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Abstract
In recent years, deep learning in healthcare applications has attracted considerable attention from research community. They 
are deployed on powerful cloud infrastructures to process big health data. However, privacy issue arises when sensitive data 
are offloaded to the remote cloud. In this paper, we focus on pervasive health monitoring applications that allow anywhere 
and anytime monitoring of patients, such as heart diseases diagnosis, sleep apnea detection, and more recently, early detec-
tion of Covid-19. As pervasive health monitoring applications generally operate on constrained client-side environment, 
it is important to take into consideration these constraints when designing privacy-preserving solutions. This paper aims 
therefore to review the adequacy of existing privacy-preserving solutions for deep learning in pervasive health monitoring 
environment. To this end, we identify the privacy-preserving learning scenarios and their corresponding tasks and require-
ments. Furthermore, we define the evaluation criteria of the reviewed solutions, we discuss them, and highlight open issues 
for future research.
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1 Introduction

Deep learning (DL) for healthcare is nowadays one of 
the most attractive research topics, which covers different 
applications related to electronic health records, wearable 
computing, and genomics analysis [1]. Pervasive health 
monitoring (PHM) is one of the most interesting healthcare 
applications, which allow anywhere and anytime monitoring 
of patients. With the increasing technological advancements 

in sensing platforms and rapid development of machine 
and deep learning, more interesting PHM applications are 
deployed. In fact, by combining wearables and sensing plat-
forms with the power of deep learning, PHM applications 
are able to target various health concerns and diseases like 
pneumonia, sleep apnea, heart health assessment, or even 
the nowadays worldwide pandemic Covid-19 [2–9]. The 
Defense Threat Reduction Agency and Defense Innovation 
Unit of US Department of Defense, for instance, is working 
since a few years on RATE (Rapid Analysis of Threat Expo-
sure) technology [2]. It consists of non-invasive wearable 
devices that measure key biomarkers, and process them on 
the cloud with the help of artificial intelligence and machine 
learning for early detection of infections. RATE technology 
was tested on different infections such as pneumonia, SARS, 
and more recently Covid-19.

As in many domains, deep learning capabilities in the 
healthcare domain are often improved by leveraging pow-
erful cloud infrastructures [10], especially in case of PHM 
applications. In fact, PHM operates between the client the 
remote cloud server. It generally relies on constrained cli-
ent devices like sensors and mobile devices, as well as on 
different communication networks between the client and 
the cloud, some of which may be unreliable or costly. Such 
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a technological configuration potentially represents a con-
strained client-side environment. Wearables and mobile 
devices are resource-constrained, from the hardware point 
of view, and because of the daily usage of multiple apps 
that could quickly deplete the mobile device’s battery. Such 
potential high load on the mobile device should not disrupt 
their daily usage by the user, nor the functionality of the 
PHM application.

However, leveraging the clouds comes at the expense of 
privacy when sensitive data is offloaded to train deep learn-
ing models or requesting inferences [10]. In the context of 
PHM, designing privacy-preserving solutions is impacted by 
the constrained client-side environment, including devices 
requirements, communication network impediments, as well 
as effectiveness requirements of the PHM application.

• Related work

Much efforts were devoted to design efficient solutions 
for privacy-preserving deep learning. Zhang et  al. [11] 
reviewed some solutions, particularly those related to col-
laborative learning, and considered the two key phases of 
deep learning, i.e., training and inference. Chang and Li 
[12] focused on privacy issues during training and infer-
ence phases, including attacks on trained models, along 
with their corresponding threats and countermeasures. More 
recently, Tanuwidjaja et al. [13] discussed a number of pri-
vacy-preserving solutions based on three concepts, namely, 
homomorphic encryption, multiparty computation and dif-
ferential privacy. The survey also presented a comparison 
of the reviewed solutions under each concept. Similarly, 
Riazi et al. [14] reviewed privacy-preserving solutions for 
deep learning, but focused on cryptographic methodologies. 
The review also presented solutions description and perfor-
mance comparisons, along with main attacks on deep neural 
networks (DNNs). Boulemtafes et al. [10] also presented a 
recent review of existing privacy-preserving solutions for 
deep learning along with their evaluation results, and high-
lighted open research along with suggested recommenda-
tions. However, the above-mentioned surveys only addressed 
the privacy issue in a general context, which do not consider 
specific target environment constraints.

Zheng et al. [15] focused on the IoT context, and pre-
sented a taxonomy of different privacy-preserving machine 
learning approaches for training and inference phases, 
then discussed the limitations of applying them on IoT 
end-devices. In the same work, the authors introduced a 
privacy-preserving inference solution based on obfusca-
tion. The authors further detailed their solution in [16]. 
However, the review does not give a detailed description 
of existing solutions, but only presents a brief summary of 
limitations and drawbacks of classes of privacy-preserv-
ing solutions. Moreover, the limitations are not evaluated 

based on a set of criteria. The review also does not differ-
entiate between training local and remote models.

Differently from related work, and particularly from 
[15], this study:

• Focuses on:

◦ Privacy-preserving deep learning, including infer-
ence and training of both local and remote models,

◦ PHM applications, i.e., it considers PHM architec-
ture and constraints,

◦ Particularly constrained client-side environment at 
IoT and edge computing level.

• Identifies the privacy-requiring scenarios and con-
straints of the target context, and defines solutions 
requirements.

• Reviews the adequacy of each solution with the target 
context, using the set of defined evaluation criteria. 
Reviewed solutions include the approach proposed in 
[15, 16].

• Discusses privacy-preserving approaches for deep 
learning with respect to key technological concepts.

• Outlines open research challenges.

To this end, privacy-requiring scenarios are defined, and 
a number of recent solutions for privacy-preserving deep 
learning are evaluated against criteria derived from envi-
ronment constraints and requirements of target solution. 
More specifically, we make the following contributions:

(1) We present a generic architecture for deep learning-
based PHM, i.e., the main components and their 
roles, as well as local and remote analysis scenarios.

(2) For each scenario, we identify the required corre-
sponding tasks.

For example, in order to perform local analysis, the 
local model needs first to be trained either individually by 
a single client or collaboratively among different clients. 
Once trained, the model can be used for inference at the 
client level.

(3) For each task, we identify the privacy properties 
that need to be ensured.

(4) We present the target environment constraints, and 
identify its corresponding requirements.

(5) From the identified environment requirements, 
we define a set of criteria in order to evaluate 
the adequacy of reviewed solutions to the target 
environment.

(6) We classify the reviewed solutions according to key 
concepts, and evaluate them against defined criteria.

(7) We discuss the evaluation study, the drawbacks of 
solutions, and the impact of introducing privacy on 
deep learning-based PHM applications.
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(8) We outline for each key concept, a set of recommen-
dations for future research directions to address the identi-
fied limitations.

The remainder of this paper is organized as follows: 
Sect. 3.2 defines generic PHM architecture including com-
ponents and process flow. Section 4 identifies PHM sce-
narios requiring privacy preservation. Section 4.1 studies the 
environment constraints and requirements of solution, and 
defines a set of related evaluation criteria. Section 5 evalu-
ates and discusses the solutions. Section 6 presents open 
challenges and outlines some potential future research direc-
tions. Finally, Sect. 7 concludes the paper.

2  A generic architecture for DL‑based PHM

PHM is one of the main applications of pervasive health-
care, which provides preventive healthcare and deals with 
emergencies using ubiquitous computing technology. PHM 
allows anywhere and anytime monitoring, and generally 
relies on a three-tier architecture comprising (i) sensors or 
medical devices, (ii) a base station, and (iii) servers [17–20].

We propose and describe below a generic architecture, 
and a process flow of a deep-learning-based PHM.

2.1  Components

As shown in Fig. 1, the PHM architecture is composed of 
the three following main components:

• Sensors They capture data such as pulse rate and body 
temperature, and perform preprocessing and basic pro-
cessing. They include wearable and ambient sensors.

• Base station It gathers data from sensors, performs pre-
processing and real-time analysis, displays results, issues 
alerts, and transmits data/results to the remote servers, 
and any relevant system’s actor such as doctors or family. 
It could be a tablet or a raspberry, or a mobility support 
device like the user mobile phone.

• Remote servers They perform deeper and more powerful 
analysis, and share the results with the base station and/
or other system’s actors.

2.2  Process flow

Figure 1 also shows the following generic process flow of 
information.

• At sensors level:

1. Data is captured, and preprocessed.
  Basic processing can also be performed (such as test 

measurements against thresholds).
2. Data is transmitted to the base station.

• At base station level:

3. Data is preprocessed,
  then locally analyzed for real-time/emergency infer-

ence results (such as fall detection, or dangerous sleep 
postures).

4. Data/results are transmitted to the remote servers, and 
any relevant system’s actor such as doctors.

Remote server(s)

User
Sensors

Base
station

...1

2
3

4

5

6 Family

Doctors

Health
institutions

4

6

Fig. 1  DL-based PHM components and process flow
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• At remote servers level:

5. A more deeper analysis is performed using deep learn-
ing (such as symptoms detection, potential early disease 
prediction, or health status prediction).

6. Results are shared with the user (base station) and/or 
other actors of the system.

3  PHM scenarios and privacy requirements

As described in the process flow, two main deep-learning-
based scenarios can be distinguished in PHM applications:

(i) Local analysis, performed by the base station, in order 
to provide real-time and emergency results.

(ii) Remote analysis, performed by remote servers, in 
order to conduct more complex analysis.

3.1  Local DL‑based analysis scenario

Before performing analysis, a local deep learning model 
needs first to be trained, which can be done:

(i) Individually, i.e., by a single client and with the 
help of the remote servers, especially if the client is 
resource-constrained.

(ii) Collaboratively, where multiple participants jointly 
take part in the deep learning process. Collaborative 
learning can be achieved directly between the par-
ticipants, or with the help of the remote servers for 
coordination and aggregation of updates.

Once trained, the model can be used locally by each client 
in order to get inferences. Therefore, only the training phase 
requires privacy-preservation.

• Privacy requirements

During individual training, private training data of the 
client, and maybe the model need to be protected from the 
remote servers.

During collaborative training, private data of each par-
ticipant need to be protected from the remote servers, as 
well as from the other participants. Also, the model might 
also need to be protected from the remote server. Once the 
trained model is distributed to the participants, original pri-
vate training data of each participant should not be leaked 
by others..

3.2  Remote DL‑based analysis scenario

Before deploying a model into production, i.e., on the remote 
server, it needs to be trained by the different participants in 
order to take advantage of the whole shared data.

Once trained, the model can be used remotely by clients 
in order to get inferences. Therefore, both training and infer-
ence phases require to preserve privacy.

• Privacy requirements

During the training phase, private training data of the 
participants need to be protected from the remote server, 
while the model might also need to be protected from the 
participants.

When the trained model is used by clients to get infer-
ences, the model might need to be protected from the clients, 
while their private data and maybe inferences should also be 
protected from the remote server hosting the model.

4  PHM constraints, solution requirements 
and evaluation criteria

4.1  PHM environment

In the PHM environment, we can find three constrained ele-
ments, namely, the client-side devices, the input data, and 
the communication network.

• Client-side devices Sensors and mobile devices have 
limited resources, in terms of both power and computa-
tion. Sensors are generally considered as low-resourceful 
from a hardware perspective. On the other hand, mobile 
devices, particularly smartphones, are nowadays gener-
ally powerful, however, they run different daily appli-
cations and are often continuously powered on, which 
might constraint them in terms of energy. Also, any back-
ground task should be performed in transparency and not 
affect the performances of other applications.

• Input data In a healthcare context, raw data can have 
different modalities like voice, images, texts, signals, 
and so on. It is therefore important to consider this het-
erogeneity and multi-modality of data when designing a 
privacy-preserving solution, especially if multiple sensi-
tive information need to be protected. As shown in [21], 
the obfuscation technique, which is used to protect input 
data, needs more investigation in case the sensitive data 
to be protected are collected from multiple sensors.

• Communication network Different communication 
networks are used in the PHM environment such as 
cellular, wifi, bluetooth, …etc. At the client-side, cel-
lular networks are generally used in order to communi-
cate with the cloud. Depending on the client’s mobile 
internet plan, a large amount of data continuously 
exchanged, can be costly to the client. It can also lead 
to a quick consumption of the available data, which 
disconnects the client from the cloud. Moreover, as 

288 Health and Technology (2022) 12:285–304



1 3

disconnections can occur in current networks [22], 
unreliability of the client-side connectivity needs to 
be considered.

4.2  Privacy‑preserving solutions requirements

By considering the needs of the healthcare domain, and 
PHM environment constraints, a number of requirements 
need to be considered for the design of privacy-preserving 
solutions for DL-based PHM.

• Effectiveness Because people’s health is crucial, the 
accuracy of results in health applications (such as the 
ability to detect the symptoms of a disease) is a very 
important criteria of effectiveness. For this reason, it 
is important to ensure that integrating privacy preserv-
ing into deep learning analysis of health data (including 
multi-modal data), still keeps high accuracy, i.e., similar 
or close to non-privacy-preserving models.

• Efficiency Due to the previously described PHM envi-
ronment constraints, it is important to ensure low com-
munication and computation overheads at the client-side, 
as well as the support of dropouts and disconnections 
of clients. Server-side overhead is not considered since 
servers are supposed to have all the required resources.

• Privacy As described in the privacy-preserving deep 
learning scenarios, different information need to be pro-
tected in PHM applications. It is important to protect the 
users sensitive input data of training and inference from 
both the server (cloud) and other participants. Intermedi-
ate results produced during the execution of the model 
also need to be protected as they can leak some sensitive 
information. Depending on the target application and 
users privacy concerns, the resulting inferences might 
also need to be hidden from the cloud. Besides, the pro-
viders of deep learning models may also require that their 
models are kept private.

  In addition to the main above requirements, the follow-
ing features are needed:

• Support of any deep learning architecture, including:

◦ Any model, or at least popular ones used in health-
care like MLP, CNN, and LSTM.

◦ Any activation function.
◦ Any number of layers (depth of the model), particu-

larly knowing that some existing privacy-preserving 
solutions were shown to be weak under very deep 
models [23].

• Support of continuously trained models, i.e., models that 
are retrained periodically in order to enhance their per-
formance [24, 25].

4.3  Evaluation criteria

In Table 1, we define a set of criteria to be considered to 
evaluate the adequacy of solutions to PHM requirements, 
including the three main tasks: privacy-preserving training 
of local models, privacy-preserving training of remote mod-
els, and privacy-preserving remote inference.

We carry out the evaluation by assuming an honest-but-
curious (HbC) adversary model, where the parties, including 
the cloud and participants, are honest, i.e., they follow the 
protocol, but at the same time, they are curious, i.e., they can 
try to deduce private information within the limits of what 
the protocol allows [26]. A more honest adversary model can 
be considered as a limitation, while supporting more curious 
or less-honest parties can be considered as an advantage.

5  Existing privacy‑preserving solutions vs 
PHM environment

In this section, we present a set of recent solutions covering 
the above three privacy-preserving tasks, including training 
a local model, training a remote model, and remote inference 
i.e., requesting inference through a remote model.

We evaluate the solutions against the defined criteria 
for adequacy to PHM requirements (see Table 1). Unless 
mentioned, the reviewed solutions adopt the HbC adversary 
model.

Noting that the effectiveness results of the solutions are 
mainly taken from their respective published papers, and 
they are based on different datasets and experimentation 
settings. Therefore, these results cannot serve as a base for 
a fair comparison between the reviewed solutions or key 
concepts, and thus they are only reported in our survey in 
order to identify the most likely causes of accuracy loss. 
However, an observed loss does not necessarily imply a low 
accuracy. As mentioned above, a high accuracy depends on 
many parameters, including the evaluation settings.

5.1  Privacy‑preserving training of a local model

Table 2 summarizes the main characteristics of the reviewed 
privacy-preserving solutions for training a local model, 
which are classified according to four main technologies, 
representing the key base concepts that are used by these 
solutions, namely, homomorphic encryption (HE), partial 
sharing (i.e., share only a fraction of locally learned param-
eters for global aggregation on the cloud), transformation 
of sensitive information, and shared model (i.e., a model is 
pre-trained by the cloud then is fine-tuned by the clients).

Table 3 evaluates the solutions against the criteria defined 
in Sect. 4.3. Although these solutions are designed for train-
ing remote models, some of them can be used to train a local 
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model, but with some privacy gaps, as shown in the Table 3. 
The table cells, which are highlighted in gray, show the main 
criteria that are not fully satisfied, along with their limita-
tions that are underlined.

• Discussion

Homomorphic encryption (HE) HE-based solutions are 
characterized by high overhead at the client-side, especially 
those based on fully HE. Moreover, the solutions relying on 
local training at each round increase the overhead in terms 
of both computation and communication. Besides, HE-based 
solutions for collaborative learning can preserve high accu-
racy, as well as individual learning, if polynomial approxi-
mation is not involved [42]. Client dropout impact on the 
training round process is generally low, but may increase in 
case of solutions that require coordination or a threshold of 
participants to update the global model at each round. As for 
privacy, deep learning network structure needs to be shared 
with the cloud in individual learning solutions, however, 
training data are protected through encryption, and model 
parameters are ensured to be protected through encrypting 
shared weights. In collaborative learning solutions, training 
data and network structure do not need to be shared with 
the cloud. The model parameters are protected by encryp-
tion, and if more security is needed perturbation is added. 
However, perturbation leads to a trade-off between accuracy 
and privacy. In general, HE-based solutions do not make 
restrictions on deep model or activation function, except for 
solutions that require polynomial approximation. However, 
an adaptation of the model to the HE domain is needed as 
explained in [43].

Partial sharing (PS) PS-based solutions are characterized by 
high client-side overhead due to local training. They also 
make a trade-off between accuracy and privacy, which is 
controlled by the fraction of parameters shared and the level 
of perturbation. Besides, the impact of a participant’s drop-
out on the training round process is low, and no restrictions 
are made on the deep model and activation functions. As 
for privacy, training data and network structure do not need 
to be shared, while only a fraction of local parameters is 
revealed to the cloud. However, the computed global model 
gradients remain in clear, and thus are not protected.

Transformation Transformation-based solutions can reach 
high accuracy but they are characterized by high overhead 
due to local training, and lead to a trade-off between accu-
racy and privacy due to transformations or perturbations 
that are applied on data or objective functions [44]. In fact, 
applying more transformations allows for better data protec-
tion, but leads to less accuracy. Moreover, in such solutions, Ta
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the model generally needs to be shared with the cloud. Not-
ing that functional mechanism used in [34] might need some 
adaptations of the deep model, while the technique in [35] 
uses negative value vectors to make the noise cancelable, 
which makes the impact of a participant’s dropout high, as 
it prevents global gradient from being revealed.

Shared model Although the solution based on shared model 
concept can reach high accuracy, it requires first training a 
shared model at the cloud, using a set of non-private train-
ing data (such as voluntarily shared data). Moreover, a cli-
ent needs sufficient local samples in order to personalize its 
local model, which leads to a high overhead in terms of com-
putation. Besides, the dropout of the client has no impact on 
the training process once the shared model is received, since 
it is fine-tuned locally and independently from the cloud. As 
for privacy, the training data are not shared, and reversing 
the shared model does not reveal any private information. 
However, structure of the shared model and its parameters 
are hosted and trained at the cloud, and only personalized 
trained parameters are protected.

Key concepts comparison By going through the reviewed 
solutions, we summarize in Table 4 the key concepts ade-
quacy with the PHM environment mainly with respect to 
effectiveness, client-side efficiency and privacy guarantees. 
The main potential limitations are underlined in the table.

As for individual learning, both HE and SM concepts 
require sharing the model structure, although it is not neces-
sarily considered as a privacy issue. In case of relatively small 
deep networks, SM might be the most interesting concept, as 
it may offer the best effectiveness, provided that enough local 

training data is available. More deeper networks may not be 
supported by SM because of the required local training per-
formed on constrained client devices. On the other hand, HE-
based reviewed solutions show good performances, although 
accuracy loss depends on polynomial approximation of acti-
vation functions. Besides, HE-based solutions still need to 
address the challenge of low client-side overhead.

Regarding collaborative learning, the different reviewed 
key concepts face challenges in terms of trade-off between 
accuracy and privacy due to the perturbation impact. 
Moreover, achieving low client-side overhead remains 
challenging with the required local training, unless deep 
networks are enough small to be supported by the client 
devices. Besides, among the different reviewed solutions, 
only those based on HE could successfully protect the 
local model.

5.2  Privacy‑preserving training of a remote model

Table 5 summarizes the main characteristics of the reviewed 
privacy-preserving solutions for training a remote model, 
which are classified according to four main technologies, 
representing the key base concepts that are used by these 
solutions, namely, homomorphic encryption (HE), partial 
sharing, transformation of sensitive information, and model 
splitting between the client and the remote side.

Table 6 evaluates the above solutions against the criteria 
defined in Sect. 4.3. Although these solutions are designed 
for training local models, some of them can be however used 
to train a remote model, but with some privacy gaps, as 
shown in Table 6. The table cells, which are highlighted in 
gray, show the main criteria that are not fully satisfied, along 
with their limitations that are underlined.

Table 2  Privacy-preserving solutions for training a local model

Key concept Ref Main characteristics

Homomorphic Encryption Q. Zhang et al. [27] Fully BGV HE | Taylor theorem polynomial approximation
Bu et al. [28] Fully BGV HE | Maclaulin formula polynomial approximation
Phong et al. [29] Partially additive LWE-based and Paillier HE | TLS/SSL secure channels
X. Zhang et al. [30] Partially lightweight El Gamal HE | Shamir’s threshold secret sharing | Local 

differential privacy
Hao et al. [31] Partially additive HE | Differential privacy

Partial sharing Shokri and Shmatikov [32] Partial sharing of parameters | Laplace differential privacy | Sparse vector technique
Liu et al. [33] Partial sharing of parameters

Transformation Zhao et al. [34] Functional exponential mechanism | Polynomial approximation for objective function | 
Cryptography and hashing against eavesdrop attacks

Hartmann and West [35] Cancelable noise (differential privacy) | Anonymization network (such as Tor)
Fu et al. [36] Mixup data augmentation

Shared model Servia-Rodriguez et al. [37] Start from the weights and bias of the shared model | (Optional) Differential privacy 
for training the shared model
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Table 3  Solutions for training a local model vs evaluation criteria

ind Individual training, col Collaborative Accuracy training mainly on the basis of authors evaluations, SAN can reach Same As Non-private 
model, CAN can reach Close to/Almost Non-private model, RR Reconstruction Rate, MRE Mean Relative Error, OVC overhead is relative to the 
non-private model, DIT [ col] high if the training round stops for all participants, none, if the training round is not affected, [ ind] high if the 
participant training process stops, none if the process does not stop, ADV Adversary model, AFR Activation Function Restrictions, MOR Model 
Restrictions, APX Approximated
(1) Due to polynomial approximation.
(2) Trade-off with privacy
(3) Provided that a shared model can be trained at the cloud, and that clients have enough samples to personalize their local models
(4) Due to Homomorphic encryption.
(5) Due to iterative interaction between client and server
(6) Due to local training
(7)Training round only needs local data to be transferred
(8) However, user’s local training is not considered in the global model until transferred
(9) Depends on the server round policy, i.e., wait for late users? Indefinitely, or for a certain period, …etc.
(10) Trade-off with accuracy
(11) Global gradients are not protected
(12) Structure shared
* Privacy guarantees and limitations relative to indirect leakage are distinguished between square brackets []

Ref Effectiveness Efficiency Privacy guarantees and limitations Notes

Accuracy OVC DIT TD* LM

[27] ind Can be high but with 
loss(1)

High(4)(5) None(7) TD [and weights] encrypted weights encrypted 
but (12)

AFR: APX

[28] ind Can be high but with 
loss(1)

High(4)(5) None(7) TD [and weights] encrypted weights encrypted 
but (12)

AFR: APX

[29] col SAN High(4)(5)(6) None(8) TD not shared [and local shared 
weights encrypted] but weak 
against attacks between 
participants [13, 38]

not shared ADV: honest participants

[30] col CAN
but (2)

High(4)(5)(6) High TD not shared [and shared 
gradients perturbed and 
encrypted, but (10)]

not shared -

[31] col Quite high
but (2)

High(4)(5)(6) None(8) TD not shared [and shared 
gradients perturbed and 
encrypted, but (10)]

not shared ADV: tolerate collusion of 
server with multiple users

[32] col CAN but (2)
and criticized in [29]

High(5)(6) None(8) TD not shared [and only fraction 
of local parameters shared 
perturbed, but (10)

not shared
but (11) < might 

be a privacy 
concern if server 
is not trusted

ADV: trusted server

[33] col RR ~ 90% but (2) High(5)(6) Round-robin: 
High

Asynchronous: 
None(8)

TD not shared [and only fraction 
of local parameters shared, 
but (10)]

not shared, but (11) - can be concerned by the 
privacy critics reported in 
[29, 39–41]

[34] col MRE High
but (2)

High(5)(6) None(8) TD not shared [and objective 
functions (thus gradients) 
perturbed, but (10)]

shared > might be a 
privacy concern 
if server is not 
honest

ADV: honest server,
active & passive participants
AFR/MOR: may require 

adaptations
[35] col N/A High(5)(6) High TD not shared [and local 

gradients perturbed with 
cancelable noise]

shared ADV: malicious server,
honest participants >  = 2
- anonymization network 

required
[36] col Up to High

but (2)
High(5)(6) [None(8) | High] 

(9)
TD not shared [and local 

parameters obtained from 
mixup input data, but (10)]

shared -

[37] ind Up to High
but (3)

High(6) None TD not shared
 + resistant to model inversion

(12) -
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• Discussion

Homomorphic encryption (HE) HE-based solutions are char-
acterized by high overhead at the client-side, especially if 
fully HE is employed. Besides, they provide high accuracy 
when activation functions are computed without polynomial 
approximation [42]. However, this requires the use of alter-
native techniques like outsourcing the computation to the 
client, which leads to more client-side overhead. Moreover, 
if the outsourcing method is used, the training round that 
is related to a dropped client is stopped until it reconnects. 
As for privacy, training data and intermediate results are 
protected through encryption, while the model is not shared 
with participants except for its activation functions, due to 
the outsourcing method. In general, HE-based solutions do 
not make restrictions on deep model or activation function. 
However, an adaptation of the model to the HE domain is 
needed as explained in [43].

Partial sharing (PS) PS-based solutions are characterized by 
high client-side overhead due to local training. They also 
make a trade-off between accuracy and privacy, which is 
controlled by the fraction of shared parameters and the level 
of perturbation. Besides, the impact of a participant’s drop-
out on the training round process is low, and no restrictions 
are made on the deep model and activation functions. As for 
privacy, only a fraction of local parameters is revealed to the 
cloud. However, the remote model needs to be shared with 
the participants.

Transformation Solutions based on transformations can 
reach high accuracy. However, they make a trade-off between 
privacy and accuracy due to the applied perturbations [44]. 
Moreover, solutions that rely on local training are character-
ized by high overhead at the client-side, and require to share 
the remote model with participants. As for the impact of a 
participant dropout, the solution [35] requires the feedback 
of all the participants in order to reveal the global gradient, 
which blocks the training round process.

Table 4  Comparison of key concepts for training a local model

HE Homomorphic encryption, PS Partial sharing, TRA  Transformation, SM Shared model, IND Individual learning COL Collaborative learning, 
Dropout impact—COL high, if the training round stops for all participants; none, if the training round is not affected, IND high, if the participant 
training process stops, none, if the process does not stop, trade-off between accuracy and privacy
a  in case the coordination or a threshold of participants and/or their transmitted information are required in the process at each round
b  in case of using perturbation against inter-participants protection

Key concept Learning Accuracy Client overhead Dropout impact Data privacy Local model privacy

HE IND—COL IND: loss
COL: trade-offa

high IND: none
COL: higha

IND: private
COL: trade-offb

IND: structure shared
COL: not shared

PS COL trade-off high none | higha tradeoff clear global gradients
TRA COL trade-off high none | higha tradeoff Model shared
SM IND depends on local 

training resources
high none private structure shared

Table 5  Privacy-preserving solutions for training a remote model

Key concept Ref Main characteristics

Homomorphic Encryption Q. Zhang et al. [45] Partially Paillier HE | Outsourcing non-linear computations to the client
Partial sharing Shokri and Shmatikov [32] Partial sharing of parameters | Laplace differential privacy | Sparse vector technique

Liu et al. [33] Partial sharing of parameters
Transformation Lyu et al. [46] Repeated Gompertz (RG) for data perturbation | Row-orthogonal random projection 

(RP) matrix for projecting high-dimensional data to lower dimension
Zhao et al. [34] Functional exponential mechanism | Polynomial approximation for objective function | 

Cryptography and hashing against eavesdrop attacks
Hartmann and West [35] Cancelable noise (differential privacy) | Anonymization network (such as Tor)
Fu et al. [36] Mixup data augmentation

Model splitting Yu et al. [47] 1st convolutional layer on local | Step-wise activation functions | CNN
Abuadbba et al. [48] Part of layers on local | differential privacy
Dong et al. [49] 1st layer on local | Dropping connections and activation outputs | Dropout and Dropconnect
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Table 6  Solutions for training a remote model vs evaluation criteria

Accuracy mainly on the basis of authors evaluations.
WLS Without Loss, CAN can reach Close to/Almost Non-private model, RR Reconstruction Rate, MRE Mean Relative Error, OVC overhead is 
relative to the non-private model, DIT high, if the training round stops for all participants, low if the training round stops for only the dropped 
participant, none if the training round is not affected, ADV Adversary model, AFR Activation Function Restrictions, MOR Model Restrictions
(1) No approximation is involved
(2) Trade-off with privacy
(3) Due to Homomorphic encryption
(4) Due to iterative interaction between client and server
(5) Due to local training
(6) Training round only needs local data to be transferred
(7) but user’s local training not considered in the global model until transferred
(8) Depends on the server round policy: wait for late users? Indefinitely, for a certain period, …
(9) Trade-off with accuracy
(10) After the local partition has been executed, and local output transferred
(11) If local output has not been transferred
(12) Trade-off between the privacy of the model an the privacy of data
* Privacy guarantees and limitations relative to indirect leakage are distinguished between square brackets []

Ref Effectiveness Efficiency Privacy guarantees and limitations Notes

Accuracy OVC DIT TD* RM

[45] WLS(1) High(3)(4) Low TD [and intermediate 
results] encrypted

Onlyactivation func-
tions shared

AFR/MOR: tested on DNN 
and CNN

[32] CAN
but (2) and criticized 

in[29]

High(4)(5) None(7) TD not shared [and 
only fraction of local 
parameters shared 
perturbed,but (9)]

shared ADV:trusted server

[33] RR ~ 90%, but (2) High(4)(5) Round-robin:High
Asynchronous: 

None(7)

TD not shared [and only 
fraction of local param-
eters shared,but (9)]

shared - can be concerned by the 
privacy critics reported 
in[29, 39–41]

[46]  < 5% loss & (2) & 
evaluated using a cus-
tom proposed model

Low communication
but computation 

needs evaluation

None(6) TD perturbed and 
projected to lower 
dimension,but (9)

not shared -

[34] MRE High
but (2)

High(4)(5) None(7) TD not shared [and objec-
tive functions (thus 
gradients) perturbed,but 
(9)]

shared ADV:honest server,
active & passive participants
AFR/MOR:may require 

adaptations
[35] N/A High(4)(5) High TD not shared [and local 

gradients perturbed 
with cancelable noise]

shared ADV: malicious server,
honest participants >  = 2
- anonymization network 

required
[36] Up to High

but (2)
High(4)(5) [None(7)|High](8) TD not shared [and local 

parameters obtained 
from mixup input 
data,but (9)]

shared -

[47] Up to Good
but (2)

Low None(10) |
Low(11)

TD not shared [and local 
output perturbed through 
step-wise local activation 
function,but (9)]

Only1stlayer shared ADV: supports malicious 
attacks

AFR:step-wise activation 
functions

[48] - With differential 
privacy (DP):(2)

- No DP: WLS

- With DP: low
- No DP:depends on 

local partition

None(10) |
Low(11)

- With DP: TD not 
shared, [and local out-
put perturbed,but (9)]

- No DP: TD not 
shared,but (12)

local-side layers shared
- No DP:(12)

MOR: 1-dimension CNN

[49] N/A Low None(10) |
Low(11)

Local outputs protected by 
droppingsbut criticized 
in [50]

Only1stlayer shared -
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Model splitting The client-side overhead, under the model 
splitting concept, depends on the local model partition 
depth and complexity. In [47], only the first convolutional 
layer is migrated to the client, which ensures a low client-
side overhead. The solution also ensures a low impact of 
a participant’s dropout on the training process. However, 
to preserve privacy, perturbation is applied on the local 
output, which makes a trade-off between accuracy and pri-
vacy. Model privacy is ensured partially, and depends on the 
model partition depth migrated to the client-side. Generally, 
model splitting solutions do not make restrictions on the 
deep model. However, activation functions in [47] require 
to be step-wise in order to perturb the client-side output and 
preserve privacy, while some approaches focus on specific 
models such as [48], which addressed 1-dimension CNN 
models.

Key concepts comparison By going through the reviewed 
solutions, we summarize in Table 7 the key concepts ade-
quacy with the PHM environment mainly with respect to 
effectiveness, client-side efficiency and privacy guaran-
tees. The main potential limitations are underlined in the 
table.

It is observed that HE-based reviewed solutions show 
the best overall performances among other concepts. In 
fact, HE solutions can meet most of the PHM require-
ments, except for the client-side overhead which is still 
challenging. Moreover, it is also observed that all con-
cepts require a trade-off between accuracy and privacy, 
except for HE that can ensure both high accuracy and pri-
vacy. However, if the perturbation introduced under TRA 
concept is cancelable, data privacy can also be ensured 
without comprising accuracy, but such solutions (under 
federated learning) suffer from a high client-side overhead 
due to local training. Besides, PS and TRA (under feder-
ated learning) concepts do not consider model privacy. 

On the other hand, HE concept only needs to share the 
used activation functions, while MS solutions require to 
migrate a part of the model layers to client, which may 
incur in some solutions a trade-off between model privacy 
and data privacy. TRA solutions not relying on federated 
learning successfully keep the remote model private.

5.3  Privacy‑preserving remote inference

Table  8 summarizes the main characteristics of the 
reviewed privacy-preserving solutions for remote infer-
ence, which are classified according to four main technolo-
gies, representing the key base concepts that are used by 
these solutions, namely, homomorphic encryption (HE), 
secure multi-party computation (SMC), transformation of 
sensitive data, and model splitting between the client and 
the remote side.

Table 9 evaluates the solutions against the criteria defined 
in Sect. 4.3. The table cells, that are highlighted in gray, 
show the main criteria that are not fully satisfied, along with 
their limitations that are underlined.

• Discussion

Homomorphic encryption (HE) HE-based solutions are char-
acterized by high overhead at the client-side, especially if 
fully HE is employed. Moreover, solutions, which rely on the 
the client participation to address HE noise growth,1 further 
increase the client-side overhead. As for effectiveness, HE-
based solutions can reach close and up to the same accuracy 

Table 7  Comparison of key concepts for training a remote model

HE Homomorphic encryption, PS Partial sharing, TRA  Transformation, MS Model splitting,Dropout impact—high, if the training round stops 
for all participants, low if it stops only for the dropped participant, none if it is not affected, trade-off: between accuracy and privacy
a  in case the coordination or a threshold of participants and/or their transmitted information are required in the process at each round
b  in case of distributed (federated) learning
c  in case perturbation is cancelable
d  if the local output has not been transferred, otherwise none

Key concept Accuracy Client overhead Dropout impact Data privacy Remote model privacy

HE without loss high low private activation functions shared
PS trade-off high none | higha trade-off model shared
TRA theoretically without 

lossc | trade-off
highb | low higha | low privatec | trade-off model sharedb | not shared

MS trade-off low lowd trade-off part of layers shared

1 “When operations such as addition and multiplication are applied 
to encrypted data, the noise in the result may be larger than the noise 
in the inputs; this is referred to as noise growth”. If this noise grows 
too much, the ciphertext becomes impossible to decrypt even using 
the correct private key [61].
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as the non-private models when activation functions are com-
puted without polynomial approximation [42]. However, this 
requires the use of alternative techniques like outsourcing 
the computation to the client, which leads to more client-
side overhead. Moreover, as these methods rely on the client 
participation, the impact of a client dropout on the inference 
process becomes high. In [26], a non-colluding two-servers 
architecture is introduced to mitigate the client overhead 
by delegating the computation of activation functions to an 
intermediate server. However, the client is only partially dis-
charged from the cryptographic operations. As for privacy, 
input data are protected from the cloud through encryption, 
while the model is not shared with the clients, except for 
its activation functions, due to the outsourcing method. In 
general, HE-based solutions do not make restrictions on 
deep model or activation function. However, some solutions 
focused on the CNN model, while some others addressed 
specific activation functions for which they investigated poly-
nomial approximations. Besides, an adaptation of the model 
to the HE domain is needed as explained in [43].

Secure Multiparty Computation (SMC) SMC-based solutions 
can ensure low impact of client dropout on the inference pro-
cess, and preserve accuracy without incurring high overhead 

at the client-side. As for privacy, input data and inferences 
are protected from the servers, and the remote model is not 
shared with the clients. However, SMC-based solutions 
require the composition of adapted layers for the different 
phases of the neural network, while the model needs to be 
hosted partially or totally on both servers. Moreover, some 
solutions require using a trustworthy third party to initialize 
the random shares. In [56], HE is introduced at the client-
side, to encrypt input data instead of splitting it into shares, 
which allows to eliminate the trust initializer. However, 
encryption increases the client-side overhead, and leads to 
the use of polynomial approximation of activation functions, 
which may incur accuracy loss.

Transformation Transformation-based solutions ensure that 
once the client obfuscates its data and transmits it, its dropout 
will not impact the inference process. However, in [21], up to 
17% of accuracy loss was incurred, which shows that obfuscat-
ing input data may have a high impact on accuracy. Moreover, 
the overhead at the client-side might be high, as it depends on 
the obfuscator network and its output. As for privacy, infer-
ences are not protected, and input data, although obfuscated, 
could allow leakage. In [21] for example, close to 17% accu-
racy of inferring private information could be reached.

Table 8  Privacy-preserving solutions for remote inference

Key concept Ref Main characteristics

Homomorphic Encryption Gilad-Bachrach et al. [23] Leveled YASHE HE | Polynomial approximation of activation function
Baryalai et al. [26] Partially Paillier HE | Non-colluding dual clouds | Diffie-Hellman key exchange | 

Random salt | Classification
Chabanne et al. [51] Fully BGV HE | Low degree polynomial approximation of activation function | Batch 

normalization | Classification | CNN with depth > 2
Hesamifard et al. [52, 53] Leveled HE | Polynomial approximation: derivative of ReLU based approach and 

Sigmoid, Tanh, over a symmetric interval | CNN
Zhu and Lv [43] Partially Paillier HE | Interactive protocol between client and server for ReLU 

computation
Vizitiu et al. [54] Fully MORE HE

SMC Huang et al. [55] Additive secret-sharing | Secure computations | CNN feature extractor | Non-colluding 
dual edge servers

Ma et al. [56] Secret sharing | Partially El Gamal HE | Low-degree polynomial approximation of 
activation function | Non-colluding dual servers

Li et al. [57] Secret sharing | Triplet generation | Fully YASHE HE | Two non-colluding servers | 
Asynchronous computation | Garbled circuits | CNN

Transformation Leroux et al. [58] Generative Adversarial Networks | Neural-network-based obfuscation
Raval et al. [21] Generative Adversarial Networks | Neural-network-based obfuscation
Xu et al. [16] Neural-network-based obfuscation

Model splitting Osia et al. [59] Feature extractor on local | Siamese architecture | Dimensionality reduction: PCA and 
auto-encoder | Symmetric gaussian noise

Chi et al. [60] Bipartite model | Interactive adversarial deep networks
Yu et al. [47] 1st convolutional layer on local | Step-wise activation functions | CNN
Dong et al. [49] 1st layer on local | Dropping connections and activation outputs | Dropout and Dropconnect
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Model splitting Under the model splitting concept, the 
client-side overhead and sometimes data privacy, depend 
on the local model partition depth and complexity. In fact, 
in [47], only the first convolutional layer is migrated to the 
client, which ensures a low client-side overhead. However, 
in [59], the client-side computation overhead was described 
as considerable [16], due to a more complex local partition, 
representing the feature extractor. In model splitting-based 
solutions, the dropout of a participant does not impact the 
inference process, once the local output is transmitted to 
the server-side. As for privacy preservation, techniques like 
perturbation of the local output [47] or adversarial training 
[59] are used, which makes a trade-off between accuracy and 
privacy. Moreover, inferences protection is not considered.

Key concepts comparison By going through the reviewed 
solutions, we summarize in Table 10 the key concepts ade-
quacy with the PHM environment mainly with respect to 
effectiveness, client-side efficiency and privacy guarantees. 
The main potential limitations are underlined in the table.

Similarly to remote model training scenario, it is observed 
that HE-based solutions generally meet almost all PHM 
requirements, except for the client-side overhead, which 
is still challenging. SMC concept is also promising, but 
requires to share the model (or part of it) to a non-colluding 
second server. Moreover, the use of HE for privacy pur-
poses in some SMC-based solutions leads to a high client-
side overhead. Besides, TRA and MS concepts still need to 
address a number of challenges in order to support PHM 
environment. In fact, the two concepts do not consider 

inferences protection, while data privacy might be in trade-
off with the accuracy. Moreover, the remote model needs 
to be partially migrated to the client in MS solutions, while 
some TRA-based solutions require to have access to the 
whole model.

6  Open research

Many efforts were deployed in order to design solutions for 
privacy-preserving deep learning. However, many of the 
existing solutions do not consider specific target environ-
ment constraints. As previously discussed, in the context of 
pervasive health monitoring, the different key concepts of 
privacy preservation require more investigation in order to 
address the identified limitations and cope with the client-
constrained environment.

This section outlines, for each key concept, a set of rec-
ommendations for future research directions within each of 
the privacy-preserving deep-learning-based scenarios of 
PHM.

6.1  Privacy‑preserving training of a local model

Two main future investigation paths can be recommended 
in order to optimize Homomorphic Encryption-based solu-
tions to the PHM environment in a training of a local model 
scenario:

• The mitigation of the client-side overhead in terms of 
computation and communication incurred by the heavy 

Table 10  Comparison of key concepts for remote inference

Dropout impact - high, if the inference process stops; none, if the process does not stop. trade-off: between accuracy and privacy
HE Homomorphic encryption, SMC Secure Multiparty Computation, TRA  Transformation, MS Model splitting 
a  if activation function are approximated and depending on the polynomial approximation use
b  if homomorphic encryption is used
c   in case refreshing noise and/or the computation of activation functions are performed by the client
d  if the local output has not been transferred, otherwise non
e  in case of obfuscators that need during their training to back-propagate through the main mode
f  in order to compute activation functions, Intermediate Results (IR) are shared with the introduced 2nd server without protection

Key concept Accuracy Client overhead Dropout impact Data privacy Inference privacy Model privacy

HE high but potential 
lossa

high none | highc IR sharedf | private private not shared

SMC high but potential 
lossa

low | highb none private private model (or a share of 
it) shared with the 
2nd server

TRA loss depends on obfusca-
tor network

none private but potential 
trade-off

not protected not shared | back-
propagatede

MS trade-off depends on local 
partition

highd trade-off not protected local partition
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cryptographic operations and local training. Investigated 
solutions should take into consideration accuracy preser-
vation and privacy of both data and model.

• The protection of the deep model structure in the indi-
vidual training scenario.

  As for Partial sharing and Transformation approaches, 
two common open research paths might be followed:

• The improvement of local training, or the introduction of 
alternatives methods, in order to mitigate the client-side 
overhead without compromising the privacy of local data 
and model.

• The improvement of the trade-off between accuracy and 
privacy using more efficient perturbations that can com-
bine high accuracy and strong sensitive data protection. 
In this direction, proposed perturbations need to be adap-
tive to the input data type of the target application, and 
consider potential heterogeneity of medical data.

However, transformation-based solutions require to reveal 
the model to the cloud, which may represent a serious limi-
tation in the local model training scenario if the privacy 
of the model is important. On another hand, the protection 
of aggregated model parameters from the cloud need to be 
investigated in partial sharing solutions.

Finally, as the shared model concept mainly relies on 
local fine tuning, further investigations are recommended 
in order to introduce more efficient methods in terms of 
the client-side overhead. Such methods need also to take 
into consideration the privacy of both local samples and the 
model. Moreover, due to the cloud-based training step, the 
structure of the deep model is shared between the client and 
cloud, which may constitute a serious issue if its privacy is 
considered as important.

6.2  Privacy‑preserving training of a remote model

Two main open research paths need to be investigated in 
HE-based solutions for training a remote model under the 
PHM environment:

• The mitigation of the client-side overhead in terms of 
computation and communication incurred by the heavy 
cryptographic operations, without compromising the pri-
vacy of local data.

• The introduction of approximation-free techniques for 
the computation of activation functions, and which do 
not rely on the client-side, and do not compromise the 
privacy of the local data and remote model.

Partial sharing and Transformation approaches require 
some improvements, particularly:

• The improvement of local training, or the introduction 
of alternatives methods, in order to mitigate the client-
side overhead and provide a certain level of privacy to 
the remote model, without compromising the privacy of 
local data.

• The improvement of the trade-off between accuracy and 
privacy using more efficient perturbations that can com-
bine high accuracy and strong sensitive data protection. 
In this direction, proposed perturbations need to be adap-
tive to the input data type of the target application, and 
consider potential heterogeneity of medical data.

As for the model splitting approach, a more efficient 
trade-off that could balance between the different require-
ments of the PHM environment need to be investigated. 
More specifically, such a trade-off needs to consider:

• The client-side overhead, controlled by the local partition 
depth and the perturbation complexity.

• The privacy of training data, controlled by the local parti-
tion depth, and the perturbation effectiveness.

• The privacy of the deep model, controlled by the local 
partition depth.

• The accuracy, controlled by the impact of the perturba-
tion.

6.3  Privacy‑preserving remote inference

Two main open research paths are recommended to address 
the limitations of Homomorphic Encryption-based privacy-
preserving solutions under the PHM environment:

• The mitigation of the client-side overhead in terms of 
computation and communication incurred by the heavy 
cryptographic operations, without compromising the 
privacy of local data. In this context, the non-colluding 
two-servers architecture used in [26] should be more 
investigated in combination with other mechanisms.

• The introduction of approximation-free techniques for 
the computation of activation functions, as well as tech-
niques for addressing homomorphic noise growth, which 
do not rely on the client-side. Moreover, introduced tech-
niques should take into consideration the privacy of the 
remote model and local data, including preventing the 
intermediate results from leaking sensitive information.

As for Secure Multiparty Computation-based solutions, 
a set of identified limitations need to be addressed in order 
to cope with the target environment, mainly:

• The model is either split or shared between the non-colluding 
servers, which compromises its privacy.
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• A number of modifications are necessary at the different 
stages of the neural network in order to adapt it to the 
SMC approach.

• Some solutions require a trust initializer in order to split 
the input data into shares. Others rely on HE encryption 
at the client-side, which increases the local overhead.

As for transformation-based solutions, future investiga-
tion directions include:

• The design of more efficient obfuscator networks, or 
transformation methods that can combine high accuracy, 
strong privacy, and low local overhead.

• The design of methods that protect inferences from the 
cloud.

Finally, as for the model splitting-based solutions, two 
main open research paths can be recommended:

• Investigating a more efficient trade-off that could balance 
between the different requirements of the target environ-
ment, considering:

◦ The client-side overhead, controlled by the local par-
tition depth and the local privacy-preserving method 
(method applied on local to prevent leakage) com-
plexity.

◦ The privacy of the input data, controlled by the local 
partition depth, and the local privacy-preserving 
method effectiveness.

◦ The privacy of the model, controlled by the local 
partition depth.

◦ The accuracy, controlled by the impact of the local 
privacy-preserving method.

• Designing solutions that protect inferences from the 
cloud.

7  Conclusion

This paper studies the adequacy of existing privacy-preserving 
deep learning solutions to pervasive heath monitoring (PHM) 
applications. To this end, privacy-requiring scenarios are 
defined, and a number of recent solutions for privacy-preserving 
deep learning are discussed according to criteria derived from 
constraints of the environment and requirements of the target 
solution.

The analysis of the PHM deep learning-based scenarios 
shows that the inference phase as well as the training phase, 
including training local and remote models, are all subject 
to privacy concerns. In order to design privacy-preserving 
solutions for PHM, the following specific constraints of the 

environment need to be taken into consideration: (a) the cli-
ent-side devices in terms of limited resources, (b) input data 
in terms of heterogeneity, and (c) communication network 
in terms of unreliability and high cost.

Accordingly, in order to assess privacy-preserving deep 
learning solutions with the PHM environment, the following 
derived set of criteria are defined: (a) effectiveness, in terms 
of high accuracy, (b) efficiency, in terms of low computa-
tion and communication overhead at the client-side, as well 
as the impact of a client’s dropout on the training round or 
inference process, and (c) privacy, in terms of the protection 
of input data, deep model, and inferences.

Existing solutions are subsequently classified according 
to key concepts, and evaluated against defined criteria. The 
evaluation study and the impact of introducing privacy to 
deep learning-based PHM applications are then discussed.

We summarize the main findings and conclusions of the 
present study, according to the privacy-requiring scenarios, 
as follows:

• Local model training HE-based solutions in individual 
learning do not protect the deep model structure, and 
incur high client-overhead due to the cryptographic 
operations. In collaborative learning, the adequacy of 
privacy-preserving solutions to the PHM environment is 
particularly restricted by local training and its impact on 
the client-side overhead, which is furthermore increased 
in HE-based solutions. Future alternatives or optimi-
zations of local training and HE operations need to be 
investigated, taken into consideration the privacy of both 
local model and training data. Moreover, solutions based 
on transformation and partial-sharing concepts need to 
investigate more efficient perturbations mechanisms in 
order to improve the trade-off made between accuracy 
and privacy.

• Remote model training Mitigating the client-side over-
head in HE-based solutions require the introduction of 
new techniques for the computation of activation func-
tions, as well as new methods to discharge the client from 
the cryptographic load. In transformation-based solutions, 
efficient alternatives or optimizations of local training 
need to be investigated. On the other hand, the trade-off 
made between data privacy and accuracy in transforma-
tion as well as model splitting-based solutions depends 
on the target application requirements. In transformation-
based solutions, more efficient perturbations considering 
the heterogeneity of medical data need to be investigated. 
Ultimately, future HE-based solutions might be most 
likely to suit the PHM environment, knowing moreover 
that current solutions can provide high accuracy and pri-
vacy without making a trade-off between them.

• Remote inference HE-based solutions suffer from a 
high client-side overhead, which can be mitigated by the 
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introduction of new techniques for the computation of 
activation functions, as well as new methods to discharge 
the client from the cryptographic load. As these solutions 
can provide high accuracy and privacy without making a 
trade-off between them, future HE-based solutions might 
be most likely to suit the PHM environment. SMC-based 
solutions, on the other hand, present some limitations 
essentially regarding the privacy of the deep model, and 
the need of a trustworthy initializer. Lastly, solutions 
based on transformation and model splitting concepts 
do not provide protection for the inferences. Moreover, 
they make a trade-off between different parameters, com-
bining privacy, accuracy, and efficiency, and which may 
depend on the target application requirements.
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