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Polarisers in the focal domain: 
Theoretical model and 
experimental validation
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Polarisers are one of the most widely used devices in optical set-ups. They are commonly used with 
paraxial beams that propagate in the normal direction of the polariser plane. Nevertheless, the 
conventional projection character of these devices may change when the beam impinges a polariser 
with a certain angle of incidence. This effect is more noticeable if polarisers are used in optical systems 
with a high numerical aperture, because multiple angles of incidence have to be taken into account. 
Moreover, the non-transverse character of highly focused beams makes the problem more complex 
and strictly speaking, the Malus’ law does not apply. In this paper we develop a theoretical framework 
to explain how ideal polarisers affect the behavior of highly focused fields. In this model, the polarisers 
are considered as birefringent plates, and the vector behaviour of focused fields is described using the 
plane-wave angular spectrum approach. Experiments involving focused fields were conducted to verify 
the theoretical model and a satisfactory agreement between theoretical and experimental results was 
found.

Polarisers are devices present in almost all optical set-ups. They are used to project the electric field of the beam 
onto a direction given by the orientation of the polariser axis. In most optical systems beams propagate along the 
optical axis; in this case the mathematical description of the effect of the polariser is simple. Nevertheless, a more 
accurate model has to be used if the beam impinges the polariser with a certain angle with respect to the normal 
direction of the plane of the polariser. The problem becomes more complex when dealing with highly focused 
fields since multiple angles of incidence have to be taken into account. Moreover, the electric field is not transverse 
to the direction of propagation and the contribution of the longitudinal component plays a role on how the field 
interacts with a polariser1–3. In the last years, beam shaping and highly focused beams attracted great interest in 
multiple research areas such as electron acceleration, nonlinear optics, optical tweezers, optical security, etcet-
era4–17. For this reason, in our opinion it is required to develop a theoretical framework that explains how ideal 
polarisers affect the behaviour of beams in the focal domain.

In this work, polarisers are considered to be optically equivalent to thin uniaxial anisotropic plates. The 
transmission of light through birefringent layers has been analysed using different approaches. For instance, the 
4 ×​ 4 matrix method provides exact solutions18–20. However, the simpler 2 ×​ 2 matrix technique offers accurate 
results if the effect of multiple internal reflections can be neglected21–25. This approximation is valid for most 
practical birefringent devices because they are relatively thick. For example, this model was used to describe 
obliquely-illuminated twisted nematic liquid-crystal displays23–25. The objective of this paper is to analyse the 
effect of an ideal polariser on a highly focused field. In particular, we develop a theoretical approach for polar-
isers in the focal domain using the angular representation of the field and the 2 ×​ 2 model for uniaxial media. 
Theoretical results are supported by experiments. To the best of our knowledge this is the first experimental 
report on polarisers and highly focused beams.

The paper is organized as follows: First, we develop a theoretical model for polarisers based on uniaxial aniso-
tropic media. This approach provides an explanation on how highly focused fields interacts with linear polarisers 
in the focal area. Numerical and experimental results are presented and discussed. Finally, we review the physical 
principles of birefringent media and how are they related with polarisers. A detailed explanation of the experi-
mental set-ups is provided.
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Results
Behaviour of a linear polariser on a highly focused field.  The electric field distribution in the focal 
region of a high numerical aperture optical system is given by the Richards-Wolf integral26

∫ ∫ θ ϕ θ θ ϕ= − ⋅
θ π

A ikE r E r s( ) ( , )exp( )sin d d , (1)0
0 0

2M

where A is a constant related to the focal length and the wavelength, k =​ 2π/λ is the wave number, θM is the 
semi-aperture angle, r =​ (r, φ, z) denotes the polar coordinates at the focal area, θ and ϕ are the coordinates at the 
Gaussian sphere and θ ϕ θ ϕ θ=s (sin cos , sin sin , cos ) is the wave-front vector. The numerical aperture (NA) 
and θM are related by means of NA =​ sin θM (see Fig. 1 for details). E0 is the so-called vectorial angular spectrum, 
namely

θ ϕ θ θ ϕ ϕ θ ϕ θ ϕ= +P f fE e e( , ) ( )( ( , ) ( ) ( , ) ( , )) (2)0 1 1 2 2

where

ϕ ϕ= −e ( sin , cos , 0) (3a)1

θ ϕ θ ϕ θ= − .e (cos cos , cos sin , sin ) (3b)2

Note that e2 is contained in the plane of incidence and e1 and e2 are orthogonal, i.e. e1 ⋅​ e2 =​ 0; symbol ⋅​ denotes 
scalar product. For an isoplanatic system, the apodization function becomes θ θ=P ( ) cos ; f1(θ, ϕ) and f2(θ, ϕ) 
are, respectively, the azimuthal and radial transverse components of the incident paraxial field.

Let us now consider an ideal linear polariser characterized by polarization angle α (see Fig. 1). According 
to the model of polarisers as uniaxial anisotropic media21,22, the contribution of each plane wave of the angular 
spectrum is described by

β θ ϕ= ⋅ =− ⋅e j o eP E E q p( )[ ] [( ( , ) ) ] { , } (4)j j
ikr s

0 0

where sub-indices o and e stand for O-type and E-type polarisers respectively. The direction of the optical axis 
(c-axis) is described by β β(cos , sin , 0) where α and β are related by α =​ β +​ π/2 for O-type polarisers and 
α =​ β for E-type polarisers. Vectors qo, qe, po and pe are given by

β ψ ψ= −t tq e e( ) cos sin (5a)o s p1 2

β ψ ψ= ′ − ′t tp e e( ) cos sin (5b)o s p1 2

β ψ ψ= +t tq e e( ) sin cos (5c)e s p1 2

β ψ ψ= ′ + ′t tp e e( ) sin cos (5d)e s p1 2

where

ψ
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Figure 1.  Coordinate system and geometrical magnitudes. 
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Finally, the Fresnel transmission coefficients read
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More information about this model can be found in the Methods section. Note that ts and tp are evaluated at 
the first surface, coefficients t′​s and t′​p are related to the second surface, θ0 is the refraction angle that fulfils 
θ θ= nsin sino 0, and no is the ordinary refractive index. Moreover, under the small-birefringence approximation 
− n n no e o, both ordinary and extraordinary waves propagates in the same direction (ne is the extraordinary 

refractive index)21,22.
The electric field of the focused beam after the polariser Ep(r, β) is given by combining Eqs (1) and (4):

∫ ∫β θ ϕ θ θ ϕ= ⋅ =
θ π − ⋅A e j o eE r E q p( , ) [( ( , ) ) ] sin d d { , } (8)p j j

ikr s

0 0

2
0

M

From the previous equation follows that the features of the field after the polariser depend on the polarization 
state of the vector angular spectrum E0(θ, φ), its topological charge and the numerical aperture of the objective 
lens. Moreover, Eq. (8) clearly states that Ep(r, β) is non-uniformly polarised and presents a longitudinal com-
ponent even in the case that the field that crosses the polariser is purely transverse. For instance, according to 
Eq. (2) an azimuthally polarised incident beam (with f2 =​ 0) displays a non-zero longitudinal component after 
the polariser.

In order to provide more insight about how ideal polarisers modify the behaviour of a field in the focal area, 
two parameters are introduced: (i) the ratio εz between the total power of the longitudinal component and the 
entire field and (ii) the transmittance (a.k.a. gain) τ, defined as the ratio between the energy transmitted and the 
energy of the incident field27. Figure 2a shows the behaviour of εz as a function of NA for the O- and E- cases. The 
input beam is linearly polarised orthogonal to the polariser axis. In this paper we used the following values for the 
calculations involving refractive indexes: no =​ 1.55 and ne =​ 1.556. Note that even for low NA values, the transmit-
ted longitudinal component is non-negligible. Figure 2b show the behaviour of τ as a function of polariser angle 
β. It is apparent that maximum or minimum transmittances are reached when E0 is parallel or perpendicular to 
qe or qo, respectively. Figure 2c is a zoom of Fig. 2b around β =​ 0°. It is worth to point out that the minimum is 
not zero and the maximum is not one due to the effect of the Fresnel coefficients [Eq. (7)]. Moreover, the height 
of maxima and minima depend on NA.

Figure 2.  (a) Ratio between the total power of the longitudinal component and the entire field, εz(NA); (b) 
Ratio between the energy transmitted and the energy of the incident field as a function of the direction of 
polarization, transmittance τ(β); (c) zoom of the minimum of transmittance τ(β) for O-type polarisers.
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Another interesting issue is the analysis of the behaviour of a field that successively crosses two O-type polar-
isers whose axes form an angle γ. Let Epp be the field after the second polariser. This distribution can be derived 
using Eqs (4) and (8). After some algebra, Epp reads

∫ ∫
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β γ
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where Ts =​ t′​sts and Tp =​ t′​ptp. Note that for γ =​ 0 (two parallel polarisers), Epp(r, β, 0) ≠​ Ep(r, β). Therefore, an ideal 
polariser does not behaves as a projector for highly focused fields. Again, this fact is a consequence of the presence 
of the Fresnel coefficients [see Eq.  (7)]. Nevertheless, for systems with small NA, Ts ≈​ Tp ≈​ 1 then 

β βE r E r( , , 0) ( , )pp p  and the usual projector character of linear polarisers is recovered. On the other hand, if 
γ =​ π/2 (two crossed polarisers) the output field is not zero and therefore the usual Malus’ law does not apply. On 
top of that, if the influence of the Fresnel coefficients is neglected, Ts ≈​ Tp ≈​ 1, Epp(r, β, π/2) =​ 0, the usual result 
for normal incidence is recovered. Figure 3a shows the behaviour of the transmittance after crossing two polaris-
ers as a function of γ following Eq. (9). Figure 3b displays a zoom of Fig. 3a around γ =​ 90°. In particular, for 
γ =​ 90°, Epp ≠​ 0 and the value of the minima increases with NA. Figures 2 and 3 can be reproduced with the codes 
provided in the Supplementary Information Section.

Experimental results
In order to verify the theoretical approach presented in the previous section, several experiments have been 
conducted. First, we analyse the behaviour of a plane wave that impinges on a O-type polariser with a certain 
angle θ. The optical setup is presented in subsection ‘Experimental Set-ups’ (see below). According to Eq. (4), the 
emerging beam is

ψ ψ ψ ψ= − ′ − ′f t f t t tE e e( cos sin )( cos sin ), (10)p s p s p1 2 1 2

and the irradiance of this field reads

θ β β

θ β
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f t f t
t t tE
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(1 sin cos )
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p
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2

2
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2
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when the  system is illuminated with a linearly polarised plane wave with f1 =​ f2 =​ 1 and ϕ =​ 0. A power-meter 
measures the total integrated irradiance of the transmitted beam Ep. Figure 4 shows the total irradiance of this 
beam as a function of the polarization angle α =​ β +​ π/2 for different values of the incidence angle θ. Solid lines 
indicate the calculated values using Eq. (11) whereas the dots represent experimental data. Figures 4b and c 

Figure 3.  Transmittance when the field crosses successively two O-type polarisers forming a γ angle for 
NA = 0.1, 0.65, 1. 



www.nature.com/scientificreports/

5Scientific Reports | 7:42122 | DOI: 10.1038/srep42122

display a zoom of the plots in the maxima and minima areas. The curves display a clear shift for the position of 
maxima and minima as a function of the angle of incidence θ, compatible with Eq. (11). Experimental data for 
generating Fig. 4 is available in the Supplementary Information section.

A second experiment has been carried out. In this case, a horizontal-linearly polarised plane wave 
( ϕ= −f sin1  and ϕ=f cos2 ) is focused using a microscope objective lens with NA =​ 0.65. The beam passes 
through a O-type linear polariser located at the focal plane and then a CCD camera records the irradiance. 
Figure 5a shows the irradiance distributions recorded by the camera for two positions of the polariser, namely 
α =​ 0° and α =​ 90°. For comparison purposes, |Ep(r, α)|2 has been computed using Eq. (8) and they are depicted 
in the left column. Figure 5b shows experimental and numerical irradiances |Ep(r, α)|2 for values of α close to 90°. 
Note that beam irradiance displays a cross-like distribution for α =​ 90° but this shape disappears when the polar-
iser is rotated just a few degrees. Experimental images are noisy because the energy of the irradiance that reaches 
the camera is very low for α ≈​ 90°, as described in Fig. 2c.

Discussion
As explained above, the properties of a highly focused field after a linear polariser are substantially different to 
the characteristics of a wave propagating in the paraxial regime. More specifically, the longitudinal component 
is modified and polarisers do not behave as projectors when interact with focused fields; therefore, the usual 
Malus’ law does not strictly apply. We used a model for linear polarisers based on uniaxial anisotropic plates 
where multiple internal reflections are neglected. According to this approach, the effect of a polariser on the focal 
plane of a high NA objective lens can be described by using the plane waves spectrum representation of elec-
tromagnetic fields. It is worth to point out that the usual projector character of the polariser is recovered in the 
paraxial approach when the influence of the Fresnel coefficients is neglected. We conducted several experiments 

Figure 4.  (a) Measured and calculated integrated irradiances of Ep as a function of polariser angle α for 
different angles of incidence θ. (b) and (c) display a zoom in the minima and maxima areas, respectively. Errors 
bars indicates the precision in the data acquisition for both angular and irradiance measurements.

Figure 5.  Focused fields after the polariser: (a) α =​ 0° and α =​ 90°. Experimental results are presented on the 
right whereas the corresponding numerical distributions are shown on the left. (b) Experimental and numerical 
irradiances for polarization angles close to α =​ 90°.
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for verifying our theoretical framework. First, we analysed the behaviour of a paraxial beams impinging the 
polariser with a certain angle and then, linearly polarised plane waves were focused using a microscope objective. 
The irradiance distribution and the total integrated irradiance were measured. Results showed a good agreement 
between theoretical and experimental data.

Methods
Theoretical Background: Polarisers as uniaxial anisotropic media.  Polarisers and retarder plates 
have been described as a uniaxial anisotropic plane-parallel media of thickness L with the optical axis (c-axis) 
parallel to the plate surfaces21,22. This description provides an appropriate mathematical framework for explaining 
the behaviour of light when interacts with these devices. The coordinate system is selected in such a way that the 
z-axis is orthogonal to the plate surface, being β the angle between the c- and the x-axes. Accordingly, the direc-
tion of the c-axis is described by vector β β=c (cos , sin , 0). Figure 6 describes the geometrical magnitudes 
involved in the problem. In particular, angle Ψ​ [see Eq. (6)] is defined by = ×ˆ ˆo s e and e1, where ô and ê are the 
ordinary and extraordinary unit vectors.

Let us consider a plane wave with a wave-front vector s impinging an anisotropic plate from subspace z <​ 0; 
θ and φ are the polar and azimuthal angles respectively. Ei and Ep(β) are the electric fields of the incident and the 
transmitted wave-fronts respectively:

= + − ⋅f f ikE e e r s( )exp( ) (12a)i 1 1 2 2

β = + − ⋅ .f f ikE e e r s( ) ( )exp( ) (12b)p t t1 1 2 2

Provided that multiple internal reflections can be neglected, components f1, f2, f1t and f2t, are determined by 
means of the so called Dynamical Matrices18–20. Derivation of these parameters can be carried out under the 
small-birefringence approximation, i.e. − n n n n,e o e o, where no and ne are the ordinary and extraordinary 
indices respectively. This approximation is valid for a large number of birefringent materials and devices includ-
ing polarisers and liquid crystals21,22. If this approximation holds, the relationship between incident and transmit-
ted electric fields reads

β = ⋅ + ⋅ .d dE E q p E q p( ) ( ) ( ) (13)p o i o o e i e e

Quantities do and de are given by = − ˆd ikn Lexp( )o o  and = − ˆd ikn Lexp( )e e , where κ= −n̂ n io o o and 
κ= −n̂ n ie e e are the ordinary and extraordinary complex refractive indices.

From a physical point of view, Eq. (13) decomposes the incident beam into a linear combination of the normal 
modes of propagation (ordinary and extraordinary) along with the Fresnel transmission on the two surfaces of 
the plate. Vectors po and pe fulfil ψ ψ⋅ = ′ − ′t tp p sin cos ( )o e s p

2 2  and therefore, they are not orthogonal unless 
the crystal axis direction c is parallel or perpendicular to the incident plane. For normal incidence (θ =​ 0), ts =​ tp 
and t′​s =​ t′​p; therefore, vectors po and qo are parallel to the unitary vector α α(cos , sin , 0)o o , with αo =​ β +​ π/2; pe 
and qe are parallel to vector α α(cos , sin , 0)e e , with αe =​ β. It should be noted that s- or p- polarization is not 
preserved, unless ψ =​ 0 (for the ordinary wave) or ψ =​ π/2 (for the extraordinary wave).

Light propagating through a uniaxial polarisers suffers a strong attenuation of one of the propagation modes 
within the bulk of the polariser. Accordingly, polarisers can be classified into two types:

•	 O-type polarisers transmit ordinary waves and attenuates extraordinary ones, i.e. κ  0o  and κe >​ 0 and in 
this case, d 1o  and d 0e . Thus, for this type of polarisers, the so-called polarization angle α is orthog-
onal to the c-axis, i.e. α =​ αo =​ β +​ π/2.

Figure 6.  Coordinate system and geometrical magnitudes. (a) General view. (b) View of e1, ô, ê and ψ​.  
(c) Profile view of the z- and c- plane.
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•	 E-type polarisers transmit extraordinary waves and attenuates ordinary ones, i.e. κo >​ 0 and κ  0e . Equiva-
lently, d 0o  and d 1e . Thus, for this type of polarisers, the so-called polarization angle α is parallel to 
the c-axis, i.e. α =​ αe =​ β.

Then, the transmitted field Ep [Eq. (13)] for the O- and E-type polarisers becomes

β= = ⋅ −E P E E q p( )[ ] ( ) (O type) (14a)p i i o o

β= = ⋅ −E P E E q p( )[ ] ( ) (E type) (14b)p i i e e

The plane wave after the polariser is linearly polarised along po or pe and due to the Fresnel coefficients in 
Eq. (5), an ideal polariser does not behave as a projector operator even for normal incidence (θ ≈​ θ0). Nevertheless, 
if the contribution of the Fresnel coefficients is not taken into account, Eqs (14a) and (14b) are in agreement with 
the model used in refs 1 and 2.

The polarisers used in the experiments are produced by stretching polymer polyvinyl alcohol. According to21, 
this technique produces an alignment of the anisometric molecules in such a way that the extinction direction is 
parallel to the molecular structures. In the present model, the polarisers are considered to be O-type because the 
c-axis is parallel to the absorption axis. Moreover, the polarization direction α α(cos , sin , 0) is orthogonal to the 
c-axis, i.e. α =​ β +​ π/2.

Experimental set-ups.  Two different optical set-ups have been developed: The first one is used to analyse 
the behaviour of a linearly polarised plane wave that impinges on a polariser at a certain angle of incidence θ (see 
Fig. 7a). The light source is a conventional non-polarised He-Ne laser; the beam is polarised using linear polariser 
P0 (α =​ 45°) placed at the direction normal to the propagation direction. A second polariser PA is mounted on 
a goniometer and thus, precise measurements of incidence angle θ can be carried out. Finally, a power-meter is 
used to measure the integrated irradiance transmitted by polariser PA. Several values of the integrated irradiance 
have been recorded as a function of α (for polarizer PA). More measurements were carried around α =​ 40° and 
α =​ 135° because more resolution is required. The angle of incidence was set to θ =​ 0°, 30°, 45°, 60°, 68° with a 
precision of ±​1°. The results are presented in the Fig. 4 where the error bars show the precision of the acquired 
data. The precision of the polarization angle α is ±​1° whereas the error associated to the total integrated irradi-
ance depends on the scale used in the power-meter.

The second system (depicted in Fig. 7b) uses also a He-Ne laser as a light source. The beam is expanded and 
crosses polariser P0; the field is focused using a microscope objective with a NA =​ 0.65. Despite the fact the NA of 
the objective lens is not very high, the recorded beams show a distinctive behaviour when compared with paraxial 
beams. Moreover, if a objective lens with a higher NA was used, the size of the focused field would be so small 
that the details of the field distribution could not be detected by the camera. Analyser PA is set at the focal plane 
of the objective lens and afterwards, a CCD camera records the irradiance distribution transmitted by polariser 
PA. The precision for angle α is around ±​0.5°. The integrated irradiance shown in Fig. 2b and c is obtained with a 
power-meter after polariser PA.
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