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The endothelial transcription factor ERG mediates
Angiopoietin-1-dependent control of Notch
signalling and vascular stability
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Notch and Angiopoietin-1 (Ang1)/Tie2 pathways are crucial for vascular maturation and

stability. Here we identify the transcription factor ERG as a key regulator of endothelial Notch

signalling. We show that ERG controls the balance between Notch ligands by driving

Delta-like ligand 4 (Dll4) while repressing Jagged1 (Jag1) expression. In vivo, this regulation

occurs selectively in the maturing plexus of the mouse developing retina, where Ang1/Tie2

signalling is active. We find that ERG mediates Ang1-dependent regulation of Notch ligands

and is required for the stabilizing effects of Ang1 in vivo. We show that Ang1 induces ERG

phosphorylation in a phosphoinositide 3-kinase (PI3K)/Akt-dependent manner, resulting in

ERG enrichment at Dll4 promoter and multiple enhancers. Finally, we demonstrate that ERG

directly interacts with Notch intracellular domain (NICD) and b-catenin and is required for

Ang1-dependent b-catenin recruitment at the Dll4 locus. We propose that ERG coordinates

Ang1, b-catenin and Notch signalling to promote vascular stability.
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N
otch signalling is essential for the establishment,
maturation and maintenance of a functional vascular
network1,2. Notch regulates multiple aspects of vascular

development including arterial/venous determination, tip/stalk
cell specification, nascent vessel maturation and stability. Distinct
pathways can selectively activate Notch in the different phases of
vascular development and during maintenance. While insight
into the regulation of Notch signalling in determining tip-stalk
cell identity and endothelial sprouting is rapidly increasing, the
transcriptional control of Notch signalling during vascular
maturation remains poorly understood.

Of the four Notch ligands expressed in the endothelium in
vertebrates, only loss of Delta-like ligand 4 (Dll4) or Jagged1
(Jag1) results in vascular defects3. The phenotypes exhibited by
Jag1 (ref. 4) and Dll4 (refs 5–7) global knockout mice suggest that
these two ligands are not functionally redundant. Indeed,
Dll4 and Jag1 appear to play opposite roles in mouse retinal
angiogenesis, since inhibition of angiogenesis by Dll4 can be
competitively opposed by Jag1 (ref. 8). These two Notch ligands
also show distinct spatial expression patterns in the postnatal
retina vasculature, with Dll4 highly expressed in tip cells and also
present at the edge of the growing plexus, while Jag1 expression is
low/absent in tips cells but higher in adjacent stalk cells8. The
equilibrium between these two Notch ligands is required for the
formation of fully functional and stable vascular networks.
Aside from its role in tip-stalk cell communication, Dll4/Notch
signalling is also critical in the maturing vascular plexus at tight
inter-endothelial cell–cell contacts; here Dll4/Notch signalling has
been shown to negatively regulate blood vessel growth, promoting
endothelial quiescence and vascular stability9–11.

The Angiopoietin-1 (Ang1)/Tie2 system plays an essential
role in the maturation of nascent blood vessels and in
maintaining vascular integrity by enhancing endothelial barrier
function and promoting EC quiescence12–15. Several studies
have shown that over-expression of Ang1 in mice leads to a
stabilized, less permeable vasculature16,17, promoting endothelial
survival and VE-cadherin-regulated inter-endothelial adhesion15.
Interestingly, Zhang et al. showed that Ang1 upregulates Dll4
expression and Notch signalling in vitro, but only in the presence
of cell–cell contacts, that is, in conditions that are supposed to
mimic maturing or stable vasculature18. The authors also showed
that Ang1-dependent potentiation of Dll4/Notch signalling
required Akt-mediated activation of b-catenin, which formed a
complex with NICD18, providing in vitro evidence for an
integrated network of endothelial pathways promoting vascular
maturation and stability.

We have recently identified a transcriptional pathway essential
for vascular stability, coordinated by the endothelial transcription
factor ERG (ETS-related gene). ERG is a member of the E-26
transformation specific (ETS) transcription factor family, which
regulates a wide range of targets and pathways required for
endothelial homeostasis, including proliferation, survival and
barrier function19. Several in vivo and in vitro model systems have
demonstrated the crucial role of ERG in vascular development,
angiogenesis and vascular stability19–26. Mice deficient in
endothelial ERG show severe defects in vascular development,
resulting in embryonic lethality at E10.5–12.5 (refs 21,24,25).
Inducible endothelial-specific deletion of ERG causes impairment
in the retinal vasculature of newborn mice, with signs of vascular
destabilization, such as loss of VE-cadherin expression, loss of
pericyte coverage and increased number of empty collagen
sleeves21. The vascular and molecular defects in the yolk sac of
endothelial ERG-deficient mice were corrected by stabilization
of b-catenin/Wnt signalling; in vitro, ERG was found to
promote b-catenin protein stability through VE-cadherin and
Wnt-dependent pathways21. Thus these studies showed that ERG

promotes vascular stability through the Wnt/b-catenin signalling
pathway.

In this study, we hypothesized that ERG acts to integrate the
pathways described above to promote vascular maturation and
stability. We used multiple approaches to show that ERG controls
Notch signalling specifically during vascular remodelling and
maturation, controlling the balance of expression between Dll4
and Jag1, two Notch ligands which act competitively. We show
that ERG mediates the Ang1-dependent activation of Notch
signalling in EC in vitro and in vivo. These results demonstrate
that the transcription factor ERG coordinates the Ang1, Notch
and Wnt/b-catenin pathways to promote vascular maturation
and stability.

Results
ERG controls Notch signalling in differentiated EC. Ligand-
mediated activation of Notch receptors promotes proteolytic
release of the Notch intracellular domain (NICD), which then
translocates to the nucleus and acts as a co-activator for the
transcriptional regulator RBP-J27. Inhibition of ERG expression
in HUVEC by ERG siRNA caused a decrease in NICD levels
(Fig. 1a) and RBP-J luciferase reporter activity (Fig. 1b) compared
to control siRNA. Consistently, ERG inhibition via two
separate siRNA sequences downregulated expression of Notch
downstream targets Hes1, Hey1 and Nrarp, while levels of
p21CIP1 (p21) were increased (Fig. 1c and Supplementary
Fig. 1a), in line with decreased Notch signalling28. The Notch
pathway is controlled by a balance of activators and repressors.
Inhibition of ERG expression in EC was found to affect multiple
genes involved in the Notch pathway29 (Fig. 1d): ERG-deficient
cells showed decreased levels of Notch receptors Notch1
and Notch4, but increased levels of Notch2 (Fig. 1d and
Supplementary Fig. 1b). Levels of Notch modulators Manic
Fringe and Lunatic Fringe (MFNG and LFNG) were also
decreased (Fig. 1d and Supplementary Fig. 1c). In the absence
of ERG, Dll4 stimulation was able to rescue expression of Notch
targets Hes1 and Hey1 (Fig. 1e) and significantly increased RBPJ
activity (Fig. 1f). Levels of NICD (Fig. 1g), Notch 1 and Notch 4
(Fig. 1h) were not normalized by stimulation with Dll4, in line
with ERG’s direct transcriptional control of Notch receptors.
(Supplementary Fig. 1d,e, respectively related to Fig. 1g,h, show
ERG levels in these experiments). These data suggest that ERG
controls Notch signalling at multiple levels.

ERG controls the balance of expression between Dll4 and Jag1.
The Notch ligands Dll4 and Jag1 have been shown to exert
opposite effects on vascular development and angiogenesis8,30.
Interestingly, inhibition of ERG expression resulted in a decrease
in Dll4 mRNA (Fig. 2a and Supplementary Fig. 1f) and protein
expression (Fig. 2b) while causing an increase in Jag1 mRNA
(Fig. 2c and Supplementary Fig. 1f) and protein levels (Fig. 2d),
suggesting an inverse regulation of the two Notch ligands.
A similar decrease in Dll4 expression and increase in Jag1
expression was observed in primary lung EC isolated from mice
heterozygous for endothelial-specific ERG deletion21 (ErgcEC-het)
(Supplementary Fig. 1g,h). In support of these findings, ERG
overexpression in HUVEC induced a significant upregulation
of Dll4 expression and downregulation of Jag1 expression
(Supplementary Fig. 1i). Moreover, ERG overexpression was
able to normalize the expression of both Dll4 and Jag1 in
siERG-treated HUVEC (Supplementary Fig. 1i), confirming
ERG’s role in regulating transcription of these genes.

Comparative bioinformatic analysis of the Dll4 promoter
revealed the presence of highly conserved ERG DNA binding
motifs (Fig. 2e). Analysis of chromatin immunoprecipitation
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Figure 1 | ERG regulates endothelial Notch signalling. (a) Western blot (WB) analysis of Notch intracellular domain (NICD) expression in control (siCtrl)

and ERG-deficient (siERG) HUVEC (n¼4). (b) RBP-J TP-1 Notch reporter activity in control and ERG-deficient HUVEC (n¼4). (c) qPCR of Notch target

gene expression in siCtrl and siERG-treated HUVEC: Hes1, Hey1, Nrarp and p21 (n¼4). (d) Microarray and PCR screen analysis of differential gene

expression in HUVEC was performed at 24 and 48 h after ERG inhibition29, with fold change of selected genes represented as high (red) and low (blue)

expression compared to the median (grey). (e) qPCR analysis of Hes1 and Hey1 Notch target gene expression in siCtrl and siERG-transfected HUVEC

stimulated with Dll4 or control BSA (n¼4). (f) RBP-J TP-1 Notch reporter activity in control and ERG-deficient HUVEC plated on Dll4 or BSA (n¼4).

(g) WB analysis and quantification of NICD expression in siCtrl and siERG-transfected HUVEC stimulated with Dll4 or BSA (n¼4). (h) qPCR analysis of

Notch1 and Notch4 mRNA expression in siCtrl and siERG-transfected HUVEC stimulated with Dll4 or BSA (n¼4). All graphical data are mean±s.e.m.,

*Po0.05, **Po0.01, ***Po0.001, Student’s t-test.
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sequencing (ChIP-seq) data for markers of active promoters,
namely histone marks H3K4me3 and H3K27Ac and RNA poly-
merase (RNA pol) II occupancy (from ENCODE (Encyclopedia
of DNA Elements)31), showed that the location of these marks

correlates with the position of the ERG binding motifs (Fig. 2e).
ChIP-qPCR confirmed direct interaction of ERG with the Dll4
promoter (Fig. 2f, region R1); ERG enrichment was decreased in
cells treated with ERG siRNA, supporting specificity (Fig. 2f).
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Figure 2 | ERG transcriptionally activates Dll4 and represses Jag1 expression. (a) mRNA levels of Dll4 in HUVEC treated with siCtrl or siERG for 24 and

48 h (n¼6). (b) Representative WB and quantification of Dll4 protein expression in siCtrl and siERG-treated HUVEC for 24 and 48 h (n¼ 3). (c) mRNA

levels of Jag1 in siCtrl and siERG-treated HUVEC for 24 and 48 h (n¼6). (d) Representative WB and quantification of Jag1 expression in siCtrl and

siERG-treated HUVEC for 24 and 48 h (n¼ 6). (e) Putative ERG binding sites (grey bars) are located within the Dll4 promoter downstream of the

transcription start site (TSS) (arrow); ENCODE sequence conservation between 100 vertebrates is shown across this region. ENCODE ChIP-seq data

profiles for H3K4me3, H3K27Ac and RNA polymerase II (RNA pol) in HUVEC indicate open chromatin and active transcription. Location of qPCR amplicon

covering region R1 is indicated. (f) ChIP-qPCR using primers to region R1 on ERG-bound chromatin from siCtrl or siERG-treated HUVEC. Primers for a

region within exon11 of the Dll4 gene were used as negative control. Data are shown as fold change over IgG (n¼ 3). (g) Dll4 promoter luciferase reporter

assay. ERG cDNA expression plasmid (pcDNA-ERG) or empty expression plasmid (pcDNA) were co-transfected with a Dll4 promoter-luciferase construct

(pGl4-Dll4, covering region R1) in HUVEC, and luciferase activity was measured. Values represent the fold change in relative luciferase activity over the

empty pGL4 vector alone (n¼4). (h) Putative ERG binding sites (grey bars) located within the Jag1 genomic locus. TSS is indicated (arrow); ENCODE

sequence conservation between 100 vertebrates and ChIP-seq data profiles for H3K4me3, H3K27Ac and RNA polymerase II in HUVEC are shown across

this region. Location of qPCR amplicons covering R1, R2 and R3 are indicated. (i) ChIP-qPCR using primers covering Jag1 promoter regions R1, R2, R3 and

Ctrl region on ERG-bound chromatin from siCtrl or siERG HUVEC (n¼4). (j) Control or Jag1 promoter luciferase construct (pGl3-Jag1, covering regions R1

and R2) activity after siERG treatment. Results are expressed as luciferase activity relative to siCtrl-treated cells (n¼ 3). All graphical data are

mean±s.e.m., *Po0.05, **Po0.01, ***Po0.001, Student’s t-test.
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Finally, ERG overexpression resulted in transactivation of Dll4
promoter activity in EC (Fig. 2g), confirming that ERG drives
Dll4 promoter activity in EC.

A similar analysis of the Jag1 locus showed multiple regions
enriched with highly conserved ERG DNA binding motifs
(Fig. 2h), which co-localize with H3K4me3 and/or H3K27Ac
and low RNA pol II occupancy. ChIP-qPCR confirmed ERG
interaction at three of these regions (Fig. 2i) and ERG siRNA
indicated specificity of the enrichment. Inhibition of ERG
expression by siRNA significantly increased Jag1 promoter
activity in HUVEC compared with control (Fig. 2j), confirming
that ERG acts as a repressor of Jag1 transcription. These data
demonstrate that ERG directly controls the balance of expression
between Dll4 and Jag1 in differentiated EC in vitro.

ERG controls Notch signalling in maturing vessels in vivo.
We investigated whether ERG regulates Notch signalling during
angiogenesis in vivo, using the retina postnatal neovascularization
model in mice with inducible endothelial deletion of ERG
(ErgiEC-KO). The phenotype of these mice has been recently
reported21; effective downregulation of ERG expression was
confirmed by immunofluorescence microscopy (Fig. 3a–d). In P6
retinas of Ergfl/fl control mice, Dll4 and Jag1 were highly
expressed in the arteries and to a lesser extent in the veins and
capillaries of the central plexus (Fig. 3a,b and Supplementary
Fig. 2a–d), while at the angiogenic front Dll4 was highly
expressed by tip cells (Fig. 3c) and Jag1 was expressed by
stalk cells (Fig. 3d), as previously reported8. Deletion of
endothelial ERG resulted in decreased Dll4 expression (Fig. 3a,
Supplementary Fig. 2a,c) and increased Jag1 expression (Fig. 3b,
Supplementary Fig. 2b,d) in EC from the mature central plexus of
the mouse retina, as measured globally (central plexus) and
separately in capillaries and in the larger vessels (both arteries and
veins). Surprisingly, expression of Dll4 and Jag1 at the angiogenic
front was unaffected by ERG deletion (Fig. 3c,d). Consistent
with this pattern of Notch ligand regulation, NICD expression
was decreased in the central vascular plexus of ErgiEC-KO mice
compared to controls (Supplementary Fig. 3a), but not at the
angiogenic front (Supplementary Fig. 3b). These data indicate
that during angiogenesis, ERG regulates Notch signalling and the
balance of expression between Dll4 and Jag1 selectively in the
remodelling vascular plexus, where the process of vascular
maturation and stabilization takes place.

Interestingly, ERG was found to regulate the balance of
expression between Dll4 and Jag1 also in established vasculature.
In retinas of 9-week-old ErgcEC-het mice, when blood vessels have
been remodelled to form a mature network, Dll4 expression
was significantly downregulated (Supplementary Fig. 4a), whereas
Jag1 expression was increased compared to control Ergfl/þ

retinas (Supplementary Fig. 4b). These results indicate that
ERG regulates Dll4 and Jag1 expression and Notch signalling
selectively in the maturing vascular plexus and in established
vasculature.

ERG regulates Ang1-dependent Notch signalling in vitro.
A major pathway driving vascular maturation and stability is that
of Ang1/Tie2 (ref. 32); in the developing retina, this pathway is
active in the remodelling vascular plexus, where Tie2 is expressed,
and not at the angiogenic front where EC do not express Tie2
(ref. 33). Ang1 has been shown to induce Dll4 expression and
NICD signalling in vitro18,34; therefore, we investigated whether
ERG mediates Ang1-dependent regulation of Notch signalling. In
HUVEC, induction of Notch transcriptional activity by Ang1
treatment was inhibited by siRNA depletion of ERG, as shown by
RBP-J luciferase reporter activity (Fig. 4a) and expression of the

downstream target Hey1 (Fig. 4b). Depletion of ERG
completely abolished Ang1-induced Dll4 gene (Fig. 4c) and
protein expression (Fig. 4d). Interestingly, Ang1 treatment also
decreased expression of Jag1 in an ERG-dependent manner, since
the effect was lost in ERG-silenced HUVEC (Fig. 4e,f). These
effects were not due to the inability of ERG-deficient cells to
respond to Ang1, since Ang1-dependent Tie2 phosphorylation at
cell–cell contacts and phosphorylation of Akt were similar in
control and ERG-silenced HUVEC (Supplementary Fig. 5a,b),
despite reduced levels of Tie2 in ERG-deficient cells
(Supplementary Fig. 5b). Thus, ERG mediates Ang1-dependent
activation of Notch and its reciprocal regulation of Dll4 and Jag1
in EC in vitro (Fig. 4g).

ERG mediates Ang1-dependent blood vessel stability in vivo.
To establish whether ERG mediates Ang1-dependent responses
in vivo, we used a VEGF-dependent permeability model,
a well-established readout of the stabilizing effect of Ang1 on the
vasculature13,17,35,36, in control (Ergfl/þ ) and Erg hemi-deficient
(ErgcEC-het) mice. Heterozygous deletion of ERG was confirmed
by qPCR (Fig. 5c) and immunofluorescence microscopy (Fig. 5d).
Subcutaneous administration of VEGF in control Ergfl/þ mice
caused increased dermal vascular permeability, which was
prevented by co-injection with Ang1, as expected13,17,34,35

(Fig. 5a,b). Crucially, in ErgcEC-het mice Ang1 was unable to
reduce the VEGF-dependent increase in vascular permeability
(Fig. 5a,b), demonstrating that ERG is required for Ang1
stabilizing activity in vivo. Interestingly, ErgcEC-het mice also
showed increased basal vascular permeability (Fig. 5b,d, and
Supplementary Movies 1 and 2), in line with the reported role of
ERG in controlling vascular permeability21,37.

We next examined whether ERG mediates Ang1-dependent
regulation of Notch signalling in vivo. Dll4 and Jag1 mRNA levels
were analysed in skin samples from ErgcEC-het mice and littermate
Ergfl/þ controls treated with Ang1 or PBS. Ang1 treatment
resulted in upregulation of Dll4 expression in skin samples from
Ergfl/þ mice; however, this was lost in ErgcEC-het mice (Fig. 5e), in
line with the in vitro data on ERG-depleted HUVEC. In contrast,
despite a trend towards regulation, expression of Jag1 was neither
significantly downregulated in Ergfllþ mice nor significantly
upregulated in ErgcEC-het mice after Ang1 treatment (Fig. 5f),
possibly because Jag1 expression is not restricted to endothelial
cells38. These results indicate that ERG is required for
Ang1-dependent control of Dll4 expression in vivo.

Ang1 increases ERG recruitment to Dll4 enhancers and promoter.
Having established that ERG is essential for Ang1-dependent Dll4
expression in maturing and stable vasculature, we set out to
investigate the molecular mechanisms for its regulation. As
shown above, ERG binding to the Dll4 promoter is functionally
active (see Fig. 2e–g). Four putative enhancer regions within the
Dll4 locus were identified by Sacilotto et al.39; these are located at
� 16 and � 12 kb upstream of the transcription start site (TSS),
within the third intron of Dll4 and 14 kb downstream of the
TSS (denoted as � 16, � 12, int3 and þ 14)39. Comparative
bioinformatic analysis combined with ENCODE data identified
conserved ERG DNA binding motifs at all four putative
enhancer regions enriched in H3K27Ac and H3K4me1 histone
modifications and DNAse I hypersensitivity (Supplementary
Fig. 6). ERG binding to the � 16, � 12, int3 and þ 14 kb
regulatory regions within the Dll4 locus was confirmed by
ChIP-qPCR (Fig. 6a); Ang1 increased ERG binding to the Dll4
promoter and enhancers by approximately twofold (Fig. 6a).
Thus ERG regulates expression of Dll4 through binding to
the promoter and multiple enhancer regions, which is enhanced
by Ang1.
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Ang1 induces ERG phosphorylation via the PI3K/Akt axis.
We have shown that Ang1 increases ERG binding to the
Dll4 locus. This is unlikely to be mediated solely by
increased ERG expression, since Ang1 had a modest effect on
ERG levels in HUVEC in vitro and in vivo (Supplementary
Fig. 7a–c).

Ang1 stimulation of confluent endothelial monolayers has been
shown to result in preferential activation of the PI3K/Akt
pathway34. Also, Ang1-dependent upregulation of Dll4 is
mediated by PI3K/Akt signalling18. ERG has been shown to be
phosphorylated at serine residues, in non-EC40,41. Therefore, we
investigated whether Ang1 could induce ERG phosphorylation in
EC through the PI3K/Akt pathway. Ang1 treatment in HUVEC

induced ERG phosphorylation at serine residues, as shown by
proximity ligation assay (PLA)42; Ang1-dependent ERG
phosphorylation was localized within the EC nucleus (Fig. 6b
and Supplementary Fig. 7d). Interestingly, treatment with either
PI3K inhibitor LY294002 or Akt inhibitor IV completely
abolished Ang1-induced ERG phosphorylation (Fig. 6b). These
data indicate that Ang1 is able to induce ERG phosphorylation
via the PI3K/Akt axis.

Next, we examined whether the PI3K/Akt pathway mediates
binding of ERG to the regulatory regions in the Dll4 gene locus in
response to Ang1. ChIP-qPCR analysis was performed on
confluent Ang1-treated EC, in the presence of LY294002 or Akt
inhibitor IV. Ang1-induced ERG enrichment at these loci was
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ablated by PI3K or Akt inhibitors (Fig. 6c). These results identify
a novel Ang1-PI3K/Akt-ERG signalling axis in the control of Dll4
expression in confluent EC.

Interestingly, baseline ERG binding to the Dll4 locus and
transactivation of Dll4 promoter activity were also dependent on
PI3K/Akt (Fig. 6c and Supplementary Fig. 7e); PLA analysis also
showed basal phosphorylation of ERG at serine residues (Fig. 6b).
These results suggest the presence of a constitutive PI3K/Akt-
ERG-dependent pathway in confluent EC in vitro, which is
potentiated by Ang1.

An ERG-b-catenin-NICD complex controls Dll4 expression.
The data described so far point towards a role for ERG in
controlling Ang1-dependent activation of the Notch pathway in
the maturing vasculature. We have recently shown that ERG
is required for vascular maturation and stability by controlling
Wnt/b-catenin signalling21. Crosstalk between Notch and Wnt
signalling has been reported in multiple systems9,43–45; moreover,
Zhang et al. have shown that Ang1 promotes Dll4 expression
through Akt-mediated activation of b-catenin in vitro18. Thus we
speculated that ERG may act to coordinate these pathways in EC
at the transcriptional level. We investigated this hypothesis using
ChIP-qPCR in confluent EC, in the presence or absence of Ang1.
NICD enrichment at the Dll4 promoter and enhancer regions was
detected in baseline conditions and was unaffected by inhibition
of ERG expression or by Ang1 treatment (Fig. 7a). In contrast,
basal b-catenin enrichment at the Dll4 promoter and enhancers
was low and was increased by Ang1 (Fig. 7b). Crucially, Ang1
dependent b-catenin enrichment requires ERG, since it was
abolished in siERG-treated HUVEC (Fig. 7b). These findings
indicate that ERG is required for Ang1-dependent b-catenin
activation and recruitment of b-catenin at the Dll4 locus.

We have previously shown that b-catenin levels are decreased
in ERG-deficient cells, due to decreased protein stability21. To test
whether the reduced recruitment of b-catenin to the Dll4
promoter in ERG-deficient cells was simply due to reduced
levels of b-catenin, we stabilized b-catenin protein levels with
lithium chloride (LiCl), as before21. LiCl normalized b-catenin
protein levels in ERG-deficient cells (Supplementary Fig. 8a);
however, it was unable to normalize expression of Dll4
(Supplementary Fig. 8b). These results confirm that ERG is
required for b-catenin to control Dll4 expression.

b-catenin has been previously shown to form a complex with
NICD/RBP-J on the Dll4 intron3 enhancer18, where ERG also
binds. Thus we examined the possibility that ERG may be part of
the complex with b-catenin and NICD. Co-immunoprecipitation
from confluent HUVEC extracts showed that ERG associates with
both endogenous b-catenin and NICD (Fig. 7c). PLA analysis
in unstimulated confluent HUVEC confirmed the interaction
between ERG and b-catenin, and localized it in the nucleus
(Fig. 7d, top). Interestingly, Ang1 treatment significantly
increased the interaction between ERG and b-catenin (Fig. 7d);
the ERG-b-catenin complex was inhibited by treatment with
either PI3K or Akt inhibitors (Fig. 7d). Thus ERG can form a
complex with b-catenin and NICD, which is enhanced by Ang1
via the PI3K/Akt pathway. These data indicate that this complex
is required to drive Dll4 expression and Notch signalling in
confluent EC.

A positive Notch-ERG loop regulates Dll4 expression. Notch
signalling itself is required for Dll4 regulation18,46; therefore,
we tested whether ERG and NICD cooperate to regulate Dll4. In
HUVEC, depletion of NICD by DAPT, a g-secretase inhibitor,
caused a profound decrease in Dll4 expression (Fig. 8a), as
expected18. Interestingly, this was similar to what was observed

with ERG depletion and combination of DAPT and ERG siRNA
caused a further significant decrease in Dll4 expression (Fig. 8a).
In line with this observation, the increased Dll4 mRNA caused by
ERG overexpression was significantly reduced by DAPT (Fig. 8b
and Supplementary Fig. 9). These results indicate that ERG and
Notch signalling are jointly required for Dll4 expression.

Finally, DAPT treatment of HUVEC decreased ERG transcript
levels by 50% compared to control (Fig. 8c), while Dll4
stimulation of HUVEC significantly upregulated ERG mRNA
levels, as well as those of the Notch target gene Hey1, as expected
(Fig. 8d). These data suggest that Notch signalling regulates ERG
expression. To confirm these findings in vivo, we investigated
ERG expression in the retinal vasculature of an inducible
EC-specific knockout model of the Rbpj gene (RbpjiDEC)47,48,
which encodes the transcription factor RBP-Jk, the effector of
Notch-induced gene expression49. Inactivation of Rbpj led to a
downregulation of ERG protein expression in vivo, both in the
retinal central vascular plexus (Fig. 8e) and at the angiogenic
front (Fig. 8f). These results identify a positive feedback loop
between Notch and ERG signalling, both essential pathways for
vascular maturation and homeostasis.

In summary, the data presented here suggest a new model
for the control of Dll4/Notch signalling in the endothelium,
selectively within maturing and established vessels (Fig. 9). Here,
ERG and NICD form a complex which controls endothelial
Dll4/Notch signalling to promote maturation and stability.
Notch itself upregulates ERG levels, thus promoting a positive
ERG-Notch loop to sustain this pathway (Fig. 9a). Ang1
activation in adjacent EC results in activation of the PI3K/Akt
pathway, which phosphorylates ERG, enhancing its binding to
the Dll4 locus and promoting the recruitment of b-catenin
(Fig. 9b). This transcriptional complex is required to drive Dll4
expression and ultimately enhance Notch signals, promoting
vascular maturation and stability.

Discussion
In this study, we identify ERG as an endothelial transcriptional
effector activated downstream of Ang1 to promote Notch
signalling and vascular stability. We show that ERG is required
for Notch signalling in vitro and in vivo. ERG controls the balance
of expression between the Notch ligands Dll4 and Jag1 selectively
in the remodelling vascular plexus, which is exposed to
Ang1/Tie2 signals, and not at the angiogenic front, where Tie2
levels are low33. We show that Ang1 is able to phosphorylate ERG
via PI3K/Akt, and that this promotes the formation of an ERG-b
catenin complex, which binds multiple sites in the Dll4 locus and
drives Dll4 expression. Finally, we identify an ERG-Notch
positive loop, which sustains the pathway.

The two Notch ligands Dll4 and Jag1 display distinct spatial
expression patterns and play opposing functional roles in
angiogenesis8. In this study, we show that ERG drives Dll4
while repressing Jag1 expression. To our knowledge, this is
the first time that reciprocal transcriptional control of Notch
proteins by a single transcription factor has been shown in EC.
Interestingly, the phenotype of ERG loss in vivo does not
phenocopy either endothelial loss of Dll4 or gain of Jag1
(refs 8,30); indeed the overall outcome of the loss of Dll4/Jag1
balance appears to be defective angiogenesis. These different
phenotypic outcomes may be due to the added effect of the loss of
b-catenin activity, which is significantly reduced in ERG-deficient
mice21; they could also be partly due to the dysregulation of
multiple Notch-related proteins, such as Notch receptors or
Fringe proteins. Interestingly, Fringe glycosyltransferases enhance
the activation of Notch in response to Delta-like ligands, but have
the opposite effect for Jagged ligands8,50. Boareto et al. recently
used theoretical modelling to investigate the dynamic relationship
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Figure 7 | Ang1 induction of b-catenin occupancy at Dll4 promoter and enhancers requires ERG. ChIP-qPCR analysis of siCtrl and siERG-treated HUVEC,

in the presence or absence of Ang1 (250 ng ml� 1). Chromatin was immunoprecipitated with (a) an anti-NICD antibody, (b) an anti-b-catenin antibody or

control IgG. Immunoprecipitated DNA was analysed by qPCR with primers to � 16 kb, � 12 kb, promoter, intron 3 and þ 14 kb of Dll4 locus. Primers

covering a negative control region within exon 11 were also used. Results are expressed as fold change enrichment compared to IgG (n¼ 3). (c) HUVEC

lysates were immunoprecipitated with an anti-ERG antibody. Immunoprecipitates were analysed by immunoblotting (IB) with anti-ERG, anti-NICD and

anti-b-catenin antibodies. (d) Confluent HUVEC were pre-treated with LY294002 (20 mM) or Akt inhibitor IV (8mM) and treated with Ang1 (250 ng ml� 1)

or DMSO for 30 min. Proximity ligation assay analysis of localization of ERG-b-catenin interaction was performed using rabbit anti-ERG and mouse

anti-b-catenin antibodies (n499 cells quantified per condition). Scale bar, 20mm. All graphical data are mean±s.e.m., *Po0.05, **Po0.01, ***Po0.001,

Student’s t-test.
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between Dll4/Notch/Jag1 and proposed that conditions with Jag1
overexpression, Dll4 repression or Fringe inhibition (all observed
in ERG-deficient cells) should lead to a hybrid tip/stalk
phenotype resulting in pathological angiogenesis51.

Four putative enhancers for the Dll4 gene have been previously
identified in HUVEC39. Here we demonstrate that these enhancer
regions are all bound by ERG, alongside an ERG-enriched
promoter region. Enhancer–promoter regulation is a
fundamental mechanism underlying differential transcriptional
regulation52–54. The involvement of ERG at multiple sites
suggests a complex 3D structure and looping of the
transcriptional unit regulating lineage-specific expression of

Dll4. This could allow other factors to converge in the same
genomic region, leading to changes in epigenetic marks
and alterations in chromatin structure. Future experiments
on the chromatin landscape and the dynamic binding of
potential co-activators or co-repressors will explore this
hypothesis.

It has been previously shown that Dll4 expression is
maintained through a Notch-dependent positive feedback loop46.
Here we find that Notch signalling regulates ERG expression, thus
promoting a positive ERG-Notch loop to sustain this pathway.
Notch regulates multiple steps of vascular development; it has
been suggested that Notch signalling acquires specificity through
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Figure 8 | Reciprocal regulation of Notch signalling and ERG expression. (a) Dll4 mRNA expression in siCtrl and siERG-transfected HUVEC treated

in the presence or absence of the g-secretase inhibitor DAPT (n¼4). (b) Dll4 mRNA expression in HUVEC transfected with ERG cDNA expression

plasmid (pcDNA-ERG) or an empty expression plasmid (pcDNA) and treated in the presence or absence of the g-secretase inhibitor DAPT (n¼ 3).

(c) ERG mRNA expression in siCtrl and siERG-transfected HUVEC treated in the presence or absence of DAPT (n¼4). (d) mRNA expression of ERG and

the Notch target gene Hey1 in HUVEC stimulated with control BSA or Dll4 (n¼4). Representative images and quantification of ERG (red) staining of

P6 retinal vessels in the (e) vascular plexus and (f) angiogenic front from control (Rbpjfl/fl) and RbpjiDEC mice. Retinas are co-stained for isolectin B4

(IB4, green). Quantification represents the ratio between the sum of pixel intensity and isolectin B4 area (n¼4 fields per mouse, n¼4 mice per genotype).

Scale bar, 70mm. Arteries (A) and veins (V) are indicated. All graphical data are mean±s.e.m., *Po0.05, **Po0.01, ***Po0.001, Student’s t-test.
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the formation of transcriptional complexes with other factors39.
Previous work has shown that the Ang1-PI3K/Akt axis
induces the formation of a transcriptional complex between
b-catenin/NICD/RBP-J to enhance Dll4 expression and Notch
signalling18,45. Notch and b-catenin are also expressed in
nonvascular tissues, while ERG’s expression profile is restricted
to the endothelium and a very limited number of other lineages.
Thus ERG may confer endothelial-specificity to this pathway by
mediating the Ang1/Tie2 signals to induce the formation of a
b-catenin-NICD complex, which cooperatively induces Dll4
expression in the maturing and established endothelium.
Given ERG’s multiple roles in angiogenesis and homeostasis,
it is likely that ERG itself engages in cooperation with distinct
transcriptional complexes depending on different extracellular
signals, to achieve specific outcomes. Crucially, our data show
that Ang1 regulates endothelial ERG function via the PI3K/Akt
pathway. Despite its key role in multiple endothelial functions,
very little is known about the regulation of ERG function; future
studies manipulating ERG to interfere with its activation state will
provide important support to the currently available endothelial
deletion approaches.

Previous work has implicated ERG in the VEGF-dependent
regulation of Dll4 expression in developing arteries55. Arterial-
venous patterning in the retinas from P6 ErgiEC-KO mice appears
morphologically normal, with only rarely observed arteriovenous
shunts typically associated with disrupted arterial specification.
These observations are consistent with those described by Wythe
et al.55, who reported no gross morphological defects in the
arteries or veins of Erg endothelial-isoform-specific knockout
mice. Further detailed molecular characterization will be needed
to clarify the role of ERG in arterial-venous differentiation.

During angiogenesis, VEGF is a key driver of Dll4 expression
in tip cells; however, in our study Dll4 expression in ERG-
deficient retinas was unaffected at the angiogenic front. This is in
line with a recent study by the De Val group56, showing that ETS
motifs within the Dll4 intron 3 enhancer are not required for its
expression at the angiogenic front. The authors suggest a model
in which MEF2 transcription factors cooperate with ETS factors,
where ETS provide essential endothelial expression information
and MEF2 contribute angiogenic sprout specificity56. Ang1 can
also promote Dll4 expression, and here we show that this requires
ERG. Tie2 expression pattern studies suggest that the Ang1/Tie2
pathway is active in the remodelling, maturing plexus, and indeed
loss of endothelial ERG results in decreased Dll4/Notch signalling

in the remodelling plexus. These studies suggest a model of
context-specific combinatorial networks which integrate growth
factor signals to assemble distinct transcriptional complexes in
different phases of vascular development and angiogenesis.

Methods
Mice and breeding. The ERG conditional knockout mouse models were
generated as described previously21. Ergfl/fl mice were crossed with the following
endothelial-specific Cre transgenic deleter lines: Cdh5(PAC)-CreERT2 (ref. 57)
and Tie2-Cre (ref. 58). For Rbpj targeting in the endothelium, Rbpjflox mice49 were
combined with EC-specific Pdgfb-iCre transgenic deleter line59. All animal
experiments were conducted according to Imperial College London-approved
protocols, in compliance with the UK Animals (Scientific Procedures) Act of 1986.
All animals used were maintained on a C57BL/6 background. Both male and
female mice were used for experiments and were 6 days or 9–10 weeks old.
All experiments were conducted using littermate controls.

In vivo permeability assay. In vivo permeability assay was performed as
previously described36. Briefly, PBS, VEGF, Ang1 (kindly provided by Regeneron
Pharmaceuticals, Inc.) or VEGF and Ang1 were injected intradermally (50 ng in
50 ml) for 1 h in four distinct regions of the abdomen of 10-week-old Ergfl/þ and
ErgcEC-het mice. Fifteen minutes before the killing, the mice received an intravenous
administration of high molecular weight FITC-Dextran (2� 106 MW). Skin
samples were dissected and fixed with paraformaldehyde (4%) for 1 h. Epidermis
was removed from the skin and samples were imaged whole-mount. Mean
fluorescence intensity for FITC-Dextran was quantified in five fields per mouse.
An average of the mean intensity per mouse was converted to fold change
compared to Ergfl/þ mice injected with PBS. Some skin samples were processed for
immunofluorescence staining or digested with proteinase K (Qiagen) for 45 min at
56 �C and used for RNA extraction.

Immunofluorescence analysis of mouse tissue. Mice were injected intra-
peritoneally (i.p.) with tamoxifen (50 mg per mouse; Sigma) at postnatal (P) day 1,
P2 and P3. Retinas were collected from P6 Ergfl/fl and ErgiEC-KO mice and from
9-week-old Ergfl/þ and ErgcEC-het mice and processed for immunofluorescence
staining as described previously, with minor modifications60. Briefly, whole eyes
were fixed with freshly prepared 4% paraformaldehyde/PBS for 1 h 45 min on ice.
Retinas were dissected and blocked in retina-blocking buffer (1% bovine serum
albumin (BSA), 0.3% Triton, PBS) overnight at 4 �C. Retinas were washed three
times for 10 min with Pblec buffer (1 mM CaCl2, 1 mM MgCl2, 1 mM MnCl2,
1% Triton X-100 in PBS), and then incubated overnight at 4 �C with biotinylated
Griffonia simplicifolia lectin I (isolectin B4) (B1205, 1:250, Vector Laboratories)
and the following primary antibodies: rabbit anti-ERG (ab110639, 1:200, Abcam),
goat anti-Dll4 (AF1389, 1:50, R&D systems), goat anti-Jag1 (J4127, 1:50, Sigma)
and rabbit anti-cleaved Notch1 (Val 1744, #2421, 1:100, Cell Signalling) (anti-
NICD). The following day, retinas were washed twice for 15 min in washing buffer
(1:1 retina-blocking buffer/PBS) and twice (15 min per wash) in PBS, then
incubated at room temperature for 2 h with Alexa Fluor streptavidin conjugates or
species-specific Alexa Fluor-coupled secondary antibodies (all at 1:500, Invitrogen)
diluted in blocking buffer. For NICD immunostaining, biotinylated goat anti-rabbit
IgG (1:100, Vector Laboratories) was used followed by TSA-Cy3 (Perkin Elmer).

Notch-ERG positive feedback loop Ang1 potentiation of Dll4/Notch signalling

NICD

NICD

ERG

Dll4

Notch

ERG

Dll4

Dll4

Notch

PI3K/Akt

NICD
DII4

Notch

DII4

DII4
Notch

Tie2

Ang1

P

P
ERG

ERGβ-cat

ba

Figure 9 | Model: ERG mediates Ang1 potentiation of Dll4/Notch signalling. (a) Notch-ERG positive feedback loop. ERG drives expression of the Notch

ligand Dll4 and is required for endothelial Notch signalling. Notch signalling itself upregulates ERG expression, suggesting that continued Dll4 expression

and Notch signalling is maintained through this positive feedback loop. (b) ERG is required for Ang1 induction of Dll4. In confluent cells, Ang1/Tie2

signalling induces PI3K/Akt-dependent ERG phosphorylation (P). This increases ERG binding to the Dll4 gene locus and recruitment of b-catenin. The

complex of ERG with NICD and b-catenin mediates Ang1-dependent Dll4/ Notch signalling in confluent EC.
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Retinas were washed twice for 15 min in washing buffer and twice for 10 min in
PBS, re-fixed in 4% paraformaldehyde for 15 min at room temperature and washed
once in PBS/0.1% Triton X-100 and then in PBS, before they were flat-mounted on
glass microscope slides using Fluoromount-G (Southern Biotech). Confocal
microscopy was carried out on Leica TCS SP5 and Carl Zeiss LSM780 confocal
microscopes.

Mouse retina analysis and quantification. Retinal vasculature Z-stack images
were analysed with Volocity software (PerkinElmer). For Dll4 or Jag1 staining,
quantification of the pixel intensity (arbitrary units) was performed using the
‘Find Objects’ tool of Volocity. Evaluation of vascular NICD staining was per-
formed by quantifying only the signal (pixel intensity, arbitrary units)
overlapping IB4-positive vascular structures using the ‘Find Objects’ tool. Each
pixel intensity value was normalized to isolectin B4 area (mm2). The data are
presented as the ratio between the pixel intensity and isolectin B4 area.

Cell culture. Primary HUVEC were collected from umbilical cords by standard
procedures in strict accordance with established guidelines and cultured in
supplemented M199 media, as previously described21. Human ERG expression was
inhibited using 20 nM siRNA against ERG exon 6 (Qiagen; 50-CAGATCCTACG
CTATGGAGTA-30) or a second siRNA (#2) targeting exon 7 (Invitrogen; 50-ACT
CTCCACGGTTAATGCATGCTAG-30) of the ERG locus, both denoted as siERG
in the text. In parallel, an AllStars Negative Control siRNA (Qiagen) was used,
which are denoted as siCtrl. For rescue experiments, HUVEC were transfected with
control or ERG siRNA (20 nM). After 6 h, the media was replaced and HUVEC
were transfected with pcDNA3.1 empty vector (used as a control) or pcDNA-ERG
expression plasmid using Viromer Yellow Transfection Reagent (Lipocalix). Cells
were collected after 18 h and RNA extracted (Qiagen).

Pharmacological/growth factor in vitro cell treatments. HUVEC were serum
starved in M199 containing 1% BSA for 6 h and were stimulated with 250 ng ml� 1

human modified Ang1 (kindly provided by Regeneron Pharmaceuticals, Inc.)
unless specified in the figure legends. In some experiments, cells were pre-treated
in the presence of 20mM LY294002 (Cell Signaling Technology), or 8 mM Akt
inhibitor IV (Calbiochem) for 30 min.

Dll4 stimulation of endothelial cells. Lyophilized recombinant human Dll4
(R&D Systems) was reconstituted at 100 mg ml� 1 in PBS containing 0.1% BSA. For
stimulation of cultured endothelial cells, Dll4 was immobilized by coating culture
dishes with 500 ng ml� 1 Dll4 in PBS for 1 h at room temperature or overnight
at 4 �C.

Isolation of mouse lung endothelial cells. Primary mouse endothelial cells were
isolated from the lungs of control Ergfl/þ and ErgcEC-het mice. Lungs were minced
using GentleMACS C tubes and GentleMACS Dissociator (Miltenyi Biotec),
digested with 0.1% collagenase type I (Invitrogen, UK), and sieved through a
70mm-pore cell strainer (BD Falcon). EC were selected by magnetic immuno-
sorting (Dynabeads; Invitrogen) with a negative sort for FcgRII/III receptor-posi-
tive macrophages and a positive sort for ICAM-2-positive endothelial cells. Cells
were cultured in EGM-2 media (Lonza), in flasks pre-coated with a mixture of 0.1%
gelatin (Sigma), PureCol (Invitrogen) and human plasma fibronectin (Chemicon).

Real-time polymerase chain reaction. RNA extraction from mouse tissues,
primary lung EC and HUVEC was carried out using the RNeasy kit (Qiagen). First
strand cDNA synthesis was carried out using Superscript III Reverse Transcriptase
(Invitrogen). Quantitative real-time PCR was performed using PerfeCTa SYBR
Green Fastmix (Quanta Biosciences) on a Bio-Rad CFX96 system. Gene expression
values were normalized to GAPDH expression (human) or HPRT (mouse). See
Supplementary Table 1 for list of oligonucleotides used in this study.

Immunoblotting analysis. Whole cell protein lysates were prepared from HUVEC
using CelLytic reagent (Sigma). Immunoblotting of cell lysates was performed
according to standard conditions. Immunoblots were labelled with the following
primary antibodies: anti-Akt (11E7) (4685, 1:1,000, Cell Signaling Technology),
anti-phospho (S473)-Akt (9271, 1:1,000, Cell Signaling Technology), anti-ERG
(sc353, 1:500, Santa Cruz Biotechnology), anti-ERG (ab133264, 1:1,000, Abcam),
anti-Dll4 (1:500, R&D systems), anti-GAPDH (MAB374, 1:10,000, Millipore),
anti-Jag1 (sc-6011, 1:1,000, Santa Cruz Biotechnology), anti-NICD/cleaved Notch1
(Val1744) (2421, 1:500, Cell Signaling), anti-Tie2 (D9D10) (7473, 1:1,000, Cell
Signaling). Primary antibodies were detected using fluorescently labelled secondary
antibodies: goat anti-rabbit IgG DyLight 680 and goat anti-mouse IgG Dylight 800
(Thermo Scientific). Detection and quantification of fluorescence intensity were
performed using an Odyssey CLx imaging system (LI-COR Biosciences, Lincoln)
and Odyssey 2.1 software. In some instances, HRP-conjugated secondary
antibodies were used for chemiluminescence detection and protein levels were
quantified by densitometry and normalized against loading controls. See
Supplementary Fig. 10 for the uncropped immunoblots.

Immunoprecipitations. Confluent HUVEC were collected in RIPA lysis buffer
(20 mM Tris-HCl pH 7.5, 150 mM NaCl and 0.5% Triton X-100) supplemented
with Phenylmethanesulfonyl Fluoride and Protease inhibitor cocktail (Sigma).
Either 2 mg ERG rabbit polyclonal antibody (H-95; sc-28680, Santa Cruz
Biotechnology) or negative control rabbit IgG in buffer (#7074; Millipore, UK) was
incubated with protein A sepharose beads (Sigma, UK) on an end-to-end rotator
for 2 h at 4 �C. The antibody-protein A sepharose complexes were then incubated
with pre-cleared cellular lysates (800 mg) for at least 2.5 h or overnight at 4 �C. The
immuno-complexes were detected by western blot with goat anti-ERG (1:500,
Santa Cruz), mouse anti-b-catenin (clone 17, 610153, 1:200, BD Bioscience) and
rabbit anti-NICD (Cleaved Notch1 (Val1744) Antibody, 2421, Cell Signaling)
antibodies. Primary antibodies were detected using HRP-conjugated secondary
antibodies and chemiluminescence detection or using fluorescently labelled
secondary antibodies. Fluorescence intensity detection was performed using an
Odyssey CLx imaging system.

Immunofluorescence analysis of HUVEC. HUVEC for immunofluorescence and
PLA were fixed with 4% paraformaldehyde for 15 min and permeabilized for 3 min
with 0.5% Triton X-100 in PBS before blocking with 3% BSA for 1 h. For
immunofluorescence, cells were incubated with the following primary antibodies:
mouse anti-ERG (sc-376293, 1:200, Santa Cruz) and rabbit anti-phospho-Tie2
(Y992) (AF2720, 1:500, R&D systems). Secondary antibodies used were anti-mouse
AF 488 and anti-rabbit Texas Red (all from Invitrogen). Nuclei were visualized
using DAPI. PLA was performed according to the manufacturer’s instructions
using the Duolink In Situ Orange Kit Mouse/Rabbit (Sigma) and the following
primary antibodies: rabbit-anti ERG (ab133264, 1:500, Abcam), mouse anti-b-
catenin (clone 17, 610153, BD) and mouse anti-phosphoserine antibody (clone
PSR-45, P5747, Sigma). Nuclei were visualized using DAPI. Confocal microscopy
was carried out on a Carl Zeiss LSM780. Images were analysed with ImageJ (NIH)
and Volocity (Version 6.3, PerkinElmer).

Plasmids. A 1 kb region, including region R1 used for ChIP-qPCR, of the Dll4
promoter proximal to the transcription initiation site was PCR amplified from
human genomic DNA and cloned into the pGL4.10[luc2] Luciferase Reporter
Vector (Promega); see Supplementary Table 1 for oligonucleotide sequences.
The human Jag1 promoter (� 3,736 to þ 58 bp relative to TSS; including regions
R1 and R2 used for ChIP-qPCR) was kindly provided by Christopher Hughes
(University of California) and cloned into a pGL3 Luciferase Reporter Vector.
Human ERG cDNA (NCBI Accession NM_182918) was cloned into the
mammalian expression vector pcDNA3.1 (Invitrogen). The RBPJ TP-1 luciferase
Notch-reporter was from U. Zimber-Strobl, Helmholtz Zentrum München.
pGL4.10[luc2] (Promega, Madison, USA) Firefly Luciferase empty vector, lacking
a promoter sequence, was used as a control. pGL4.73[hRluc/SV40] (Promega)
Renilla luciferase vector was used as an internal control in the luciferase assay.

Reporter assays. For siRNA experiments, cells were transfected with 20 nM ERG
or control siRNAs for 24 h, followed by transfection with luciferase reporter
plasmids for an additional 24 h. For experiments in which Notch activity was
induced by Dll4, transfected HUVEC were replated onto Dll4-coated dishes 6 h
after plasmid transfections. Luciferase activity was measured after an additional
24 h using the Dual-Luciferase Reporter Assay System (Promega) and a Synergy
HT microplate reader. Luciferase reporter activity was normalized to the internal
Renilla luciferase control and is expressed relative to control treatment.

ChIP-qPCR. ChIP was performed using the ChIP-IT express kit (Active Motif).
Briefly, HUVEC transfected with ERG or control siRNA, and/or treated with Ang1,
were crosslinked for 10 min with formaldehyde (to a final concentration of 1%).
Chromatin was sheared for five cycles (30 s on, 30 s off) using a Bioruptor
UCD-200 ultrasound sonicator (Diagenode), resulting in DNA fragments of
200–1,000 bp in size. Chromatin was immunoprecipitated with 2 mg antibody to
ERG (sc-354X, Santa Cruz Biotechnology), or negative control rabbit IgG (PP64,
Chemicon, Millipore). Immunoprecipitated DNA was then used as template for
quantitative PCR using primers specific for genomic loci. Oligonucleotide
sequences are listed in Supplementary Table 1.

Bioinformatic analysis. ERG transcription factor motif discovery was performed
using the JASPAR database (http://jaspar.genereg.net). Genome-wide ChIP-Seq
data for H3K27ac, H3K4me1 and H3K4me3 histone modifications, DNase I
hypersensitivity, RNA polymerase II occupancy in HUVEC and phyloP sequence
conservation (plotted as conservation scores between � 5 and þ 5) based on
Multiz alignment analysis of 100 vertebrate species were obtained from the Broad
Institute and publicly available from the ENCODE Consortium. Tracks were
visualized using the UCSC Genome Browser database (https://genome.ucsc.edu/
index.html).

Statistical analysis. No statistical methods were used to predetermine the sample
size. No randomization was applied as all mice used were genetically defined,
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inbred mice. No blinding was used and no animals were excluded from analysis.
Sample sizes were selected on the basis of previous experiments. All results
presented in this study are representative of at least three independent experiments
to guarantee reproducibility of findings. ‘n’ represents the number of biological
replicates unless otherwise stated. Data are shown as the mean±s.e.m. Statistical
significance was determined by two-tailed Student’s t test, using Prism 6.0
(Graph Pad). Differences were considered statistically significant with a
P valueo0.05.

Data availability. The data that support the findings of this study are available
within the article, its Supplementary Information files and from the corresponding
author on reasonable request.
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