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In China, severe haze is a major public health concern affecting residents’ health

and well-being. This study used hourly air quality monitoring data from 285 cities in

China to analyze the effect of green coverage (GC) and other economic variables on

the incremental PM2.5 concentration (1PM2.5) during peak hours. To detect possible

non-linear and interaction effect between predictive variables, a kernel-based regularized

least squares (KRLS) model was used for empirical analysis. The results show that

there was considerable heterogeneity between cities regarding marginal effect of GC

on 1PM2.5, which could potentially be explained by different seasons, latitude, urban

maintenance expenditure (UE), real GDP per capita (PG), and population density (PD).

Also described in this study, in cities with high UE, the growth of GC, PG, and PD always

remain a positive impact on mitigation of haze pollution. This shows that government

expenditure on urban maintenance can reduce or mitigate the environmental pollution

from economic development. In addition, the influence of other urban elements on air

quality had also been analyzed so that different combinations of mitigation policies are

proposed for different regions in this study to meet the mitigation targets.

Keywords: green coverage, PM2.5, threshold model, kernel-based regularized least squares model, urban

maintaining expenditure

INTRODUCTION

With the rapid urbanization and economic development, urban greening has become an urban
livability standard and important symbol of residents’ well-being (1). How to achieve a win-
win situation for environmental protection and urban development has long been controversial
for policymakers (2). Especially for rapidly-developing countries such as China and India, where
rapid urbanization and deteriorating air quality is increasingly threatening the well-being of urban
residents (3), also increasingly demanded for urban planning, policy, and management.

Over the past decades, numerous studies have highlighted the contribution of urban greening in
the achievement of improved air quality, on the basis that pollutants deposit more efficiently onto
vegetation (4–6). In a study of broad-scale estimates of PM2.5 removal by trees from 10 American
cities, substantial health improvements and economic value produced by urban trees have been
found (4). In a comparative study in sample cities in China and United States, the authors pointed
out that increasing forest coverage of cities through urban greening and afforestation should be a
prioritized strategy to mitigate PM2.5 pollution, and it was argued, relative to American cities, it
was more important for the densely populated and rapidly expanding urban areas in eastern China
to increase the intermixing of forest and urban land through polycentric urban development (7).
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At a finer spatial scale, a series of methods and tools,
such as remote sensing (8–10), field measurements (11–13),
Geographical Information Systems (GIS) (10), and landscape
analysis software (8), had been used for analyzing urban
morphology (building layout, road patterns, land uses, and
green space) and its relationship to haze pollution, aims at
reducing PM2.5 concentrations and minimizing human exposure
to particulate matter. A study conducted in the United Kingdom
showed that green infrastructures are beneficial but they do
not represent a solution to completely remove air pollution
from cities, while working on removing street pollution via
dispersion proved to be as or even more efficient than deposition
technologies (12). In the same article, it was also suggested that
areas with leafless period need to consider different reduction
in PM2.5 caused by seasonal factors like urban greening. In
addition, other scholars had also highlighted that pollutant
concentration (8, 9, 14) and wind speed (9) should also be
considered synthetically since themarginal benefit of urban green
coverage on air quality improvement is not always positive under
the influence of these factors. In a urban-based panel study,
the overall findings support higher density as opposed to lower
density urban development in China while higher density does
reduce a city’s urban park and green space (per capita) (15).
The above-mentioned research led us to focus on the necessity
of whether urban greening being coordinated with population
density, economic growth and other urban elements.

In addition to urban physical elements, there are also studies
that attempt to explain the impact of development strategy of
cities and policies on air quality. Most empirical studies on
this topic have shown that there is a complicated relationship
between environmental pollution and the level of socioeconomic
development (7, 14, 16, 17). Using panel threshold model, Xiao
had revealed the existence of an inverted U-shaped relationship
between environmental regulations and PM2.5 emissions among
30 OECD countries (16), clearly indicating the importance to
develop environmental management and policies in line with
the stage of economic development. In contrast to Xiao, Kui
argued that haze pollution is a problem derived from the mode
of economic development rather than economic development
overall, in an empirical study conducted in China, and pointed
out that the impact of urbanization varies across regions; while
promoting urbanization will be conducive to decreased PM2.5

concentrations in Northwest China and Northeast China, it
will contribute to increased PM2.5 concentrations in other
regions (14).

In recent years, spatial analysis or econometric methods
have been wildly used in research on influencing factors of
urban air quality (18–21), Innovative methods such as multi-
scale geographically weighted regression (MGER) (22), semi-
parametric global vector autoregressive model (SGVAR) (23)
have emerged recently. The spatial effect of haze pollution is
becoming an important topic in this field (24, 25).

Previous studies have confirmed the complex correlation
between urban greening and haze pollution, but the empirical
analysis is still lagging. First, studies have shown that urban

air quality is the result of the complex interaction of
greening (4, 8, 12, 18), urban form (7, 10, 15), socioeconomic
characteristics (11, 14, 19, 20), and regional patterns of
development (14, 16), any attempt to statistically assess the
correlation between greening coverage and haze pollution will
be complicated by a series of confounding factors’ variation over
time and space, making it difficult to draw general conclusions
(7, 24). Distinctive findings in various regions have confused the
relationship between greening coverage and air pollution, and
the potential of changing air pollution by increasing greening
coverage from the perspective of urban planning is still uncertain.
Secondly, in the study of horizontal comparison of multiple cities
with background PM2.5 concentration as the research object,
meteorology and activities related to anthropogenic emission are
usually the main influencing factors, and few studies directly
focus on the effect of greening coverage on air quality. Therefore,
more detailed timing data (especially during peak periods)
are needed to reflect the improvement of haze pollution by
urban greening. Third, studies at different spatial scales have
revealed that the effect of green cover on PM2.5 concentrations
is not a simple linear relationship, which influenced by many
other factors such as regional development patterns (14, 16),
urban compactness (14, 15), background PM2.5 concentrations,
vegetation types, wind speed, etc., but the specific proportional
relationship between them remains unclear.

This study set out to explore the contribution of green
cover and other elements to reduce haze pollution, and further
to evaluate the roles of these elements in terms of both
singular and interacting behaviors. Those results would be
helpful to formulate effective strategies for improving the
urban atmosphere environment. To that end, we use ground-
level PM2.5 data during peak hours in 285 cities in China,
which had been undertaken to eliminate regional background
concentration. Besides, people were most exposed and vulnerable
to haze pollution during peak hours, indicating that the potential
health benefits of reducing ambient PM2.5 was credible. In
addition to adding environmental and urban characteristics as
control variable, the model also considers variations in the
direction and intensity of each driver in different contexts,
such as season, latitude (in consideration of the difference
in terrain, climate and variation in vegetation composition
caused by 32◦N latitude limit), government expenditure (for
urban maintenance), etc. Finally, to capture the compounding
effects of urban physical parameters on PM2.5, the kernel-based
regularized least squares (KRLS) model was adopted to consider
possible interactions among variables.

As of late, numerous methods were reported to characterize
the effect of air quality factors varying along different spatial
distribution and conditional distribution such as local linear
method (23), geographically weighted regression (GWR) (25),
quantile regression (26). The kernel-based regularized least
squares (KRLS) algorithms have notable advantages over
conventional statistical models. Kernel functions, which provide
a measure of similarity between the covariate vectors of
two observations as basic functions, complex relationship
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FIGURE 1 | Diurnal variation of PM2.5 concentration in different time zones. Karamay and Urumqi, the only two cities in UTC+6 time zone are not considered.

between dependent variable and independent variable vector,
will be translated into a linear combination of these basis
functions, thus providing closed-form estimates for the predicted
values, variances, and the pointwise partial derivatives that
characterize the marginal effects of each independent variable
at each data point in the covariate space (27). Therefore, with
KRLS analysis, it becomes feasible to capture possible non-
linearities, interactions, and heterogeneous effects of factors on
mitigation of haze pollution in different cities, consequently,
to set corresponding governance measures according to the
socioeconomic environment and pollution characteristics in
different regions.

RESEARCH DESIGN

Dependent Variable: PM2.5 Data
The ground-level PM2.5 data adopted in this study have covered
285 cities in China (1,534 weather stations in total, evenly
distributed in the built area), published hourly by China National
Environmental Monitoring Center1, from 1 June 2017 to 31
May 2018.

Related studies have found that the PM2.5 contribution of
transportation to average mass concentration can be 25–50%
(28–30), other sources also include industrial activities (including
electricity generation, industrial fuels) (31, 32), coal burning
and biomass combustion for cooking (33), winter heating
(34), construction (35), and other specific activities (setting
off fireworks & open straw burning) (36, 37). Any attempt to
statistically evaluate the strength of association between urban
elements and PM2.5 pollution will be complicated by a range
of confounding factors (7), thus data screening should be
undertaken in studies of daily PM2.5 concentrations to screen for
specific pollution events (11, 13, 38).

Figure 1 shows the distribution of PM2.5 concentration
increase per hour from UTC+7 time zone to UTC+9 time zone

1http://106.37.208.233:20035/

for a total of 283 cities (Karamay and Urumqi, the only two
cities in UTC+6 time zone are not considered) (The detailed
average hourly trends of PM2.5 concentration in each city are
shown in Figure S1). In most cities, PM2.5 concentration exhibits
a bimodal pattern of changing rhythms, peaking around dawn
and dusk, relatively stable at night. Due to the difference in urban
morphology (urban size, road conditions, etc.) and time zones,
the start time and duration of the increase of particulate matter
were different, complex formulas were therefore needed to ensure
that the maintenance duration and intensity of the increase
in PM2.5 concentrations from mobile source are accounted for
[considering that the hazard intensity of haze pollution depended
on its concentration and exposure time (39–41)]. Then, PM2.5

concentration changes from 4:00 to 10:00 a.m. were selected for
comparison in this study. These values were converted to µg/m3

and expressed herein as 1PM.

1PMi =
10
∑

t=4

Pti × I(Pti ) (1)

I(Pti ) =
{

0, Pti ≤ M
1, Pti > M

(2)

Where i = (1, . . . . . . , N) represents the city number, Pti is the
variable quantity of PM2.5 concentration per hour (calculated as 0
if the amount of change is negative), I( ) is an indicative function,
M is the median of PM2.5 concentration per hour in the city i
from 4:00 to 10:00 a.m.

The advantages and limitations of such data processing
method further explored in the Discussion. The peak period
in the morning rather than in the evening was chosen due to,
first, commuting activities are relatively single and fixed human
activities during the period, which ensure the comparability
between regions, while afternoon commutes in parts of China are
affected by seasonal changes. Furthermore, PM2.5 concentration
tends to a source/sink balance at dawn, ensuring a relatively
consistent initial state.
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TABLE 1 | Data source of variables.

Variables Definition Mean S.D. Data source

1PM2.5 Incremental PM2.5 concentration from 4:00 a.m. to 10:00 a.m.

(µg/m3 )

4.11 3.532 China Environmental Monitoring Station

GC Green coverage per capita in municipal districts (m2) 15.25 13.055 China Urban Statistical Yearbook 2018

PD Population density in municipal districts (pop/km2) 399.33 314.736 CEIC China economic database/Cathay Pacific Database

PG Real GDP per capita in municipal districts (RMB) 69740.36 35119.019 China Urban Statistical Yearbook 2018

IE Industrial soot (dust) emissions in municipal districts (tons) 18268.57 22337.091 China Urban Statistical Yearbook 2018

HU Annual air humidity (%) 68.23 10.751 National Climatic Data Center

UE The ratio of urban maintenance expenditure to GDP (1 = over 5%,

0 =below 5%)

0.239 - China Urban Statistical Yearbook 2018

N/S Whether at north of Qinling-Huaihe line (1 = 32◦N North, 0 =32◦N

South)

0.526 - CEIC China economic database

Independent Variables: Socio-Economic
Data
Sources of variables used in this study were as follows:
China Urban Statistical Yearbook 2018, CEIC China Economic
Database, Cathay Pacific Database, National Climatic Data
Center2. For the missing values in some existing data sets, they
are replaced by the corresponding means.

Prior to analysis, all variables were screened by backward
elimination statistical procedure, the final model retained five
independent variables: (1) Urban green space is a key factor
affecting the health and quality of life of urban ecosystem. Local
governments in China tend to plant trees rather than build
parks to ensure the supply of public goods for urban greening
(41). Green space is a kind of non-competitive urban public
amenities. To highlight the environmental pressure caused by
urban overcrowding, the green coverage per capita (GC) in built-
up areas is used to measure the level of urban greening. (2)
Within the spectrum of city sizes there are enormous differences
in population size, built-up area, and industrial structure.
Accordingly, real GDP per capita (PG) is chosen to measure
the level of economic development of a region. (3) Increased
population density due to urbanization usually leads to increased
environmental pressure. Since there are also suggestions in the
literature that urban density promotes green travel (reducing
gasoline consumption, increasing bicycle use) and thus reduces
regional air pollution levels (15, 42), population density (PD) is
used replacing urbanization as the main explanatory variable to
determine the impact of population density on haze pollution.
(4) China’s industrial sector consumes far more energy than
other sectors and fossil fuel combustion and industrial soot
emissions from the secondary industry as well as building dust
are important causes of haze pollution (43, 44), thus industrial
soot (dust) emissions (IE) is chosen to measure the contribution
of industrial production processes to haze pollution. (5) Climatic
conditions are key variables affecting the rate of tree deposition,
higher air humidity increases PM2.5 moisture content, which
contributes to the PM2.5 settlement in time (5). Therefore, the

2ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/

TABLE 2 | Backward stepwise regression model.

Variables Coef. Std. Err. t P>t VIF

HU −1.981 0.333 −5.960 0.000 1.67

PG −0.345 0.120 −2.890 0.004 1.56

PD −0.125 0.060 −2.070 0.039 1.43

GC −0.144 0.078 −1.840 0.067 1.35

IE 0.078 0.046 1.680 0.094 1.16

Variables were previously logarithmized.

average annual air humidity of each region is included in the
explanatory variables.

China covers many degrees of latitude, with complicated
terrain and radical variations in climate, which produces
significant variation in north-south vegetation composition. For
the final model, we also added a vegetation-type dummy variable
N/S in order to control for season-variant fixed effects such that
each city was assigned a value of 1 (deciduous vegetation) or 0
(evergreen vegetation) according to whether it was or was not at
north of 32◦N latitude limit, well-known as the so-called Qinling-
Huaihe line (around 32◦ N in the eastern part of China), which is
also the generally accepted boundary line of heating (45).

The primary goal of our study was to understand the
effects of greening in particular on mitigation of haze pollution
during peak hours. Previous studies have typically examined
the impact of government expenditure on air quality from
the perspective of pollution control such as energy use and
production structure (46), neglected the possibility that urban
maintenance expenditure could have a beneficial impact on air
quality improvement by expanding the share of greening reward
to reduce air pollution. Then, a dummy covariate UE is added
to distinguish cities with high-level expenditure (UE assigned
as 1) and low-level expenditure (UE assigned as 0) in urban
maintenance, which can help determine if government urban
maintenance efforts will work best for environmental benefits
of greening.

Variable descriptions are in Table 1. The result of backward
stepwise regression model is presented in Table 2.
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Threshold Regression
Threshold model is the basis for developing more complex ones.
Therefore, in this study, a threshold model has been applied to
explore the non-linear relationship between green coverage and
PM2.5 concentrations, with refinements and extensions of this
model being presented in the following descriptions.

yi = β1Xi × I
(

qi ≤ γ
)

+ β2Xi × I
(

qi > γ
)

+ εi (3)

yi is the response variable, Xi is the explanatory variable matrix,
β is the coefficient matrix, qi is the threshold variable, γ is the
threshold value to be estimated, and I(·) is the indicative function
(while qi ≤ γ , I(qi ≤ γ ) = 1, I(qi > γ ) = 0, while qi > γ ,
I(qi ≤ γ ) = 0, I(qi > γ ) = 1), εi is the error term.

The arbitrary value of qi is taken as threshold value for
regression of formula (3), and γ̂ is defined as the estimated
threshold value. Therefore, the more approximate the value qi
to the real threshold value γ̂ , the smaller the sum of squares
for residuals (SSR) of the model. By carrying out point-by-point
regression, it is obtained that when SSR(γ̂ ) is the minimum, γ̂

is the estimated threshold value, namely, γ̂ = argminSSR(γ̂ ).
The important step of threshold regression also includes the
determination of the number of threshold value. Generally,
Grid Search is used to determine other threshold value that
can minimize the sum of squares for residuals. The threshold
regression also needs to solve the validity of threshold value. By
constructing the maximum likelihood function, the significance
and validity tests are carried out. It is assumed that the null
hypothesis H0 of test is θ1 = θ2 and the alternative hypothesis
is θ1 6= θ2. Under the conditions of null hypothesis, the sum
of squares for residuals of model regression result is recorded
as S0. Therefore, the statistical magnitude of likelihood test is
LR = [S0 − S(γ̂ )]/σ̂ 2. At the same time, with the help of
Bootstrap, the asymptotically-efficient interval of LR is obtained.
The confidence level is set as α. When LR ≤ −2 log(1−

√
1− α),

the null hypothesis is established, which indicates that the model
has the threshold effect. In practical application, there may be
double threshold or multiple threshold cases, and the double
threshold or multiple threshold value can be searched by using
similar methods. This study uses several variables to calculate
the threshold value for the same sample and selects the optimal
variable as the threshold variable according to its significance.

This model referred to the reference model proposed by
Hansen (47), the detailed rationale of the model can be found in
his paper.

Kernel Regularized Least Squares (KRLS)
Kernel Regularized Least Squares Model (KRLS) is a machine
learning method described in the article by Hainmueller and
Hazlett (48), designed to solve regression and classification
problems in social science modeling without relying on linear
or the additivity hypothesis, allowing interpretation in a manner
similar to a generalized linear model, while also allowing the
marginal effect of each independent variable in the variable space
to be derived. Specific steps are as follows.

Kernel Function

Assume a set of observations in the form of (yi, xi), where i =
1, . . . , N indexes the observations,yi ∈ R is the outcome of
interest, xi ∈ RD, RD is the set of independent variables xi
(xi can be regarded as a vector composed of D-dimensional
variables), using a symmetric, positive definite Gaussian kernel
function to measure similarity between the covariate vectors of
two observations:

k(xj, xi) = exp

(

−
‖ xi − xj ‖2

σ 2

)

(4)

Where ‖ xi − xj ‖2 is the Euclidean distance between the
independent variables xi and xj, σ 2 ∈ R+ is the bandwidth of
kernel function.

Imagine we have some test-point x∗ at which we would like to
evaluate the function value, then the predicted value y∗ is given by

y∗ = f (x∗) =
N
∑

i=1

cik(x
∗, xi) (5)

Where the objective function f (x∗) is regarded as a linear
combination of several kernel functions k(x∗, xi), and ci is a
weight for each covariate vector.

Since k(x∗, xi) is a measure of the similarity between x∗ and xi,
we see that the value of k(x∗, xi) will grow larger as we move the
test-point x∗ closer to xi. In other words, the predicted outcome
at the test point is given by a weighted sum of how similar the test
point is to each observation in the (training) dataset. It is inferred
that, similar to the principle of the generalized linear model, we
can use a set of kernel functions that describe the similarity of
the sample observations to replace the natural measure of the
data, that is, for any independent variable x, there should be a
weight vector ci(i= 1, . . . , N), allowing a linear fitting function of
the mathematical expected value of the dependent variable to be
constructed based on the similarity of the independent variable x
to the observed value:

y = f (x) =
N
∑

i=1

cik(x, xi) (6)

Applying the Equation (6) to each data set, the model can be
rewritten in vector form as:

y = Kc =













k(x1, x1) k(x1, x2) · · · k(x1, xN)

k(x2, x1)
. . .

...
k(xN , x1) k(xN , xN)





















c1
c2

cN









(7)

In this form, the KRLS model can be viewed as a linear system,
the output matrix is a vector of expected values of all dependent
variables, with N × N matrix K containing all kernel functions
measuring the similarity of observations.
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Regularization

To find the only approximate solution of Equation (7), with

perfect fit being sought by choosing
∧
c = K−1y, it is necessary

to control model’s fitting bias and complexity at the same time.
Therefore, we minimize the model fitting bias and add a penalty
term of complexity to construct the objective function:

argmin
f∈H

∑

i

(V(yi, f (xi)))+ λR(f ) (8)

Where V[yi, f (xi)] is a loss function that measures the estimated
error at each observation, R(f ) is a regular term that measures
the complexity of the model, and λ ∈ R is a control parameter
determining the tradeoff between model fit and complexity. H is
the “hypothesis space” formed by all possible functions.

To solve the minimization problem of objective function, the
least square method is used to measure the model’s variance
loss V[yi, f (xi)], and the Tikhonov regularization method is used
to construct complexity penalty R(f ), optimization of objective
function in Equation (8) can be expressed as:

∑

i

(V(yi, f (xi))) =
∑

i

((f (xi)− yi)
2 = (y− Kc)T (y− Kc) (9)

R(f ) =‖ f ‖2k=
∑

i

∑

j

cicjk(xi, xj) = cTkc (10)

argmin
c∈RD

(y− Kc)T (y− Kc)+ λcTKc (11)

c∗ = (K + λI)−1y (12)

For the kernel bandwidth σ 2, referring to the method of
Hainmueller and Hazlett (48), The default kernel bandwidth σ 2

is half the average Euclidean distance between the observations
after normalization, such that set σ 2 = D = 1

2E[‖ xj−xi ‖2]. For
the regularization parameter λ, the leave-one-out (LOO) strategy

was used to calculates the sum of N observation variances, for
any value of λ, and finds the optimal solution of λ by minimizing
it (48).

Equation (11) reveals that when the kernel function window
width σ 2 and the regularization parameter λ are fixed, there is
c∗ ∈ RD such that y∗ = Kc∗ is the best linear fit of the conditional
expectation function E[y|x, λ, σ ]. The objective function is
differentiated to obtain the optimal solution c of independent
weights [Equation (12)]. It should be noted that for each data
set in K, the process of generating the independent variable
weight c is similar to the linear solution of the mathematical
expectation of the dependent variable in the similarity of the
sample observations in the fixed function window width, so any
independent variable has its corresponding weight c.

Partial Derivative Estimation

Assuming that X = (x1, . . . xd, . . . xD) is a data set composed of
N D-dimensional independent variables, according to Equation
(8), any given sample j can be calculated to correspond to
the d-dimensional independent variable partial derivative of the
objective function:

∧
∂y

∂xdj
= −2

σ 2

∑

i

ci exp(−
‖ xi − xj ‖2

σ 2
)(xdi − xdj ) (13)

By calculating the point-by-point partial derivative of the
d-dimensional independent variable, the average marginal
influence of the d-dimensional independent variable on the
dependent variable can be obtained

EN(

∧
∂y

∂xdj
) = −2

σ 2N

∑

j

∑

i

ci exp(−
‖ xi − xj ‖2

σ 2
)(xdi − xdj ). (14)

FIGURE 2 | Diurnal variation of PM2.5 concentration in different seasons.
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FIGURE 3 | Concentration spatial patterns of: (A) Average annual PM2.5 concentration; (B) Annual incremental PM2.5 concentration; (C) Incremental PM2.5

concentration in summer; (D) Incremental PM2.5 concentration in winter.

RESULTS

Particulate Matter Mass Concentrations
and Spatial-Temporal Characteristics
Evident seasonal variations of 1PM2.5 concentration
increment in 285 cities are illustrated in Figure 2. We
found that the amount of growth in PM2.5 was significantly
higher in winter than leaf-period, which demonstrates
the necessity of building different models to capture
spatiotemporal trends.

Figure 3 presents the space distribution of PM2.5 and 1PM2.5

in all 285 sample cities, which were categorized into five based on
Jenks natural breaks. As shown in Figure 3, most of the severe
haze pollution was concentrated in plain area of central China.
The regions with high 1PM2.5 were distributed mainly in north
China and the regions with low 1PM2.5 were distributed mainly
in south China, with areas above 32◦ N experiencing a higher
1PM2.5 in summer than in winter. We can see that a far greater

impact on 1PM2.5 is due to changes in season but not spatial
spillover effect.

What needs illustration is that, in most cities, the diurnal
variations of PM2.5 concentrations were largely consistent and
showed a bimodal pattern. In summer and winter, no increase
in PM2.5 concentration was detected in four cities during peak
hours (in summer: Zhangjiakou, Changsha; in winter: Baoding,
Chaozhou). Among them, Zhangjiakou and Changsha belong to
Hebei, one of the provinces with the most severe haze pollution
in China, not ruling out the possibility that the nighttime factory
emissions wiped out the PM2.5 increase that should had occurred
in the morning. Since it needs to use the logarithmic form of
observed value for model calculation, we used 0.01 (minimum
value) instead for cities without PM2.5 increase.

Regression Results of Threshold Model
A logarithmic version of Hansen’s threshold model was estimated
using different threshold variables. Table 3 shows the results of
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TABLE 3 | Test of threshold effect.

Dependent

variable

Threshold variable P-values Threshold

values

95%

confidence

interval

1PM2.5 Urban resident

population

0.016 640.22 [574.3,683.064]

Population density 0.010 391 [97.06,462]

Proportion of secondary

industries

0.184

Proportion of tertiary

industries

0.384

Real GDP per capita 0.564

Urban Resident

Population ≤ 640.22

0.03 220.18 [168.3,290.69]

Urban Resident

Population > 640.22

0.838

Population density ≤ 391 0.044 165.78 [97.06,200]

Population density > 391 0.690

the threshold effect tests. Two variables included the threshold
effect are significant at the 10% level. We therefore found two
threshold effects at the 5% significance level are found in both two
variables in further detection. When urban resident population
was set as the threshold variable, the threshold values obtained
were 220.18 and 640.22. When population density was set as the
threshold variable, the threshold values obtained were 165.78 and
391. As the best way to form confidence intervals for threshold
is to form “no-rejection region” using the likelihood-ratio (LR)
statistic for tests on threshold estimates, we plot the LR statistic
(Figure 4) to display the threshold confidence intervals.

Table 4 presents the effects greening coverage and other
factors on 1PM2.5 by using threshold regressions. As the results
show, green coverage in cities with low population size had a
positive effect on PM2.5 at 1% significance level, with a coefficient
of −0.344, while no significant correlation was found in the
cities of medium and higher population size (Urban resident
population >220.18 million). In models with population density
as threshold variable, cities with medium population density
size was negatively correlated with GC at 1% significance level
with a coefficient of −0.443. This means that, for countries with
low population (column I) or medium population density size
(column V), a 1% increase in green coverage caused a 0.3∼0.4%
reduction in 1PM2.5 concentrations. Despite the significant
negative correlation observed in both column I and column V
between GC and1PM2.5, cities in two columns are non-coplanar
in space (Figure 5). This translates into omissions in threshold
regression models, a diverse set of non-regular regression
models that all depend on specific individual threshold, but
a one-threshold model is the basis for developing more
complex ones.

Population density was positively correlated with 1PM2.5

concentrations at 1% significance level, suggesting that an
increased population density in low density cities could
contribute to the increase of air pollution. PG showed a
weak negative association with PM2.5 concentration in column

II, while becoming negative at the 1% significance level in
column VI. This indicates that economic growth has obviously
positive effect on the mitigation of air pollution in high
density cities (population density > 391 pop/km2), while the
same but weak impact exists in medium-sized cities (220.18
< Urban resident population <= 640.22). Moreover, there
was a significant relationship between dummy variable N/S
and 1PM2.5.

Regression Results of KRLS Model
The preceding analyses indicated that the effects of green cover
and other factors on 1PM2.5 are not simply linear. Urban
resident population threshold is likely evolved from different
stages of urban development and economic scale; population
density threshold is likely derived from land-sea gradients and
latitudinal position. In this context, several sub-objectives were
set up and validated by KRLS model to provide reference for
urban planners, i.e.,

• To investigate the heterogeneity in the marginal
effects of greening on 1PM2.5 at different levels of
socio-economic variables.

• What effect does government’s strong/weak support for
environmental protection have on haze pollution control?

• Can we find trajectories of drivers like EKC theory in
relationships between 1PM2.5 and other economic variables?

Traditional OLS regression was conducted along with the KRLS
analysis to compare the two statistical approaches (Table 5).
Unlike OLS analysis, which presents a constant marginal effect
assumption, the KRLS model presents pointwise marginal
coefficients for each sample case; therefore, it is possible to
observe whether the influence of a given predictor on 1PM2.5

varies with data points. Thus, when the marginal effects are
heterogeneous, KRLS results may be informative.

Table 5 shows that GC has a positive impact on motivation,
the result was significant at the 10 and 5% level in the whole
year and winter respectively but not significant in leaf-less
period. Considering that deposition of deciduous vegetation on
PM2.5 in winter may decrease, a further understanding of the
interaction between GC and 1PM2.5 is required. The positive
correlation between N/S and CR was detected in both statistical
models, suggesting that it is reasonable to investigate the effect
of urban green cover on air quality in the north and south of
Qinling-Huaihe line, which would however require a different
isolation protocol.

We also found relationships between economic variable
(DE & PG) and 1PM2.5. The significant negative correlation
between DE and 1PM2.5 was detected in both statistical models,
suggesting that relatively compact urban landscape may be
an effective strategy to relieve morning air pollution from
human economic activity. PG values also exhibited weakly
negative correlation with the 1PM2.5, revealed that economic
development is environmentally sound while the mechanism
remains to be analyzed. Additionally, a significant positive effect
of EM on1PM2.5 was found during the winter, revealed the need
of strict control on pollution emissions in winter.
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FIGURE 4 | Confidence interval construction in (A,B) Urban resident population threshold; (C,D) Population density threshold.

Pointwise Marginal Coefficients
The KRLS model was adopted in this study to examine the
changes in marginal effects of GC with variation of other
variables. This study focused not only on the effects of predictors
on haze pollution but also on its heterogenicity varied with
latitude and season. In addition, we have also introduced
urban maintenance expenditure as control variable, focusing on
urban development patterns hidden behind these variables and
corresponding mitigation measures.

To evaluate statistically significant interaction effects,
additional analyses were conducted by regressing pointwise
derivatives of a given independent variable on other predictors,
one at a time (49).

Figure 6A explored the distribution of the pointwise marginal
effects of GC, the negative impacts of GC tend to increase as
GC increase while cities with high government environmental
investment (above 5% of GDP) having stronger negative driving
effect under the same green cover level. This means that
government financial support can benefit urban greening. There
are no significant North-South differences observed in GC
in the Figure 6B. The pointwise marginal effect of GC in
summer/winter has been shown in Figures 6C,D considering
the large difference of the surface landscape in the north and
south regions. It can also be easily inferred from the figures that

GC has a constant negative coefficient at all stages in southern
citise (latitude < 32◦N), but there’s a change of sign from
positive to negative for that in northern cities. This heterogeneity
suggests that other factors interfere with the deposition of
particulate matter by vegetation cover. Figures 7A,B further
ascertain the spatial distribution of marginal effect of GC, finding
that marginal effect of GC, especially during leaf-less period,
had high values in areas where the background value of PM2.5

was relatively high. Therefore, how the influence of background
PM2.5 concentration on GC coefficient varies with NS is shown
in Figures 6E,F. The increase in the concentration of PM2.5 has
no significant effect on the coefficient of GC in the southern
cities (latitude < 32◦N), where levels of pollutants are relatively
low. However, for cities located in the north with relatively high
background PM2.5 concentrations, the increase of GC will lead to
the increase of haze concentration, which is especially obvious
in winter. But the conclusion is not universal, as is shown in
Figures 6G,H, for cities with high government environmental
support, the increase of green cover can still effectively reduce
haze pollution in high pollution scenarios.

Figure 8 discussed how other urban elements (population
density and economic strength affect their coefficient estimates
on 1PM2.5. It can be easily inferred from the Figure 8A that
per unit growth of population density could effectively restrain
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TABLE 4 | Threshold regression model estimation.

Dependent variable: 1PM2.5

Threshold I II III IV V VI

Pop <= 220.18 220.18 < Pop <= 640.22 Pop > 640.22 Den <= 165.78 165.78 <Den <=391 Den > 391

GC −0.344** −0.118 −0.220 −0.095 −0.443** 0.125

HU −0.563 −1.491* −1.441 −1.567** −1.987 −0.571

PD 0.067 −0.142 0.014 0.406** 0.048 0.105

IE 0.097 0.053 0.395* −0.104 0.029 0.172*

PG 0.029 −0.351* −0.139 −0.056 0.057 −0.666**

N/S 0.434 0.354 0.501 0.069 0.591 0.402

R2 0.326 0.345 0.308 0.244 0.397 0.217

Obs 60 172 53 68 94 123

Dependent variable: 1PM2.5(winter)

GC −0.445*** −0.126 −0.148 −0.132 −0.299* 0.048

HU −1.173* −0.122 0.863 −1.484** −2.223 −0.280

PD 0.119 −1.488* −0.136 0.212 0.232 0.100

IE 0.096 0.168** 0.455* 0.020 0.060 0.245*

PG −0.047 −0.240 0.127 −0.166 −0.009 −0.350

N/S 0.617* 0.724*** 1.453* 0.383 0.733* 0.961**

R2 0.552 0.438 0.292 0.361 0.502 0.254

Obs 60 172 53 68 94 123

*p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 5 | Concentration spatial patterns of cities samples by: (A) Urban resident population threshold; (B) Population density threshold.

haze pollution in cities with high government environmental
expenditure, while in those with low government environmental
expenditure, the marginal effects of GC change from negative
to positive as population density increases. From the pattern
exhibited in Figure 8B, GC appears to function through two
pathways in different stages of economic development due to
different urban maintenance expenditure (UE). In cities with low
UE, Increasing in PG usually leads to higher air pollution during

the early stage of economic development. When the economy
and income levels reach a certain threshold, the further increase
in revenue will improve the environmental quality or reduce the
pollution level. In cities with high UE, the marginal effect of GC
becoming more noticeable with advancing PG.

The marginal effect of PG and PD were also shown in
Figure 8. Figure 8C shows that PG yielded no main effect on
dependent variables at high UE; further focus on cities with low
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TABLE 5 | Results with the OLS and KRLS models.

OLS KRLS

Coef. Avg. SE P25 P50 P75

Variables: 1PM2.5

GC −0.14 −0.129* 0.065 −0.262 −0.163 −0.023

HU −1.065* −1.190** 0.367 −1.910 −1.246 −0.510

PD −0.164** −0.195*** 0.051 −0.348 −0.217 −0.056

IE 0.0868 0.054 0.038 −0.028 0.049 0.139

PG −0.307* −0.224* 0.091 −0.339 −0.184 −0.051

*N/S 0.366*** 0.327* 0.135 0.145 0.285 0.453

R2 0.306 0.442

Variables: 1PM2.5(summer)

GC −0.208* −0.157** 0.051 −0.265 −0.151 −0.066

HU −0.955 −0.686** 0.207 −0.989 −0.732 −0.393

PD 0.128 0.007 0.042 −0.077 0.001 0.091

IE 0.0926 0.045 0.032 0.001 0.051 0.083

PG −0.111 −0.059 0.071 −0.186 −0.057 0.058

*N/S 0.530** 0.412*** 0.102 0.266 0.442 0.577

R2 0.204 0.274

Variables: 1PM2.5(winter)

GC −0.139 −0.092 0.070 −0.185 −0.110 0.027

HU −1.035 −1.236** 0.358 −1.895 −1.423 −0.593

PD −0.179* −0.188** 0.056 −0.310 −0.210 −0.080

IE 0.159** 0.111** 0.042 0.042 0.104 0.173

PG −0.223 −0.178 0.099 −0.344 −0.157 −0.023

*N/S 0.740*** 0.550*** 0.142 0.415 0.566 0.697

R2 0.365 0.443

Coefficient estimates at the 1st, 2nd, and 3rd quartiles are displayed in Table 5 to show

their distribution, and the first column of the KRLS model data indicates the average

pointwise marginal effect. *p < 0.05, **p < 0.01, ***p < 0.001.

UE, as is shown in Figure 8D, PD had no significant effect on
1PM2.5 in northern cities but can effectively improve urban haze
pollution in southern, with that effect in developed cities more
remarkable. Finally, the bottom graphs Figures 8E,F shows there
was heterogeneity of marginal effect of PD differed by season
and North-South position. In summer (Figure 8E), increases
in PD could decrease 1PM2.5 in southern cities but increased
haze pollution in northern cities, the effect fades following
the addition of population density such that the marginal
effect of PD approached 0 in big cities. In winter (Figure 8F),
if exceeded a certain threshold, population density will help
mitigate haze pollution.

DISCUSSION

A significant correlation between GC and PM2.5 has been
confirmed, based on the above empirical analysis. However, the
marginal effect of GC is intricately affected by numerous urban
elements, therefore, we use KRLS model to calculate marginal
effects of changes in GC at the univariate level.

Urban maintenance expenditure is a new indicator of
the importance to environmental protection; it is well-suited

to examining 1PM2.5 as an outcome variable since urban
maintenance expenditure was observed in this study that
has distinguished different urban development patterns, where
obvious heterogeneity exists in the impact of greening coverage
and other economic variables on haze pollution. Empirical
results found that the increase of urban population density and
economic intensity will not lead to the decrease of greening
effect at the high-level UE phase, where marginal effect from
greening is stronger than those with equal GC but low-level UE.
In some cities where urban maintenance is relatively neglected,
the increase of urban density will lead to the decrease of
greening benefit and even the change of coefficient symbol.
A similar interaction effects was also found between PG and
benefit from GC (Figure 8B), with an increase in PG, the
marginal effect of GC displayed a tendency of increasing first
and then decreasing at low-level UE. These analyses revealed
that urban maintenance expenditure has important implications
for air pollution prevention. In China, the state has strict
standards for urban green coverage, local government prefers
to plant street trees to meet the assessment criteria for its low
maintenance costs and no use of construction land. However,
“Stresses the construction over the maintenance” may weaken
the environmental benefits of urban greening; A large number
of street trees to replace the park and grassland landscape will
also lead to urban buildings too dense, particulate matter from
human activity cannot be dredged. Regrettably, this study has
therefore not included urban green space structure as indicators,
but we can still find some suggestive support in recent studies.
Nowak (5) and Chen (9) declared that vegetation is only a
temporary retention site for many atmospheric particles and has
its limit in the deposition capability, the leaves will eventually
reach the saturation stage and cease to absorb more, as the
ambient PM2.5 concentration continues to increase (9), such that
lead to an increase in PM2.5 concentration (12). As a matter of
fact, in some areas of the present study (especially in southern
cities), it was observed that GC enhanced haze pollution at
high-level background PM2.5 concentration. Consequently, more
consideration should be given to the role of urban greening
maintenance and construction (urban forests and parks) in
reducing haze pollution.

It was also found that the impacts of PD and GC on
1PM2.5 were different between northern and southern cities,
which was very rarely discussed before (14). The purpose
of introducing dummy variables N/S was to quantify the
unquantifiable variables, as the result demonstrated that such
spatial heterogeneity indeed exists. At the same GC level, the
mitigation of PM2.5 by GC in southern cities was better than
that in northern cities. For northern cities, PD had a positive
effect on haze growth while significant negative effect may
ensue (especially in winter) after reaching the threshold. For
northern cities located on the plains with high population
density and haze severe pollution, PM2.5 concentrations are
more dominated by pollution sources (traffic, heating) (38) since
extreme growth of PM2.5 during peak period could Restrict the
settlement of greening as mentioned earlier. For southern cities,
increasing population density tends to improve air quality, but
in individual cities with particularly high population densities,
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FIGURE 6 | Marginal effects (M.E.) of green coverage varying with values of green coverage (A–D) and background PM2.5 concentration (E–H). Note: The different

figure panels represent the heterogeneous marginal effects of GR due to difference in season, dimension, and government environmental expenditure; UE = 1/0

means the ratio of urban maintenance expenditure to GDP greater/less than 5%; N/S = 1/0 means latitude of the city over/below 32◦ latitude limit.
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FIGURE 7 | Spatial patterns of marginal effect of green coverage per capita (GC) on: (A) Incremental PM2.5 concentration; (B) Incremental PM2.5 concentration in

winter.

it also increases haze pollution. One study of 350 cities in
the rapidly urbanizing Yangtze River Delta region of China
reveals the phenomenon very well: The change in air quality
as cities become more spatially sprawled or compact is largely
a result of the trade-offs between two counterbalancing effects.
On one hand, more geometrically compact and contiguous
cities may have reduced vehicle travel distances and toxic air
emissions. On the other hand, more spatially sprawled and
fragmented cities may have increased intermixing of urban and
forest land, and thus may facilitate removal of air pollutant (7).
In addition, an extreme situation was also revealed in present
study, for northern cities with less GR but higher background
PM2.5 concentrations, increased GRmay exacerbate air pollution
during peak hours due to low-level GR having positive effect on
1PM2.5, therefore a vicious circle formed, reflecting the difficulty
of haze management in such kind of cities.

The non-linear effect of economic growth on PM2.5 emissions
has been discussed in numerous studies (14, 16, 19), the
conclusion is consistent with the Environmental Kuznets Curve
theory. However, this interpretation is more suitable for
air pollution from industrial emissions (factory production,
urban construction, energy consumption) as government is
willing to dramatically increase their budgets under public
pressure (16). Our results in this study indicate that urban
maintenance expenditure does not depend on levels of economic
development, but still performed as well or better than benefit
from economic development in mitigation of haze pollution,
at least in peak period. On the one hand, the increment of
particulate matter during this period may mainly come from
the mobile source emissions rather than the industrial emissions
[to reduce the harm of industrial emissions to residents, high-
pollution enterprises are often located far away from densely

populated built areas; due to cheap night electricity prices
and pressure from government regulation, most industrial
production activities are carried out at night (50)]. On the
other hand, commuting, as a rigid demand of urban residents,
is less affected by policies. A recent study by Zhang (51) has
claimed that the policy measures from industrial sector and
residential sector were the major effective control measures,
together accounting for 92% of the national abatements in annual
PM2.5 concentrations, while another measure, strengthening
vehicle emission standards, only contribute 2% of that. Therefore,
the effectiveness of environmental regulation policies on the
increment of particulate matter may seem limited during
peak hours.

Based on the refined monitoring data, this study screened
out the concentration changes of PM2.5 in specific time periods
to eliminate the interference of background concentration and
spatial spillover effect, ensuring that the samples are comparable.
Validation of this practice has been performed in other studies
(11, 13, 38). We believe that the use of PM2.5 increment instead
of original concentration has the following advantages: Firstly,
to our knowledge, no cross-sectional study has yet investigated
the main emission sources of PM2.5 at different times of the day,
the present study was designed to begin filling the gap; Secondly,
compared with the original concentration, the sudden increase
of particulate matter concentration during the peak hours is
obviously more related to human activities, mainly commuting
traffic, more likely to take feasible measures for improvement.
Thirdly, as for peak hours, the higher the concentration and
the longer the duration, the greater the harm of haze to health,
targeted research can provide positive and effective empirical
evidence for decision makers to take measures to reduce the
peak value of PM2.5 concentration. In addition, since this study
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FIGURE 8 | Marginal effects (M.E.) of green coverage (A,B), real GDP per capita (C,D) and population density (E,F) varying with values of urban elements. The different

figure panels represent the heterogeneous marginal effects of GR, PG, PD due to difference in season, dimension, and government environmental expenditure; UE =
1/0 means the ratio of urban maintenance expenditure to GDP greater/less than 5%; N/S = 1/0 means latitude of the city over/below 32◦ latitude limit.

used a single-year cross-sectional data, the increment during
peak hours, rather than original PM2.5 concentration, is instead
essential for lowering fixed effects to enable the comparability of
data between cities.

As for social science modeling and inference problems,
traditional piecewise linear regression usually use indicator
variables with regression and classification problems, still relying
on linearity or additivity assumptions, this requires that the

Frontiers in Public Health | www.frontiersin.org 14 November 2020 | Volume 8 | Article 551300

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Wang et al. Greening Helps Mitigate Haze Pollution

marginal effect of each covariate is constant in the covariate
space. However, this continued marginal effect assumption may
be unreliable due to marginal effects being often heterogeneous
in levels of other covariates. KRLS draws on machine learning
methods designed to solve regression and classification problems
without relying on linear or additive assumptions, allows users
to tackle regression and classification problems without strong
functional form assumptions or a specification search while
also permitting more complex interpretation to examine non-
linearities, interactions, and heterogeneous effects (27, 49, 50).

As pointed out by reviewers, the present study includes
several limitations. First, due to complex interactions between
human activities and the atmospheric environment, quantifying
the influence of individual factors on PM2.5 concentration
remains challenging. On the one hand, a few overlooked sources
of pollution do exist [e.g., cooking (33, 52), transportation
(38), meteorological factors] in this paper. On the other hand,
admittedly, emission reduction policy is an important factor
affecting PM2.5 concentration, since 285 cities involved in this
study, it is difficult to quantify policy variables for horizontal
comparisons between cities. Factors mentioned above should be
included to improve model performance.

Second, the deposition effect of urban green on air quality
might be too small to be detected in a single-year cross-sectional
regression analysis, as the results of this study confirmed that
other factors such as real GDP per capita, urban density, and air
humidity have a more significant effect on 1PM2.5 increment.
Panel data models can obtain more efficient estimates than cross-
sectional data and also reduce the impact of the omitted variable
bias because panel data models use more information. It is
regrettable that the data used in this paper comes from the China
National Environmental Monitoring Center, which has released
real-time air quality data since 2015, there will be the issue of
independent variable skewness distribution if using a short-term
annual data (green coverage in many cities remains unchanged in
the short term).

At present, to our knowledge, no cross-sectional study has yet
investigated the changes in the daily rhythm of main emission
sources of PM2.5 in the urban areas, we decided to point to
this observation in the discussion, as this provides an interesting
starting point for future research. In addition, background PM2.5

concentration was an important factor affecting the marginal
benefit of greening, it’s a pity we have not explored this process
specifically, which may inform design of future research studies
that further explore these relationships (53).

CONCLUSIONS AND POLICY
IMPLICATIONS

This study investigated the influence of urban greening and
other urban elements on incremental concentration of PM2.5

during peak hours. Firstly, the temporal (seasonal, diurnal) and
spatial variation of incremental PM2.5 concentrations in 285
cities in China has been explored. We use the threshold model
to make an exploratory analysis on the influence factors of
incremental PM2.5 concentrations during peak hours (1PM2.5).

For comprehensive results, a KRLS model was used to further
explore the non-linearity, interaction, and heterogeneity among
parameters. The main findings were as follows:

In addition to green coverage, the estimation results suggest
that population density, real GDP per capita, government
environmental investment are essential driving factors affecting
1PM2.5. Additionally, the elasticity and significance of each
independent variable to the dependent variable may vary across
other independent variables level and will also change with
season and latitude. To this end, we divide Chinese cities into
three categories and adopt different measures to different regions
according to local conditions and specific drivers. The results and
implications are presented below.

Class I: Southern cities with low government environmental
investment. In this kind of city, green cover and economic
growth show strong effect on mitigating haze pollution
at their respective high level. It was found that excessive
population agglomeration can also exacerbate haze pollution.
The green coverage per capita needs to be further improved
for better air quality. On the one hand, the government should
increase the expenditure of greening and air sector, on the
other hand, for the densest urban areas, government should
reduce the density of economic activities to allocate green
resources rationally.

Class II: Northern cities with low government environmental
investment. In this kind of city, population density and green
coverage per capita were the main influencing factors of haze
during the peak period. For cities in the central plains of China,
with high background PM2.5 concentration, haze pollution was
enhanced by green coverage. Contribution of urban density
to PM2.5 concentration shows positive and negative effects at
low and high levels, respectively. That’s to say, more intensive
development may have reduced vehicle travel distances and
toxic air emissions in big cities. Therefore, the control and
supervision of pollution sources is crucial for controlling haze
pollution. At the early stages of urban development, mitigation
interventions related to urban patterns have the greatest
potential, reasonable urban planning should be made to reduce
environmental stress for follow-up human activity intensive areas
(traffic, green Infrastructure, urban Airway). For cities with
high population density and smog pollution, a plausible spatial
pattern is needed to reduce the burden of commuting, avoiding
excessive population concentration, while offsetting the negative
environmental impact of economic activities by improving the
efficiency of land resource utilization and establishing more
stringent policies to limit the discharge of pollutants from
production and life.

Class III: Cities with high government environmental
investment. Compared with other categories, it’s a healthy urban
development model that the increase of GC always effectively
reduces haze concentration during peak period. In addition,
the increase in population density and economic level also
expanded the marginal effect of green coverage to reduce air
pollution. Altogether, government environmental expenditure
was observed to be a powerful means to reduce haze pollution
during peak period in every stage of urban development and
every region.
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