-group dissimilarities observed in the raw data indicates localized decreases in dFC with increasing 
disease severity. More specifically, the following IC pairs showed that pattern: 1 (IC1-2: SCI <​ AD <​ MCI), 
16 (IC1-17: SCI <​ MCI <​ AD), 48 (IC2-25: SCI =​ MCI <​ AD), 60 (IC3-14: SCI <​ MCI <​ AD), 64 (IC3-18: 
SCI <​ MCI <​ AD), 71 (IC3-25: SCI =​ MCI <​ AD), 79 (IC4-11: AD <​ MCI =​ SCI), 94 (IC4-26: AD <​ MCI <​ SCI), 
136 (IC7-8: SCI <​ MCI =​ AD), 170 (IC8-24: SCI =​ MCI <​ AD), 184 (IC9-21: SCI =​ MCI <​ AD), 214 (IC11-
20: SCI =​ AD <​ MCI), 233 (IC12-25: SCI =​ MCI <​ AD), 267 (IC15-23: MCI <​ SCI =​ AD), 271 (IC16-17: 
MCI <​ SCI =​ AD), 309 (IC20-25: AD <​ MCI =​ SCI) and 322 (IC23-26: AD =​ MCI <​ SCI). These results thus sug-
gest that different patterns (both increases and decreases) of localized dFC may be related to diagnose.

The analysis of surrogate data showed that, in the present setting, the probabilities of detecting weak dFC are 
small. As shown in Fig. 5, in the whole dataset, the detection probabilities are above chance level only in the pres-
ence of strong dFC. For the specific case of the connections with (clinical) group differences, the strongest evi-
dence for temporal dynamics at pairs 300 (IC19-22, p =​ 0.038), 60 (IC3-14, p =​ 0.062), 215 (IC11-21, p =​ 0.078) 
and 1 (IC1-2, p =​ 0.092) (Figs 5 and 6), suggesting that the current approach might have moderate power to detect 
weak dFC at such edges. As inferred from the data (Fig. 6), none of those results would be statistically significant 
when applying multiple testing adjustments; however, such corrections may be overly conservative here since 
the assessed edges come from another analysis, which already implemented a network-based multiple testing 
protocol. Since the evidence of true temporal dynamics observed here is only moderate, it should be noted that 
the group differences (AD/MCI/SCI) might have been influenced by non-dynamic properties of the time series.

Time-varying synchronization at the whole-brain level: metastability.  After adjusting for 
potential confounders, whole-brain metastability levels were higher in the healthier subgroup (SCI), and 
progressively decreased through MCI and AD (multinomial logit with SCI as reference group: β​MCI =​ −​25, 
SEMCI =​ 9.1, pMCI =​ 0.006; β​AD =​ −​29.1, SEAD =​ 8.9, pAD =​ 0.001; pseudo-R2 =​ 0.154, log-likelihood =​ −​126.8, 
Fig. 7). Of note, neither the raw motion estimates obtained with MCFLIRT nor the variance kept after filter-
ing were related to that metastability metric, and there was no evident movement*diagnose interaction associ-
ated with metastability (Figures S2 and S3). There was no association between metastability and tSNR, neither 
before nor after running FIX (linear regression metastability~tSNR: before FIX: β​ =​ −​1.4 * 10−4, SE =​ 1.1 * 10−4, 
p =​ 0.217; after FIX: β​ =​ −​1.7 * 10−4, SE =​ 1.1 * 10−4, p =​ 0.223; Figure S2). Similarly, there was no significant 

Figure 5.  Surrogate data test results at the whole-brain level and at edges with group differences. Left: test 
of the sampled dFC values (sum of 325 edge weights) against a range of population means. Right: analysis of the 
dFC empirical values against their surrogate null distributions in the SCI group. The plot shows only the four 
edges with both statistically significant (clinical) group differences and p <​ 0.1 in the surrogate tests. Numbers 
next to the dashed line legends correspond to IC pairs. Additional details on the test procedures are described in 
Results.
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interaction with diagnosis (linear regression metastability~tSNR*diagnosis, with AD as reference group: before FIX:  
β​MCI =​ 6 * 10−5, SEMCI =​ 2.6 * 10−4, pMCI =​ 0.817, β​SCI =​ −​2.2 * 10−4, SESCI =​ 3.2 * 10−4, pSCI =​ 0.495; after fix:  
β​MCI =​ 1.6 * 10−4, SEMCI =​ 3.1 * 10−4, pMCI =​ 0.603, β​SCI =​ 9.6 * 10−5, SESCI =​ 4.7 * 10−4, pSCI =​ 0.838; Figure S3).

Figure 6.  Results of surrogate data tests for dFC in the SCI group. Uppermost heatmap: T statistic maps from 
one-group T-tests (null hypothesis: dFC population mean =​ 0 at every edge). Only the original data was used 
for that plot. The upper diagonal shows only connections with statistically significant differences depending on 
clinical diagnose. Lowermost heatmap: using 10000 surrogate datasets, T* values were estimated, and 1 minus 
the proportion of times with T (original) >​ T* (surrogate) was considered the p-value for the presence of true 
dynamics. Note that the colormap corresponds to 1-p (lower p-values have warmer colors). In both heatmaps, 
the upper diagonal shows only connections with statistically significant differences depending on clinical 
diagnose. Bottom: sum of (empirical) T-statistic for each IC.

Figure 7.  Association between metastability and diagnostic status. Note: The trend shown here corresponds 
to the direct measures of metastability, whereas the test results discussed in the text show that the association 
between diagnostic status and metastability persists even after adjustments for gender, age and headcoil.
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Discussion
The present study evaluated the potential association between fMRI based neural oscillatory coupling disruptions 
and clinical severity across a phenotypical continuum related to cognitive status (AD, MCI and SCI). Two differ-
ent types of between-region oscillatory coupling were analyzed: the average across the scanning session (static, 
sFC), defined as the regularized partial temporal correlation between pairs of nodes, and between-region oscil-
latory coupling was measured as the instantaneous transitions between synchronization and de-synchronization 
(dynamic, dFC), defined as the coefficient of variation of the phase differences over time. Distinct group differ-
ences in sFC and dFC were observed. Additionally, a statistically significant pattern of whole-brain metastability 
alterations was observed, with AD showing lower values than MCI, and MCI displaying lower values than SCI.

The findings on static coupling data (sFC) indicate between-group differences in coupling patterns mainly 
implicating the putamen, dorsal and default-mode areas, indicative of either hyper- or hypo-synchronization at 
specific regions depending on diagnosis. This is in line with previous data on the anatomical location of neurode-
generative and AD-related changes, and also resembles the accumulated literature findings of both increases and 
decreases in functional connectivity associated with aging and AD27.

To our knowledge, this is the first report on metastability and related phase coupling alterations (dFC) meas-
ured with fMRI in AD-spectrum phenotypes. The results agree with recent theories on brain computation, which 
posit metastability as the optimal state of neural activity at rest: a dynamical regime characterized by rapid, flex-
ible, engaging and disengaging neural ensembles16,28–30. Within that framework, higher metastability at rest is 
thought to underlie optimal cognitive-behavioral function28,31; the findings here suggest that metastability grad-
ually decreases from the healthier (SCI) to partly affected (MCI) and more severely altered cognitive states (AD). 
It is also worth noting that the dynamic differences measured globally (whole-brain metastability) were accom-
panied by localized disruptions in dFC, implicating a wide range of brain network nodes and their connections, 
suggesting a key role for temporal, frontal and default-mode areas in AD dFC.

The relevance of the regions and brain networks found using sFC and dFC (including default-mode, fron-
tal, putamen, dorsal and temporal areas) has been highlighted in former research on brain changes through-
out the AD continuum, such as functional alterations detected with resting-state fMRI32–35, volumetric 
atrophy observed with MRI36,37, and amyloid neuropathological disturbances measured with positron emission 
tomography38. Jointly, these results expand on a system-wide view of AD dementia5,39, by endorsing that the 
anatomically-constrained AD neuropathology may be linked to some localized macro-scale brain function alter-
ations ultimately leading to the clinical phenotypes.

Two behavioral fMRI reports on humans deserve discussion in light of the present dFC results. In perhaps the 
most similar study to this one, Hellyer et al.28 investigated cognition and metastable dynamics in a sample of 89 
participants (either healthy or with traumatic brain injury); they found that reduced metastability (as measured 
with resting-state fMRI) was associated with structural connectivity damage, reduced cognitive flexibility and 
disrupted information processing. Added to the previous findings, this may suggest that altered resting-state 
dynamics are a landmark of neurocognitive alterations across distinct clinical phenotypes. Furthermore, in a 
study using sliding-window analysis, Sourty et al.40 reported that some brain function alterations in Lewy body 
dementia can be detected using dFC but not static functional connectivity. Importantly, measuring dFC might 
have been troublesome in that report due to the low statistical detection power of single-session sliding-window 
correlations18. Novel methodologies, such as the phase-synchrony approaches adopted in this study10,24, might 
help overcome those issues. Here, they allow expanding on the previous clinical findings in dementia with Lewy 
bodies40 by suggesting that dFC alterations can be found in another form of dementia (AD) when measuring 
phase differences.

Finally, it is worth highlighting that the observed metastability decreases in AD might be related to a shrinkage 
of the dynamic repertoire, which constitutes a candidate physiological mechanism to connect classical neuro-
pathological and clinical observations, and can be interpreted in that context. For instance, neuropathological 
findings have shown that aging, AD and amyloid alterations are associated with key myelin aberrations41–44. In 
parallel, research combining theoretical neuroscience and resting-state fMRI measurements experiments indi-
cates that the dynamic patterns of the brain are constrained in cases of degradation of myelination, due to a 
restricted capacity of the neural ensembles to change its spatial configuration (transmission speed restrictions)17. 
Namely, micro-scale alterations of axonal conduction velocities –commonly due to myelin pathology– are 
thought to underlie macro-scale dFC reductions observed with fMRI. Additionally, at the psycho(patho)logical 
level, the efficient dynamical processing (over time) of neural information by segregating and integrating infor-
mation is thought to sustain flexible cognitive states16,31,45,46, making fMRI-based metastability and dFC decreases 
feasible candidate indices of neurocognitive pathology. The metastability-related alterations observed in patients 
with AD fit well into biological and clinical frameworks, to suggest that large-scale brain oscillatory disruptions 
may link micro-scale neural alterations with disrupted cognitive architectures reported from the clinical phenom-
enology, which may eventually inform new therapy development using pathoconnectomics47.

Some limitations should be noted. First, the moderate sample size could have restricted the power to detect 
some effects. However, the cases where statistically significant outcomes were detected may indicate the presence 
of relatively large population effect sizes. Secondly, potential clinical heterogeneities across participants might 
affect the consistency of the findings: different subtypes of SCI and MCI may be associated with considerable dif-
ferences in risk for dementia48,49, and probably also with distinct brain characteristics (i.e., Nobili et al.50). Robust 
neuroimaging findings from new studies may help address this issue; also, data on genetic and neuropathological 
markers might allow better diagnostic classifications. Additional studies might take advantage of those markers, 
which may be better suited for study within larger samples that allow improved phenotypic (diagnostic) strati-
fication. Furthermore, some clinical data indicates that SCI and MCI could be relatively close transitional states 
preceding AD51–53, which may be reflected as similar brain dynamics in the two diagnoses. Although there were 
robust statistical associations, the lack of a healthy control group that had not been referred from the memory 
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clinic may have limited the power to detect some MCI- and AD-specific effects. Even though the category of 
SCI is still controversial and may lack clinical relevance, some reports indicate that it could be associated with 
minor brain changes54. Hence, future studies may benefit from the inclusion of healthy controls without cogni-
tive complaints to improve specificity, and prospective longitudinal designs are needed to assess the predictive 
value of the sFC, dFC and metastability indices in a clinical dementia context. Besides, even though stringent 
image pre-processing methods were applied, the influence of artifacts cannot be completely ruled out. Moreover, 
since the relationship between neural responses and blood-oxygen-level dependent fMRI signals has not been 
fully elicited55,56, and also considering the issues associated with causation analysis in fMRI57, complementary 
experiments are needed to explain the ultimate pathological mechanisms behind the observed patterns. Finally, 
as discussed by Glerean et al.24, the phase synchrony methods used to estimate dFC have some limitations: for 
instance, the current results correspond to the chosen narrowband (0.04–0.07 Hz), but other frequency domains 
could contain complementary information; also, the amplitude envelope is not used, even though it might com-
plement the analyzed phase metrics. It is also worth mentioning that the ongoing dFC approach offered moderate 
evidence of temporal dynamics within the dataset considered here. This observation emphasizes the importance 
of conducting surrogate data tests –or equivalent– in order to verify the presence of dynamics in fMRI signals. 
That being said, having detected a different set of relevant alterations in AD when using sFC and the current dFC 
metrics suggests that they might inform on complementary pathophysiological mechanisms.

Overall, the results reported here constitute empirical evidence on relatively unexplored neural activity dis-
ruptions through different cognitive impairment phenotypes related to neurodegeneration, which are in line 
with previous clinical and neuropathological observations of an AD continuum52,54,58–60. Notwithstanding the 
limitations of this work, the observed metastability, sFC and dFC patterns are in agreement with the literature31 
and deserve further attention across various cognitive and clinical phenotypes.

Methods
Ethics statement.  The Regional Committee for Medical Research Ethics in South-Eastern Norway approved 
the study. Patients were only enrolled if determined to have capacity for consent by the evaluating physician. All 
participants gave written informed consent. All procedures were conducted in accordance with the Helsinki 
Declaration.

Participants.  Cross-sectional patient data were obtained from the “Norwegian registry for persons being 
evaluated for cognitive symptoms in specialized care (NorCog)”. NorCog is a national patient registry comprising 
consecutively enrolled patients referred to one of 27 participating memory outpatient clinics because of suspected 
cognitive impairment or dementia.

All patients in the present study were recruited from one of the NorCog centers, the memory clinic at Oslo 
University Hospital, between 2010 and 2014. Patients were assessed in accordance with a standardized examina-
tion protocol61. Patients at the Oslo University Hospital memory clinic are usually referred to MRI of the brain 
as part of the diagnostic workup. Between 2010 and 2014 a limited capacity research protocol MRI was available. 
Selection of referral to this alternative was only based on accepted waiting time. The patients were diagnosed by 
two doctors in consensus (KE/AB or MLB/KP), based on all available information from the extensive clinical 
examination. Only patients with AD (n =​ 80, 71 ±​ 8 years, 35 males) according to the ICD-10 criteria62, patients 
with MCI (n =​ 44, 64 ±​ 11 years, 26 males) according to Winblad criteria63, and patients with a subjective cogni-
tive complain that did not fulfill the AD or MCI criteria (SCI, n =​ 26, 64 ±​ 11 years, 26 males)64, were included 
in this study. The results of the Mini-Mental State Examination (MMSE, Norwegian version) from the clinical 
assessment were used as a measure of cognitive impairment65,66. Additional descriptive information is summa-
rized in Table 1 and Fig. 1.

Image acquisition.  T2*-weighted MRI was obtained on a 3 T General Electric Signa HDxt with differ-
ent head coils (8-channel, HDNV and HNS), using an echo planar sequence with 203 volumes and the fol-
lowing parameters: repetition time (TR) =​ 2638 ms; echo time (TE) =​ 30 ms; flip angle =​ 90°; acquisition 
matrix =​ 64 ×​ 64; in-plane resolution =​ 4 ×​ 4 mm; 45 axial slices; slice thickness =​ 3 mm. Each dataset comprised 
202 volumes, summing up a total of 202 ×​ 2.638 s =​ 532.876 s (8 minutes, 53 seconds). For technical reasons, 
three different head coils were used: standard GE 8-channel (57 AD, 34 MCI and 19 SCI), HDNV (1 AD and 
1 SCI) and HNS (21 AD, 10 MCI and 6 SCI). Fisher’s exact test for contingency tables did not reveal signif-
icant differences in the distribution of participants across headcoils (two-tailed p =​ 0.708). T1-weighted data 
was also collected, and used for co-registration purposes in the current study (FSPGR sequence; TR =​ 7800 ms; 
TE =​ 2.956 ms; TI =​ 450 ms, flip angle =​ 12°; in-plane resolution =​ 1 ×​ 1 mm; number of sagittal slices =​ 166; slice 
thickness =​ 1.2 mm; acquisition time =​ 7 min 8 s).

Image pre-processing.  fMRI data pre-processing was conducted using diverse tools of the FMRI Expert 
Analysis Tool from the FMRIB Software Library (FSL)67–69. Pre-processing steps included brain extraction, 
motion correction, spatial smoothing (Gaussian kernel, full-width at half-maximum =​ 6 mm) and high-pass fil-
tering (100 s). The distribution of estimated mean relative motion (volume-to-volume displacement) obtained 
with FSL’s MCFLIRT is shown in Figure S4. The estimated mean relative in-scanner head motion measured 
with FSL’s MCFLIRT differed among diagnostic groups, due to a few AD participants with high movement rates 
(Kruskal-Wallis rank sum test X2 =​ 6.15, 2 degrees of freedom, p =​ 0.046; Figure S4). Mean relative motion was 
later used as a covariate in the statistical analyses. FMRIB’s ICA-based Xnoiseifier (FIX)70,71 was used for data 
denoising, with a conservative threshold of 60. Briefly, ICA is applied on single-subject data, and the resulting 
components are submitted to classification as “noise” or “signal” by comparison with a standard catalogue of inde-
pendent components. Components classified as “noise” are then regressed out. Based on the temporal signal to 
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noise ratio (tSNR)72 computed on the denoised data, three participants were discarded (initially, n =​ 153). Before 
FIX, there were between-group differences (Kruskal-Wallis rank sum test: X2 =​ 7.6, 2 d.f., p =​ 0.022; Table S1), 
due to lower tSNR in the SCI subset. Of note, those between-group differences in tSNR were removed after FIX 
(Kruskal-Wallis rank sum test: X2 =​ 2.7, 2 d.f., p =​ 0.259; Table S1).

To obtain precise brain masks for fMRI co-registration, automated whole-brain segmentation was performed 
on the T1-weighted anatomical references in FreeSurfer73,74; the surface reconstructions were visually inspected 
and manually edited when necessary. The fMRI datasets were then registered to the individual structural scan 
using FLIRT and boundary-based registration68,75. The structural scan was warped to the Montreal Neurological 
Institute MNI152 template (2 mm) using FNIRT75–77, before applying the same warping to the fMRI data.

Next, in order to avoid bias in the group-level ICA, three balanced subsets of participants were formed (26 AD, 
26 MCI and 26 SCI; no significant differences in gender and age), as proposed by Kaufmann et al.78; an automatic 
estimation of model order generated 34 ICs. Individual component spatial maps and corresponding time-series 
were obtained for each subject in the full sample (n =​ 150) by means of dual regression7. Following standard pro-
cedures79, eight components were removed after visual screening, giving a total of 26 ICs’ time-series included in 
the final analyses. Additional information about those 26 ICs is shown in Fig. 8.

Average coupling of fMRI signals: static functional connectivity (sFC).  The 26 time-series men-
tioned above were then submitted to further processing using FSLNets20, running under Matlab (The Mathworks 
Inc.). In short, the pairwise coupling of these signals (a unique session-wide average per pair) was obtained by 
L1-norm regularization of the estimated inverse covariance matrix78,80, in order to force to zero the small and 
potentially noisy values. A total of 325 unique regularized partial correlation measures was obtained and stand-
ardized using Fisher’s z transformation; each pairwise correlation is typically considered a functional connection. 
In the present context, such statistical relationship is referred to as sFC (static functional connectivity), in contrast 
to the time-varying dynamic patterns described below.

Phase-based metrics of time-varying patterns: dynamic functional connectivity (dFC).  Two 
different metrics were computed to measure dFC. For whole-brain, metastability was measured by calculating 
the standard deviation of the Kuramoto order parameter (an index of oscillatory coupling of all regions at every 
instant; see Fig. 9). A wide range (large standard deviation) of Kuramoto order parameter values would thus 
characterize brains that traverse different dynamic stages of coupling over time: a broad set of dynamic states, 
measured as high metastability. Additionally, for pairs of brain regions, the level of fluctuation between synchro-
nization and de-coupling across the scanning session was estimated as the normalized differences in their wave 
phases.

The specific procedure was conducted as follows. The 26 time-series obtained from ICA and dual regression 
were further processed in Matlab (The Mathworks Inc.) to estimate metrics of time-varying connectivity across 
the scanning session, based upon relevant literature10,11,24. First, each series was narrow-band filtered within 

Figure 8.  Parcellation-free spatial maps obtained using ICA. (A) After applying an automatic model order 
selection and manually removing potential artifacts, 26 spatial components remained. (B) Activation levels  
derived from fMRI were set into a matrix of [150 subjects]×[202 time points]×[26 components]. Abbreviations: *, 
sampling time point, corresponding to the TR (here, 2638 ms); a.u., arbitrary units (of activation intensity).  
(C) Anatomical reference for IC pairs: each pair of ICs was assigned an arbitrary number, which is used as 
reference in the manuscript.
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0.04–0.07 Hz, which is required to later obtain meaningful phases24. Then, the Hilbert transform was applied by 
computing, for each time-series x(t),

= +x t x t i x t( ) ( ) H[ ( )], (1)a

where H[·] stands for Hilbert transform and = −i 1 . x(t) can also be expressed as an amplitude-modulated 
signal a(t) with carrier frequency ϕ(t), so that

ϕ=x t a t t( ) ( )cos [ ( )], and (2)

= φx t a t e( ) ( ) , (3)a
i t( )

where a(t) is the instantaneous envelope and φ(t) the instantaneous phase. As suggested by Ponce-Alvarez, et al.11,  
the first and last ten time points were removed to minimize border effects from the Hilbert transform. The instan-
taneous phase values are computed for each of the 26 ICs, and then the Kuramoto order parameter (a proxy for 
the instantaneous whole-brain synchronization) is estimated as:

∑= φ

=
R t

N
e( ) 1 ,

(4)k

N
i t

1

( )k

where k =​ {1, …, N} stands for IC number (here, N = 26), and φk(t) is the instantaneous phase of the k-th oscilla-
tor (time-series) at time t. The metastability was then calculated as the standard deviation of R(t)15. Additionally, 
pairwise estimates of dynamic phase (de)coupling are estimated as follows: for each time instance t, the pairwise 
difference in phase between the time-series i and time series j is computed as:

φ
φ φ φ φ π

π φ φ
∆ =




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

| − | | − | ≤

− | − |
.t
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For each t, an instantaneous coupling matrix C(t) is obtained by normalizing those phase differences as  
1 − Δ​φij/π. The coefficient of variation (standard deviation divided by mean) of each element Cij(t) across all time 

Figure 9.  Computation of phase-based coupling parameters. The pictures exemplify computation of pairwise 
phase-based coupling and metastability, for data from 4 ICs (one participant). (A) Four time series collected 
using FSL’s ICA pipelines. (B) The time series are band-pass filtered (0.04–0.07 Hz), to later compute the Hilbert 
transform. (C) Individual phases obtained from the imaginary component of the Hilbert transform.  
(D) Kuramoto order parameter estimated across time using the phases. (E) Pairwise phase-coupling matrices, 
C(t), estimated for the 4 phases, across all time points; delta phi (Δ​φ) is normalized as described in Methods.
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points is the final pairwise metric of phase coupling/de-coupling. From here, there are 325 unique values in the 
matrix representing relationships between couples of time-series - which can be considered measures of dFC. The 
whole procedure is schematized in Fig. 9.

This approach was originally introduced by Glerean et al.24, who provided evidence that phase synchroni-
zation from fMRI signals can convey reliable information on time-varying connectivity; it was later adapted by 
Demirtas et al.10; in both cases, surrogate data was generated to test for the presence of dynamic patterns using 
previously described randomization procedures81,82. Considering the set of narrowband fMRI time-series as an 
ensemble of chaotic oscillators83–85, these techniques are based on the observation that phase synchronization can 
be measured from their Hilbert-transformed signals86.

To assess whether, in the current dataset, the coefficient of variation of Cij(t) can be considered a measure of 
temporal dynamics, statistical tests were conducted using surrogate data. Briefly, as recommended by Prichard 
and Theiler82, multivariate time series of the phase-randomized Fourier transform were obtained using the orig-
inal dataset; a total of 10000 surrogates was generated, mimicking both the autocorrelations of each variable 
(IC signal) and the cross correlations between all variables. This simultaneous phase randomization method 
was implemented using publicly available Matlab code (https://se.mathworks.com/matlabcentral/fileex-
change/32621-phase-randomization/content/phaseran.m) with the unfiltered time series; then, after filtering 
each of the 10000 datasets separately, the coefficient of variation matrix of Cij(t) was computed. The evidence of 
temporal dynamics was then evaluated at both the whole-brain level (by averaging all individual dFC values of 
each subject) and for single connections retrieved from the inter-group results. First, the sum of all unique dFC 
values was estimated for every participant as a general measure of dFC, and a series of one-sample T-tests was 
performed to evaluate whether the sampled dFC values (in the 150 participants) were drawn from a population 
with mean dFC ranging from 0 (weak dFC) to the maximum observed value in the surrogates (strong dFC). This 
set of T statistics was compared with the surrogate T* metrics, and a p-value was obtained for each of the assessed 
population means as 1 minus the fraction of times that T >​ T*. Additionally, similar tests were performed for 
single connections, with a special focus on the edges with statistically significant differences at the group level. 
Briefly, for each dFC metric (connection) in the original data, a one-sample T-test was conducted to evaluate 
whether in the 26-participant SCI group (the healthiest participants in this study, where the dFC signal should 
not be confounded by brain alterations), the sampled dFC values had been drawn from a population with a mean 
value of 0. From here, 325 T-statistics were retrieved (one for each unique edge), and the same procedure was 
repeated for each of the 10000 surrogate datasets, obtaining 10000 ×​ 325 T* values. The difference of 1 minus the 
proportion of times each original T was larger than its corresponding 10000 T* statistics was considered the test 
p-value.

Statistical analyses.  The putative association between metastability and AD diagnose was tested by means 
of a multinomial logit model, using diagnose as independent variable in

π ε= β + β + β + β + β + β + .MNlogit( ) (sex) (age) (headcoil) (motion) (metastability) (6)0 1 2 3 4 5

Given the distribution of headcoils in this study (Table 1), β​3’s regressor was as a dummy variable with a value 
of “1” for 8-channel data and “0” for both HDNV and HNS. In-scanner motion was adjusted for using regressor 
β​4. This analysis was implemented using Python’s statsmodels module87,88.

Additionally, between-diagnose differences in phase-based dynamic connectivity were tested by means of the 
network-based statistic (NBS) approach89. Briefly, NBS allows the statistical examination of potential differences 
in edge weights across different groups or conditions. It controls the family-wise error rate when statistical tests 
are conducted at single edges comprising a whole graph, on the basis of conventional cluster-based thresholding 
of statistical parametric maps. In the present scenario, the input matrices (graphs) represent the dFC measures 
between pairs of ICs; thus, potential dynamic connectivity disruptions are assessed at the edge level using NBS. 
The design matrices used for NBS here included adjustments for potential confounders (gender, age, headcoil and 
in-scanner motion); they were submitted to ANCOVA with the standard NBS parameters (5000 permutations; 
threshold: p =​ 0.05). Also, when appropriate, logistic regression tests were conducted individually on each of the 
325 unique IC pairs. Some data were visualized using R’s PerformanceAnalytics package90,91.
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