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Keel bone damage is a wide-spread welfare problem in laying hens. It is unclear so far 
whether bone quality relates to keel bone damage. The goal of the present study was 
to detect possible associations between keel bone damage and bone properties of 
intact and damaged keel bones and of tibias in end-of-lay hens raised in loose housing 
systems. Bones were palpated and examined by peripheral quantitative computer 
tomography (PQCT), a three-point bending test, and analyses of bone ash. Contrary 
to our expectations, PQCT revealed higher cortical and trabecular contents in fractured 
than in intact keel bones. This might be due to structural bone repair after fractures. 
Density measurements of cortical and trabecular tissues of keel bones did not differ 
between individuals with and without fractures. In the three-point bending test of the 
tibias, ultimate shear strength was significantly higher in birds with intact vs. fractured 
keel bones. Likewise, birds with intact or slightly deviated keel bones had higher mineral 
and calcium contents of the keel bone than birds with fractured keel bones. Calcium 
content in keel bones was correlated with calcium content in tibias. Although there were 
some associations between bone traits related to bone strength and keel bone damage, 
other factors such as stochastic events related to housing such as falls and collisions 
seem to be at least as important for the prevalence of keel bone damage.
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inTrODUcTiOn

Keel bone damage is a well-known welfare problem in laying hens (1–3). Käppeli et al. (4) established 
that 25.4% of Swiss laying hens had a moderately to strongly damaged keel bone (i.e., fractured) at 
the end of production. When weak deviations and small bumps were included, 55% of the animals 
were affected. These results are in agreement with other studies on this topic in various countries 
(5–10). Considering that a majority of moderate or severe keel bone deformities are healed fractures 
(11, 12) being associated with (chronic) pain (13, 14), this is a severe welfare issue.
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TaBle 1 | Characteristics of the ten flocks that were used.

Flock housing Perch hybrid range age Mass Fracture

1 Floor Metal LB Yes 71 1,631 0.06
2 Aviary Metal HN Yes 70 1,707 0.46
3 Aviary Metal HN Yes 72 1,479 0.29
4 Aviary Metal/plastic LSL Yes 70 1,527 0.29
5 Aviary Metal/wood LB No 96 1,757 0.21
6 Aviary Plastic Silver Yes 64 1,691 0.19
7 Aviary Plastic Silver Yes 68 1,644 0.29
8 Aviary Plastic Silver Yes 65 1,796 0.3
9 Aviary Plastic LSL Yes 76 1,434 0.43

10 Aviary Wood LB No 66 1,678 0.23

HN, H&N Nick Chick (http://www.hn-int.com/eng/commercial-layers/nickchick.php); 
LB, Lohmann Brown (http://www.ltz.de/en/layers/alternative-housing/lohmann-brown-
classic.php); LSL, Lohmann Selected Leghorn (http://www.ltz.de/en/layers/alternative-
housing/lohmann-lsl-classic.php); Silver, Lohmann Silver (http://www.ltz.de/en/layers/
alternative-housing/lohmann-silver.php); range = “yes” means that the hens had 
access to a veranda and a free range, the age is given in weeks, and the mean body 
mass in grams. Fracture (%) denotes the proportion of hens with fractured keel bones 
(palpation scores 1 and 2).
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Several causes may account for a keel bone deviation or 
fracture. Their relative contribution to keel bone damage is 
unknown. As one possibility, a fracture may result from an 
external trauma like, e.g., a crash or collision (15–19) or from 
strong compressive stress exerted on the keel bone by inappro-
priate perches (17, 20). In those cases, housing environments 
need to be optimized to avoid these events (9). Another pos-
sibility might be poor bone quality of hens as in osteoporosis 
due to inadequate dietary supplementation or excessive use of 
calcium for egg shell production. Osteoporosis may also affect 
other bones than keel bones and is defined as a decrease in com-
pletely mineralized structural bone which leads to increased 
fragility and probability of fracture (21). The link between 
osteoporosis and the prevalence of keel bone fractures in laying 
flocks is unclear.

The potential role of poor bone quality was investigated in 
this study by comparing damaged and healthy bones using 
peripheral quantitative computer tomography (PQCT) scans, 
and by examining the calcium and phosphorus content in the 
bone ash. Due to their irregular shape, keel bones cannot be 
examined by three-point bending tests. Assuming that calcium 
levels between keel bones and tibias are correlated, tibias were 
subjected to three-point bending tests. The sample was col-
lected after slaughter and consisted of randomly picked laying 
hens from flocks varying in age, housing, and genetic origin. 
They reflected the pronounced variation in prevalence of keel 
bone damage found in Swiss flocks (4). It was tested whether 
the differences in bone properties correlated with the severity 
of keel bone damage. We hypothesized that intact keel bones 
would have a higher calcium content and greater cortical and 
trabecular densities than fractured keel bones. Furthermore, we 
predicted that the tibias of birds with intact keel bones would 
have a higher calcium content and greater shear strength and/or  
higher load–deformation curves than tibias of birds with frac-
tured keel bones. The goal of the present study was to find out 
if future studies and efforts should focus on an improvement 
of bone quality and nutrition in addition to adjustments of 
the environment to prevent keel bone damage in laying hens. 
Since laying hens are of great economic importance and are kept  
in large groups of animals, the high prevalence means that a very 
large number of animals are affected. Therefore, studies about 
potential causes and methods to prevent keel bone damage are 
important.

MaTerials anD MeThODs

ethical note
This research was done on laying hens after regular slaughter.  
No live animals were used in this study so no license for the ethi-
cal treatment was obtained.

Bones
Left tibias and keel bones of 120 hens from 10 different flocks 
were collected from August through December 2009. These 
randomly sampled animals were a subsample of flocks that were 
used by Käppeli et al. (4). The hens had a mean age of 72 weeks 

ranging from 64 to 96 weeks. After the collection of the samples, 
the farm owners of the flocks were contacted to inquire about 
hybrid, color, age, housing system, outdoor access, material of 
perches, and flock size (Table  1). The data reflect the farmers’ 
statements. All samples were collected in the same commercial 
poultry abattoir, and the keel bones were palpated immediately 
after the defeathering process by the same examiner (Susanna 
Käppeli) for keel bone deviations and fractures. The repeatability 
of palpations was very high, and palpations were calibrated with 
another observer (4).

Palpation was performed by running two fingers down the 
edge of the keel bone to detect alterations like S-shaped devia-
tions, bumps, depressions or proliferations. The following scor-
ing system was used: 4 = intact keel bone, 3 = slight deviation, 
2 = moderate deviation counted as fracture, 1 = severe deviation 
counted as fracture (4). For some analyses, scores 3 and 4 were 
combined as “no fractures” vs. scores 1 and 2 as “fractured.”

The defeathered bodies with feet, head, innards, and neck 
were weighed immediately after slaughter. The keel bone and the 
left leg including all the muscles were dissected from the rest of 
the hens’ bodies and frozen at −20°C. Sixteen weeks later, the 
samples were slightly thawed to remove all the muscles by using 
a scalpel and a hoof knife. Keel bones were then photographed in 
a standardized way lying on the right side. Thereafter, bones were 
immediately frozen again at −20°C.

Palpation with muscles attached may hide fractures. Therefore, 
all the photographs of keel bones were examined for fractures 
including the tip of the keel (by Sabine G. Gebhardt-Henrich), 
and the palpation score was corrected if needed. During initial 
palpation as well as during correction, the observers were una-
ware of the PQCT, three-point bending, and mineral ash content 
values of the bones.

Peripheral Quantitative computed 
Tomography
After the keel bones and the tibias had been thawed to room tem-
perature, they underwent scans by PQCT with a Stratec™ XCT 
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FigUre 1 | Points of measurement of the tibia (top) and the keel bone (bottom) for the peripheral quantitative computer tomography. Tibia: A: facies articularis 
inferior, B: eminentia intercondylaris, X: measured length of tibia. Keel bone: A: apex carinae, X: length of carina sterni.
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960A (Stratec Medizintechnik GmbH, Pforzheim, Germany). 
The PQCT was tested for accuracy and validity in several spe-
cies, and the results were replicable (22). This technique gives 
further insight into the bone structure and mineral content. 
Proximal, distal, and central measuring points at 10, 50, and 
90% of the distance between the proximal and distal extremities 
of the tibiotarsus and the overall length of the carina sterni of 
the keel bones were determined with digital calipers (Figure 1).  
The total, cortical, and trabecular mineral contents and densities 
were calculated by the computer program as based on the attenu-
ation of the X-rays (23). Afterward, bones were frozen again at 
−20°C. The center and the distal position of keel bones involving 
two birds of one flock and the distal position of a keel bone of  
a bird from another flock could not be measured because the 
bones were too weak and the computer could not calculate the 
value since it was below the detection limit.

Three-Point Bending Test
After thawing the tibias for at least 24 h at 15°C, they were broken 
with the Three-Point Bending Test of Animal Bone following the 
ASABE Standards 2007 [ANSI/ASAE S459 MAR1992 (R2007)] 
using a Zwick and Roell universal testing machine with a 2.5 kN 
load cell. The fulcrum was adjusted at 55 mm to get the requested 
length to bone diameter ratio greater than 10. We measured the 
smallest diameter of the tibias. The bones were laid in the test 
apparatus with the flattest side down, and the force was applied 
to the midshaft with a crosshead speed of the loading bar of 
10  mm/min. The force–deformation curve was read from the 
texture analyzer (24). From this curve, the ultimate force F 
required to break a bone was recorded in Newton. To take bone 
size into account, the value of the ultimate force was divided 
by the cross section of the bone (A), which was calculated as 

the product of π and the square of the radius of the thinnest 
part of the bone (using the small diameter, see ANSI/ASAE 8.2). 
This (F/2 × A) was taken as an approximation of the ultimate 
shear strength. Bones were too thin to measure the outer and 
inner diameter to get a more exact measurement of ultimate 
shear strength. Bending strength (force applied when the bone 
fractures) was automatically derived from the slope of load/ 
displacement graph (25, 26) and the slope of the load–deformation  
curve, which is an estimate for the bone stiffness, was derived by 
the regression between 0.3 and 0.5 mm.

Bone ash
The tibias and keel bones were ashed in porcelain crucibles in a 
muffle furnace (N11/R, Fabr. Nr. 70766, “Tony Güller” NABER 
Industrieofen, Lilienthal, Germany) for 24  h at 550°C. Before 
and after ashing, the bones were weighed, and the remaining 
mass was taken as the bone mineral ash content. The contents of 
phosphorus and calcium in the ash were further analyzed with a 
Cobas Mira Plus (Roche Diagnostic, Basel, Switzerland) to yield 
the calcium and phosphorus contents.

statistics
The residuals of the analyses were visually inspected for the 
assumption of normality. Full models including color of the 
hybrid (white, brown, and silver), age, and body mass were ana-
lyzed with general linear models (MIXED Procedure of SAS®) 
with flock as the subject and the 12 hens per flock as repeated 
measures. Flock nested in color of hybrid was taken as a random 
variable. Since the genetics, behavior, and production traits are 
similar for the hybrids LSL and HN, they were pooled as white 
hybrids. Initially, all interactions were included in the models. For 
the final model, interactions >0.2 were removed. Post hoc tests 
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FigUre 2 | Body mass after slaughter was associated with the score of the keel bone. Score 4 indicates an intact keel bone, score 3 indicates a slightly deformed 
keel bone, and scores 2 and 1 (=worst) indicate fractured keel bones. The width of the box plots indicates the sample size, and the numbers of animals are beneath 
the bars.
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were carried out with a Bonferroni adjustment. Correlations with 
CT measurements are Pearson or Spearman rank correlations  
as indicated by the subscripts.

Some distal PQCT measurements of keel bones were missing 
because fractures were located at these positions of the corres-
ponding bones. Therefore, the measurements at the center were 
used in the subsequent analyses. The PQCT measurements were 
logarithmically transformed to fulfill the assumption for para-
metric analyses.

The ultimate shear strength and the slope of the load– 
deformation curve were logarithmically transformed for general 
linear model analyses but not for the Spearman rank correlations. 
Since ultimate shear strength was adjusted for the size of the bone 
and therefore bird size, mass was not included as a factor analyz-
ing this parameter. The slope of the load–deformation curve, 
however, was not adjusted to bone size and, therefore, the body 
mass of the bird was taken as a factor into the model.

There was only one flock kept on floor housing instead of  
in aviaries. Analyses were performed with and excluding this 
flock. Results are given for the complete data set, but differences 
in significances are noted when this flock was excluded.

resUlTs

In this sample of 120 keel bones, 36 (30%) were scored as intact 
(score 4), 37 (31%) were slightly deformed (score 3), 35 (29%) 
were moderately (score 2), and 12 (10%) were severely fractured 
(score 1). In 9 out of 76 cases, keel bone fractures were detected 
on the photographs that were not detected by palpation. In 
four cases, a fracture was suspected during palpation but was 
not seen on the photographs. Body mass after bleeding in the 
abattoir was associated with keel bone scores. Hens with more 

severely damaged keel bones were heavier than hens with more 
slightly deviated keel bones (i.e., deformations without obvious 
callous material) whereas hens with intact keel bones where of 
intermediate mass in brown and silver hens but lowest in white 
hens (Figure 2). In the analysis of keel bones excluding score 4 
(intact keel bone), body mass was significantly different between 
hens with different scores, and there was an influence of both 
color of hybrid and age with an interaction between age and 
color of hybrid (keel bone score: F1,63 = 11.83, P < 0.001; color of 
hybrid: F2,4 = 9.87, P = 0.028; age: F1,4 = 12.71, P = 0.024; color 
of hybrid × age: F2,4 = 10.45, P = 0.026, N = 74 hens in 10 flocks). 
Body mass of hens with keel bone scores of 1 and 2 differed from 
the body mass of hens with keel bone score 3 (F1,63  =  11.83, 
P < 0.001). In the model including the intact keel bones, both 
keel bone score (F1,109 =  5.88, P <  0.015) and age (F1,4 =  8.99, 
P < 0.04) were associated with variation in body mass. There was 
a trend for color of hybrid (F2,4 = 6.85, P = 0.051) and an interac-
tion between age and color of hybrid (F2,4 = 7.64, P = 0.043), but 
the fit of the model was worse: the corrected Akaike’s information 
criterion was 1,497 instead of 889 in the model without intact 
keel bones. A higher Akaike’s information criterion means that 
the model fit is poor (27) (Figure 2).

Body mass was not correlated with age (rP = −0.07, NS, N = 10 
flocks).

computer Tomography
The total bone mineral contents of the keel bone and the tibia 
were positively correlated (rP = 0.25, P = 0.006, N = 119). The 
center measurements of all measured bone traits were positively 
correlated with the distal and proximal measurements, and the 
mineral contents and densities of trabecular and cortical bone 
were positively correlated with body mass in most cases (Table 2).  
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TaBle 2 | Spearman’s correlations between the different PQCT measurements and body masses.

Trait center with  
proximal KB

center with  
proximal TB

center with  
distal KB

center with  
distal TB

Body mass  
with KB

Body mass  
with TB

Total bone MC 0.39*** 0.66*** 0.21* 0.59*** 0.36*** 0.44***
Total bone MD 0.73*** 0.71*** 0.74*** 0.57*** 0.20* −0.09
Trabecular bone MC 0.38*** 0.56*** 0.32** 0.29*** 0.35*** 0.0
Trabecular bone MD 0.62*** 0.65*** 0.58*** 0.40*** 0.17(*) −0.18*
Cortical bone MC 0.43*** 0.71*** 0.38*** 0.60*** 0.32** 0.37***
Cortical bone MD 0.71*** 0.71*** 0.63*** 0.66*** 0.19* 0.02

(*)<0.1, *<0.5, **<0.01, ***<0.001, N = 116–120.
KB, keel bone; TB, tibia; MC, mineral content; MD, mineral density.
Proximal, distal, and central measuring points refer to 10, 50, and 90% of bone length.

TaBle 3 | Measurements of the total bone mineral content (mg/cm), total bone 
mineral density (mg/cm3), trabecular bone mineral content (mg/cm), trabecular 
bone mineral density (mg/cm3), cortical bone mineral content (mg/cm), and 
cortical bone mineral density (mg/cm3) by peripheral quantitative computer 
tomography (see Materials and Methods).

color P = 4 P = 3 P = 2 P = 1 se

(a) Keel bone

Total bone mineral 
content

White 9.1 14.1 16.8 25.3 3.32
Brown 14.4 21.6 25.6 23.0
Silver 14.3 17.6 22.8 26.2

Total bone mineral 
density

White 385.7 409.0 458.9 497.2 31.58
Brown 413.2 352.8 449.0 333.5
Silver 457.5 513.9 499.7 536.5

Trabecular bone 
mineral content

White 4.1 6.2 8.8 13.1 1.73
Brown 6.8 11.6 13.3 11.2
Silver 6.9 8.9 11.3 13.1

Trabecular bone 
mineral density

White 416.7 432.1 535.3 579.1 37.74
Brown 453.2 426.3 532.8 371.0
Silver 503.4 581.0 558.2 596.6

Cortical bone mineral 
content

White 7.4 12.8 15.2 23.1 3.30
Brown 12.6 20.8 22.5 20.9
Silver 12.4 15.9 20.7 23.7

Cortical bone mineral 
density

White 447.23 488.7 503.0 532.5 22.73
Brown 472.636 433.6 507.9 412.9
Silver 494.07 558.5 532.9 586.9

(B) Tibia

Total bone mineral 
content

White 28.6 28.7 28.3 28.0 0.48
Brown 34.5 31.9 34.6 34.7
Silver 31.0 31.2 33.5 33.5

Total bone mineral 
density

White 510.0 498.4 482.1 477.4 6.33
Brown 442.3 419.4 466.9 429.6
Silver 427.5 463.0 444.0 461.8

Trabecular bone 
mineral content

White 8.2 8.3 8.0 6.8 0.20
Brown 9.0 8.0 9.1 9.3
Silver 6.6 7.5 8.0 8.4

Trabecular bone 
mineral density

White 334.9 328.8 308.1 267.3 6.70
Brown 253.1 232.3 270.7 253.9
Silver 203.1 245.2 234.0 260.9

Cortical bone mineral 
content

White 25.9 26.1 25.6 24.1 0.46
Brown 30.9 29.0 30.9 32.5
Silver 26.8 27.0 28.8 28.4

Cortical bone mineral 
density

White 651.2 640.7 624.3 660.0 6.26
Brown 596.2 566.9 629.2 539.2
Silver 632.9 652.5 628.4 635.0

Only the measurement of the center of the keel bone was used. Mass denotes body 
mass. For the tibia, the means of the three measurements of this bone are shown in 
the table. Non-significant interactions are not shown.
Color, color of hybrid; P, palpation score.
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The values of the PQCT measurements of the keel bones and the 
tibias in relation to the palpation scores are shown in Table 3. 
Cortical and trabecular bone mineral contents were lower in 
intact keel bones (score 4) than in damaged keel bones (cortical: 
F1,8 = 8.55, P = 0.02; trabecular: F1,8 = 8.25, P = 0.02). Trabecular 
content but not cortical content differed among colors of hybrids 
(F2,6 = 5.46, P = 0.05). Without the farm with floor housing, corti-
cal content but not trabecular content was lower in white than in 
brown and silver hybrids (cortical content F2,5 = 5.8, P = 0.05; 
trabecular content F2,5 = 4.75, P = 0.07). Age and body mass were 
not associated with cortical or trabecular content. Keel bones 
with different scores did not differ in density measurements, but 
white hybrids had lower densities than brown and silver hybrids 
and age was positively associated with the density measure-
ments (cortical density: color of hybrid F2,6 = 18.21, P = 0.003; 
age F1,6 = 25.17, P = 0.002, without the farm with floor housing 
there is an interaction between mass and presence of fracture 
F1,94 = 4.46, P = 0.04; trabecular density: color of hybrid F2,6 = 5.5, 
P = 0.04, without the farm with floor housing F2,5 = 4.81, P = 0.07;  
age F1,6  =  6.62, P  =  0.04). Body mass was not associated with 
PQCT density measurements (Tables 2 and 3).

There was clearly no association between the PQCT measure-
ments of the tibia and the fracture status of the keel bone except 
for trabecular content, which increased with degree of keel bone 
damage (F1,8 = 8.25, P = 0.02). Body mass, however, had a posi-
tive association with cortical content (F1,108 = 12.79, P = 0.0005) 
and with trabecular density (F1,108  =  14.47, P  =  0.0002) and 
brown hybrids had lower cortical density (F2,6 = 7.26, P = 0.025) 
but higher trabecular content (F2,6 = 5.46, P = 0.045) than white 
and silver hybrids. When excluding the farm with floor hous-
ing, the color of hybrid did not differ for trabecular content 
(F2,5 = 4.75, P = 0.07).

Three-Point Bending Test
Color of hybrid and age but not keel bone score explained variation 
in ultimate shear strength required to break the tibia (keel bone 
score: F1,109 = 1.47, NS; color of hybrid: F2,6 = 56.61, P < 0.0001; 
age: F1,6 = 16.44, P = 0.007). White hens had a higher ultimate 
shear strength (3.73  kN) than LB (2.84  kN) or silver hybrids 
(2.83 kN) (SE = 0.08, F1,6 = 99.81, P < 0.0001). However, ulti-
mate shear strength was significantly higher in birds with intact 
than in fractured keel bones (least squares means intact: 3.53 N/
mm2 ±  0.11, fractured: 3.10 ±  0.05, F1,8 =  14.25, P <  0.0001). 
Likewise, the individual keel bone score did not explain variation 
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FigUre 3 | Histogram of the calcium content of keel bones (a) and tibia (b). White hens have white bars, brown hens have black bars, and silver hens have  
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in the load–deformation curve. The load–deformation curve did 
not differ in hens with or without fractured keel bones but was 
positively associated with body mass and white hybrids had lower 
values (184.66 kN/mm2) than brown (208.73 kN/mm2) and sil-
ver hybrids (217.65 kN/mm2) (keel bone score: F1,106 = 0.15, NS; 
color of hybrid: SE = 4.58, F2,6 = 6.99, P = 0.03; age: F1,6 = 5.33, 
P = 0.06; body mass: F1,106 = 14.81, P = 0.0002). Disregarding 
the one farm with floor housing, the load–deformation curve 
increased with age (F1,5 = 6.72, P = 0.05).

Bone Mineral ash
The calcium content in keel bones and to a lower degree in 
tibias had a distinct bimodal distribution (Figure 3). Intact keel 
bones (palpation score 4) and keel bones with slight deviations 
(palpation score 3) had significantly higher calcium content and 
significantly higher mineral content in the keel bone than keel 
bones with moderate and severe damage (palpation scores 1 and 2)
(calcium: 14.96% in ash ±0.69 vs. 13.90 ±  0.70, F1,102 =  4.16, 
P <  0.04; color: F2,7 =  0.25, NS, Figure 4). The calcium con-
tent in the keel bone and the tibia were positively correlated  
(tibia: F1,105  =  26.35, P  <  0.0001; color: F2,6  =  0.04, NS; age: 
F1,105 = 0.26, NS). The proportion of calcium to phosphorus in 
the tibia was negatively associated with the ultimate force needed 
to bend the tibia (estimate of Ca/P: −0.59 ± 0.22, F1,102 = 7.4, 
P = 0.008; body mass: F1,102 = 4.76, P = 0.03; age: F1,8 = 0.07, NS; 
Ca/P × age: F1,102 = 6.53, P = 0.01; body mass × age: F1,102 = 5.55, 
P  =  0.02) (Figures  3 and 4). Body mass was not associated  
with calcium content in keel bones (F1,104 = 0.13, NS).

DiscUssiOn

Considering the tremendous number of affected animals with 
keel bone damage (4) and the evidence that these animals suffer 
from pain (13, 14), it is crucial to address the causes and to seek 
solutions to this problem. It is self-evident to assume that the 
detected fractures occurred in the live animals. In the larger data 
set, some flocks were palpated on the farm at depopulation and 
there were no differences in the prevalence of fractures between 
flocks at the farm or the abattoir (4). Furthermore, the prevalence 
in our sample is in agreement with other studies on live hens in 
the barn before depopulation (9, 16–18). Callous material at the 
site of fractures also support the time of fracture in live birds. The 
variation in housing regarding the material of perches, the pres-
ence or absence of a free range, different aviary designs or floor 
housings as well as a range of hybrids and different ages at slaugh-
ter reflects the population of Swiss laying hens at the abattoir.  
In this sample, intact keel bones had a higher calcium content, 
and the tibias of those birds had a greater shear strength than keel 
bones and tibias from birds with fractured keel bones. Although 
relationships without experimental intervention cannot elucidate 
causation, associations may help to identify predictive indicators 
for bone damage that can be investigated in future studies.

Contrary to Donaldson et al. (28) who did not find an associa-
tion between body mass and keel bone score, our sample revealed 
that hens with more severely affected keel bones were heavier than 
hens with more slightly deformed keel bones and hens with intact 
keel bones were of intermediate mass (Figure 2). This could be 
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FigUre 4 | Boxplot of the levels of percentage of calcium content in the keel bone and palpation score of the same bone. The horizontal line shows the median, 
and the diamonds show the mean. The levels of calcium content were classified as follows: level 1 <38%, level 2 38–40.36%, level 3 40.37–42%, level 4 >42%.
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one indication for a traumatic origin of keel bone injuries by falls 
and collisions as other studies suggest (16–19). The incidence of 
having an accident may be independent of body mass but when 
a fall or collision occurs, the probability of suffering a deviation 
or fracture of a certain severity is likely to be proportional to 
body mass. Hens with intact keel bones that do not have acci-
dents have an average body mass. This is to be expected if the 
likelihood of falling and crashing is independent of body mass.  
We explain the higher severity of fractures in heavier hens with 
the fact that the impact of a trauma is bigger with increasing col-
lision energy. This is consistent with the model used by Toscano 
et al. (29). In the study of Donaldson et al. (28), falls and collisions 
did not seem to contribute significantly to keel bone injuries as 
the presence of perches did not influence the prevalence of keel 
bone damage [but see Ref. (16)]. Notwithstanding, material and 
design of perches seem to be important causative factors for keel 
bone damage as was shown by Käppeli et al. (30) and Stratmann 
et al. (18). Like in falls, more force would act on the keel bone 
during perching in heavier birds compared with lighter birds.

Alternatively, larger hens might lay larger eggs and a different 
calcium metabolism might make osteoporosis more likely. In our 
data set, mass was clearly not associated with calcium content in 
keel bones.

Unexpectedly, the PQCT measurements of keel bones 
showed significantly lower cortical and trabecular bone min-
eral contents in intact compared with deformed keel bones. 
This might be explained by the fact that a bone fracture initi-
ates a healing process. It goes along with the formation of a 
fracture callus in which a higher mineral content can be found 
because of bone remodeling of the callus during the healing 
process (31). However, the calcium content of the entire bone 
as determined by ashing showed the opposite pattern in that 
intact keel bones had a higher overall calcium content. Thus, 
the PQCT data of the already fractured keel bones did not 
give us indications of keel bone strength before the incidence 
of deviation/fraction, although the site of measurement was 
not directly affected by visible fractures. This is in contrast to 
the study by Tarlton et al. (32) where keel bones with greater 
bone density and bone mineral content had a lower breaking 
rate and less severe keel bone damages. Using experimentally 
induced fractures of keel bones, Toscano et  al. (29) found a 
negative relationship between keel surface bone mineral density  
and the severity of fracture. Assuming a correlation between 
bone strength of keel bones and tibias (25), we wanted to avoid 
this problem by examining the tibias by PQCT hoping that this 
would give us some information on the keel bone parameters 
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before fracture. However, the PQCT measurements of the tibia 
did not correlate with the palpation scores of the keel bones 
(Table 3B). Therefore, PQCT measurements of tibias seem to be 
an inappropriate predictor for keel bone deviations or fractures 
but are useful for the assessment of bone mineral deviations  
in the skeletal system.

In the three-point bending test, the ultimate shear strength 
and the load–deformation curve were determined. The ultimate 
shear strength indicates the maximum load a bone can sustain 
(33). A high load–deformation curve indicates that a bone is 
more rigid and less ductile, whereas a low load–deformation 
curve implies that the bone is more ductile and less mineralized 
(34, 35). Bone mineral density was found to correlate positively 
between keel bones and tibias (29). Although birds with intact 
keel bones (score 4) had significantly higher ultimate shear 
strengths than those with fractured keel bones, neither the 
ultimate shear strength nor the load–deformation curve could 
be used as an indicator for the individual palpation score in 
our examination. This partly agrees with the studies by Fleming 
et  al. (8) and Donaldson et  al. (28) who found a correlation 
between keel bone score and tibia bone strength. In their study, 
however, no post hoc contrasts were calculated. Thus, it remains 
unclear whether their significance was mainly due to the dif-
ference between damaged and undamaged keel bones or due to 
damages of different severity. After supplementing laying hens 
with n3, keels had a higher load at failure, and tibia and humeri 
were more flexible (36). The fact that the load–deformation 
curve and ultimate shear strength were not associated with 
the severity of keel bone damage in our study again suggests 
a possible traumatic origin from the environment for keel 
bone fractures and supports the notion of falls and collisions 
as causes (16–18). Beyond the effect of having an accident that 
was presumably independent of bone condition, bone strength 
seemed to have some influence on the probability of fractures 
as revealed by an increased ultimate shear strength in birds  
with intact keel bones. The different causes of fractures would 
make correlations between bone strength and bone damage 
weak and spurious.

Bone mineral ash content analyses were consistent with our 
expectations of bones from birds with less damaged keel bones 
having higher mineral content and calcium content, respectively, 
as reported in the studies by Fleming et al. (8) and Donaldson 
et al. (28). The importance of calcium is also supported by the 
fact that the six highest calcium values of keel bones are from the 
farm with the lowest prevalence of keel bone fractures (flock 1, 
Table 1). The calcium/phosphorus ratio was negatively associated 
with bone strength confirming that both minerals are essential  
for bone strength (37).

In agreement with Regmi et al. (2), hybrids differed in bone 
properties. All the investigated birds were kept cage-free so 
no influences of housing conditions on bone properties were 
expected, which were found between cage-kept and cage-free 
kept laying hens (38, 39).

As suggested by Casey-Trott et al. (31), the accuracy of live 
palpations is limited, and in 12% of the keel bones, fractures 
were missed that were detected on dissected keel bones, and 
in 9%, palpated fractures could not be corroborated on the 
photographs.

The main conclusion of our study is that bone properties 
such as density, bending force, ash and mineral contents explain 
only a limited proportion of the variance of the prevalence 
and severity of keel bone damage. Thus, environmental factors 
such as housing, perch design, and accidents may present the 
most likely causes for fractures. An alternative explanation for 
the lack of correlations between bone properties measured by 
PQCT and keel bone condition could be that our bone measure-
ments at depopulation did not represent the bone conditions at 
the time of fracture. Keel bone deviations and fractures might 
have changed the bone properties to such an extent that PQCT 
did not yield usable results. Using old hens that were well past 
the peak laying rate might not have given us the bone proper-
ties at the age at peak laying when fractures occurred (29, 40). 
However, the high values in calcium content in certain flocks 
along with the low number of fractures in these flocks indicate 
that mineralization and structure of the bones may affect the 
prevalence of keel bone fractures. Therefore, further research in 
this direction is needed.
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