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Deep inspiration breath hold (DIBH) in left-sided breast cancer radiotherapy treat-
ments allows for a reduction in cardiac and pulmonary doses without compromising 
target coverage. The selection of the most appropriate technology for DIBH moni-
toring is a crucial issue. We evaluated the stability and reproducibility of DIBHs 
controlled by a spirometric device, by assessing the variability of the external surface 
position within a single DIBH (intra-DIBH) and between DIBHs performed in the 
same treatment session (intrafraction) or in different sessions (interfraction). The 
study included seven left-breast cancer patients treated with spirometer-based DIBH 
radiotherapy. Infrared optical tracking was used to record the 3D coordinates of 
seven to eleven passive markers placed on the patient’s thoraco–abdominal surface 
during 29–43 DIBHs performed in six to eight treatment sessions. The obtained 
results showed displacements of the external surface between different sessions up to 
6.3 mm along a single direction, even at constant inspired volumes. The median value 
of the interfraction variability in the position of breast passive markers was 2.9 mm 
(range 1.9–4.8 mm) in the latero–lateral direction, 3.6 mm (range 2.2–4.6 mm) in 
the antero–posterior direction, and 4.3 mm (range 2.8–6.2 mm) in the cranio–caudal 
direction. There were no significant dose distribution variations for target and organs 
at risk with respect to the treatment plan, confirming the adequacy of the applied 
clinical margins (15 mm) to compensate for the measured setup uncertainties. This 
study demonstrates that spirometer-based control does not guarantee a stable and 
reproducible position of the external surface in left-breast DIBH radiotherapy, 
suggesting the need for more robust DIBH monitoring techniques when reduced 
margins and setup uncertainties are required for improving normal tissue sparing 
and decreasing cardiac and pulmonary toxicity.
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I.	 Introduction

Postoperative radiotherapy following breast conserving surgery significantly reduces the risk of 
local recurrences and improves long-term survival.(1) However, radiation-induced cardiac and 
pulmonary complications represent a primary concern, particularly for left-sided breast cancer 
patients.(2) A clinically applicable protocol in left-breast radiotherapy is the deep inspiration 
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breath hold (DIBH), which allows increasing the distance between heart and breast and 
reducing lung density.(3,4) Dosimetric studies in left-sided breast cancer patients treated with 
DIBH techniques showed a reduction of cardiopulmonary doses (up to 2.5 Gy) with respect to 
conventional free-breathing treatments, without compromising target coverage.(5,6) Due to the 
radiobiological requirement of dose fractionation and to the need of multiple DIBHs for dose 
delivery in each therapy session, intra- and interfraction repeatability of DIBHs with respect 
to the treatment plan is a crucial issue, if inadequate clinical margins are applied. The selection 
of the most appropriate technology for DIBH monitoring is, therefore, essential to ensure the 
effectiveness of radiation therapy.

Different methods have been proposed to monitor the stability and reproducibility of repeated 
DIBHs during radiotherapy treatments. The most common technique uses spirometric devices 
that measure the volume of inspired and expired air through differential pressure transducers.(7)  
DIBH can also be monitored by using external respiratory surrogates that capture the motion 
of the patient’s thoraco–abdominal surface. For example, infrared (IR) optical localizers can 
record the trajectory of single or multiple passive markers placed on the patient’s skin near the 
irradiated target.(8-10) A third technique involves the use of laser- or video-based surface imaging 
systems, which can provide detailed breathing-related information by dynamically scanning the 
entire patient’s surface.(11-14) Three-dimensional surface imaging has also been recently applied 
to quantify setup uncertainties in left-breast DIBH radiotherapy,(15) as external breast surface 
can be considered a reliable surrogate for the superficial mammary gland.(16) 

The aim of this study was to evaluate DIBH stability and reproducibility during left-breast 
radiation treatments under the control of a commercial spirometric device. DIBH performance 
analysis was based on noninvasive IR optical tracking of the external breast surface, by mea-
suring the variability in the 3D position of multiple passive markers during repeated DIBHs at 
tolerated inspired volumes. The ability of spirometer-based monitoring to ensure a stable and 
reproducible patient setup was assessed by evaluating the variability of passive marker positions 
within a single DIBH (intra-DIBH stability) and between DIBHs performed in the same treat-
ment session (intrafraction reproducibility) or in different sessions (interfraction reproducibility). 
In addition, we investigated the differences in the DIBH variability of thoracic and abdominal 
surface regions under spirometric guidance. The dosimetric consequences within target and 
organs at risk (OARs) associated with the measured DIBH uncertainties were also evaluated.

 
II.	 Materials and Methods

A. 	C linical protocol
Seven left-sided breast cancer patients undergoing whole-breast tangential radiotherapy with 
DIBH technique were selected for the study. A dedicated spirometric device (SpiroDyn’RX, 
Dyn’R, Muret Cedex, France), shown in Fig. 1(a), was used for DIBH control based on the 
measured volume of inspired air.(17) A spirometry training session was performed before the 
CT simulation, to evaluate the patients’ ability to repeatedly hold their breath at constant 
forced inspiration for at least 20 seconds. For each patient, the DIBH reference volume was 
set to 90% of their maximum inspiratory capacity reached during training, as indicated for 
the SpiroDyn’RX system. The gating window was centered in the selected volumetric level, 
with a tolerance interval of ± 0.1 liters. Visual feedback was provided to the patients with the 
aid of videoglasses (Fig. 1(a)), which displayed the breathing pattern and the selected DIBH 
gating window. 

To quantitatively assess the reproducibility of the external surface position during planning 
and treatment DIBHs, multiple skin landmarks (nevi or scars) were selected on the patients’ 
thoraco–abdominal surface. The number of landmarks per patient varied from seven to eleven, 
depending on the number of clearly visible nevi or scars that could be identified on the patients’ 
skin. For each patient, at least one landmark was located on the target left-breast. Radiopaque 
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markers (BTS Bioengineering, Milano, Italy) containing a metallic material were placed on the 
identified landmarks during CT simulation (Fig 1(b)). A photo of the marked patients’ surface 
was taken at the time of planning, in order to allow the recognition of the corresponding skin 
landmarks during the following treatment sessions. 

All patients underwent two consecutive helical CT scans, each with 2.5 mm slice thickness. 
The first CT acquisition was performed in free-breathing, and the second one within a single 
DIBH. The free-breathing CT dataset was used to set the isocenter position for the daily patient 
setup, while the breath hold CT image was used for treatment planning (Philips Pinnacle v9.0, 
Philips Radiation Oncology Systems, Fitchburg, WI). The clinical target volume (CTV) was 
defined as the whole breast, and the planning target volume (PTV) was defined as the CTV 
plus a 15 mm margin to account for patient setup errors, breast deformation, and beam lateral 
penumbra. The CTV–PTV margin was manually reduced near the heart and lungs to meet the 
following dose constraints, based on the National Surgical Adjuvant Breast and Bowel Project 
(NSABP) B-39 / Radiation Therapy Oncology Group (RTOG) 0413 protocol:(18)

•	 dose received by 95% of the CTV (D95%) should be greater than 95% of the prescription 
dose;

•	 volume of heart receiving 5 Gy (V5Gy) should be less than 5%;
•	 dose received by 1 cm3 of contralateral breast (D1cc) should be less than 7% of the prescrip-

tion dose; and
•	 volume of ipsilateral lung receiving 20 Gy (V20Gy) should be less than 20%.

At the beginning of each treatment session, passive markers with an IR-reflective coating 
(BTS Bioengineering, Milano, Italy) were positioned on the corresponding skin landmarks 
selected at the time of planning (Fig. 1(b)). For patient setup, an initial laser-based alignment 
was performed on skin tattoos in free-breathing. Patient positioning was verified during DIBHs 
by checking the source–skin distance (SSD) and by acquiring MV electronic portal images at 
treatment angles. Positioning errors were corrected by applying the appropriate shifts to the 
treatment couch (1 mm spatial resolution). The whole breast was treated with 2 to 4 opposed 
tangential photon beams at 2.25 Gy/fraction, for a total of 45 Gy delivered in 20 fractions over 
four weeks. Beam energies of 6 MV were used, with the addition of 15 MV beams in specific 
cases. High-dose rates of 500–600 MU/minute were applied to limit the delivery time up to 
20 seconds per beam. 

During the whole treatment session, the trajectories of passive markers placed on the patients’ 
surface were acquired by means of an IR optoelectronic localizer (ELITE, BTS Bioengineering, 
Milano, Italy), used in a dual camera configuration with a sample rate of 50 Hz (Fig. 1(c)). The 
3D reconstruction of passive marker coordinates required the calibration of the stereocamera 
parameters, obtained with the Direct Linear Transformation method.(19) The daily calibration 
procedure consisted of acquiring a 36 × 36 cm2 grid phantom with 7 × 7 equispaced passive 

Fig. 1.  SpiroDyn’RX system (a) connected to the patient through a mouthpiece, equipped with video-glasses for visual 
guidance. Multiple radiopaque/passive markers (b) placed on the patient’s surface, grouped in left-breast, thoracic, and 
abdominal regions. IR camera (c) of the optoelectronic localizer and grid phantom used for camera calibration.
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markers (Fig 1(c)). During calibration, the phantom was positioned on the treatment couch, 
aligning the central passive marker with the isocentric laser lines and shifting the couch at five 
different heights (with 5 cm step). The reference system axes of the calibrated optoelectronic 
localizer coincided with the latero–lateral (LL), antero–posterior (AP), and cranio–caudal (CC) 
directions of the linac unit.

B. 	 DIBH performance analysis
For practical reasons, only six to eight out of 20 treatment sessions were monitored for each 
patient. Each monitored session included at least four DIBHs: once during the SSD check, once 
during the portal image acquisition, and once per tangent field during treatment. The 3D coordi-
nates of passive markers were continuously acquired by the IR optoelectronic localizer for the 
duration of DIBHs, including at least one free-breathing cycle preceding each DIBH. The stability 
and reproducibility of the external surface position during repeated DIBHs was quantitatively 
evaluated by computing the following set of variability indices, illustrated in Fig. 2:

i)	 Intra-DIBH stability, estimated as the 5th–95th percentile range of the passive marker coor-
dinates acquired within a single DIBH. The intra-DIBH stability Si

m of the m-th passive 
marker for the i-th DIBH, performed in the temporal window Ti, was computed as:

	
		

	
	 (1)

	

where y(t)m represents the marker coordinate along a spatial direction.

ii)	Intrafraction reproducibility, estimated as the 5th–95th percentile range of the passive 
marker intra-DIBH positions associated with all DIBHs occurred within the same session. 
The intrafraction reproducibility Vn

m of the m-th passive marker in the n-th session Sn was 
obtained with the following equation: 

                                 	
	

		
               (2)

	  

where di
m is the intra-DIBH position of the m-th passive marker for the i-th DIBH, com-

puted as the median value of the passive marker coordinates acquired within the temporal 
window Ti: 

		  (3)
	

Fig. 2.  Exemplifying trajectory of a passive marker along a spatial direction. The parameters used for the estimation of 
the DIBH variability indices are represented in the Figure.
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�For the DIBHs performed during SSD control and portal imaging, the intra-DIBH positions 
were corrected for the applied setup shifts, to allow the comparison with postsetup DIBHs.

iii)	Interfraction reproducibility, estimated as the 5th–95th percentile range of the passive marker 
intra-DIBH positions associated with all DIBHs performed in all sessions. The interfraction 
reproducibility Wm of the m-th passive marker was defined as:

		  (4)
	

where N is the total number of monitored treatment sessions. The term fn
m is the free-breathing 

baseline of the m-th passive marker for the n-th session, which was subtracted from the 
intra-DIBH positions in order to compensate for possible inaccuracies in marker placement 
and for residual setup errors. The baseline fn

m was obtained by mediating the passive marker 
free-breathing positions bi

m associated with each DIBH performed in the n-th session:

		
                (5)

	
	

The free-breathing position bi
m for the i-th DIBH was computed as the median value of the 

passive marker coordinates acquired within all monitored free-breathing cycles that precede 
the DIBH. In order to validate the use of passive marker free-breathing positions as baseline, 
the free-breathing stability Fm of each m-th passive marker was assessed by computing the 
median distance between the baseline fn

m and the free-breathing positions bi
m associated 

with all i-th DIBHs performed in the n-th session:  

		
    (6)

	

For each patient, the described variability indices were mediated over all passive markers. To 
investigate the differences in the breathing patterns of thoracic and abdominal surface compart-
ments, the variability indices were also separately estimated by grouping passive markers placed 
on patients’ left-breast, thorax, and abdomen. The line connecting the right and left submammary 
sulcus was used to distinguish thoracic and abdominal markers, as depicted in Fig. 1(b). 

Dosimetric consequences caused by the measured surface uncertainties were evaluated fol-
lowing the method described by Baroni et al.(20) Changes in dose distribution within CTV and 
OARs were assessed by considering DIBH variability related to all monitored sessions and to 
the single session with the highest difference in surface measurements compared to treatment 
plan (worst session). For each patient, the monitored session with the maximum 3D average 
distance between the planning and treatment positions of all passive markers was selected as the 
worst session. The treatment position was estimated by mediating passive marker coordinates 
over all DIBHs associated with the delivery of the treatment fields in each single session. The 
planning position was computed by manually segmenting in the DIBH CT images the radiopaque 
markers placed on the corresponding skin landmarks. Marker segmentation in CT volumes was 
performed through the medical image viewer VV,(21) which allows a submillimeter resolution 
for image visualization and manual selection. 

The rigid transform minimizing the Euclidean distance between the planning and treatment 
positions of all passive markers was estimated for each patient, considering the treatment posi-
tions both associated with the worst session and mediated over all monitored sessions. The 
obtained rotations and translations were applied to the original DIBH CT dataset and related 
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structures. A replanning of the radiation treatment with identical beam and points of interest 
(isocenter and prescription points) was performed on the transformed CT volumes, obtaining 
the new dose-volume histograms for CTV and OARs. 

 
III.	 Results 

The average total number of DIBHs acquired per patient was 35, ranging from 29 to 43. The 
length of the DIBHs was about 5 sec for SSD control and portal acquisition, whereas DIBHs 
performed during treatment delivery lasted 18–20 sec or 11–14 sec for patients treated with two 
or four tangential fields, respectively. The median (25th–75th percentile) error in the 3D recon-
struction of passive markers with the optoelectronic localizer, estimated during the daily cali-
bration on the grid phantom, was 0.93 mm (0.63–1.33 mm). The passive marker free-breathing 
positions were stable in all patients, obtaining a free-breathing stability (Eq. (6)) mediated over 
all passive markers lower than 0.7 mm for each spatial coordinate, with a median value across 
all patients of 0.3 mm for LL direction and 0.4 mm for AP and CC directions. 

Figure 3 reports the intra-DIBH, intrafraction, and interfraction variability indices mediated 
over all patients along the three spatial directions, grouped by passive markers located on left-
breast, thorax, and abdomen (Fig 1(b)). The intra-DIBH variability was lower than the other 
indices, with median values less than 1.9 mm along each direction. For the three anatomical 
regions, the ratio between intra- and interfraction errors was about 1:2, with the breast area 
showing variability closer to the thoracic region. The variability of the abdominal region was 
higher in AP direction, with median intra- and interfraction errors of 2.4 and 4.9 mm, respectively. 
The thoracic area, including the breast, showed an increased variability along CC direction, 
with median intra- and interfraction errors of 2.5 and 4.5 mm, respectively. 

The variability indices mediated over all passive markers are depicted in Fig. 4 for each 
patient. The highest intra-DIBH stability was found along LL direction, with median values 
ranging between 0.6–1 mm. Along AP and CC directions, the intra-DIBH variability in pas-
sive marker positions was less than 2 mm for all patients except patient P1, who had a median 
value of 3.5 mm along CC direction. An exemplificative DIBH performed by patient P1 is 
represented in Fig. 5, depicting variations of AP and CC coordinates of passive markers despite 
a constant level of inspired volume. The intrafraction reproducibility range across all patients 
was 0.9–2.5 mm along LL direction, 1.1–3.2 mm along AP direction, and 1.2–3.4 mm along CC 
direction. The interfraction reproducibility range was 2.2–4.4 mm, 3.1–6.3 mm, and 3.8–5.8 mm 
for LL, AP, and CC coordinates, respectively (Fig. 4). 

Fig. 3.  DIBH variability in passive marker positions for breast, thoracic, and abdominal regions. The radius (r) of the red 
circles represents the median value of the intra-DIBH stability mediated over all DIBHs performed by each patient. The 
blue circles correspond to the median value of the intrafraction reproducibility over all monitored sessions of each patient, 
whereas the green circles indicate the median interfraction reproducibility.
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Fig. 4.  Intra-DIBH, intrafraction, and interfraction DIBH variability (median ± quartiles) along LL, AP, and CC directions 
mediated over all passive markers for each patient.

Fig. 5.  AP and CC motion of a thoracic and an abdominal passive marker during a DIBH performed by patient P1 at a 
constant inspired volume.
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The relationship between the measured surface displacements and the variability of the 
inspired volume within the tolerance band was also investigated. Linear correlation analysis 
between the intra-DIBH positions of passive markers and the mean volumes inspired at cor-
responding DIBHs revealed that the two variables were statistically uncorrelated. Pearson 
coefficients computed for each single passive marker across all monitored sessions did not 
exceed 0.5, whereas Pearson values mediated over all passive markers were less than 0.4 for 
CC direction and 0.3 for AP and LL directions in all patients. 

The 3D distances between the passive marker planning and treatment positions considering 
all monitored sessions ranged from 5.3 to 8.0 mm, with a mean value of 6.8 mm. The range of 
the 3D distances related to the worst session was 6.8–14.0 mm, with a mean value of 9.5 mm. 
Table 1 reports for each patient the rotations and translations of the rigid transform computed 
between the passive marker planning and treatment positions associated with all monitored 
sessions. For four out of seven patients, the highest translations were found along CC axis, 
with a range between -6.3 and 5.4 mm. The remaining three patients showed higher translations 
in AP direction, ranging from -4.1 to 5.6 mm. The LL translation was less than 1.7 mm in all 
patients. The maximum absolute values of the measured rotations around LL, AP, and CC axes 
were 1.7°, 1.1°, and 2.1°, respectively. 

The residual displacements, estimated as the 3D distance between the passive marker 
planning positions and the corresponding treatment positions after applying the rotations and 
translations of the rigid transform associated with all monitored sessions, are listed in Table 1 
for each patient. The residual displacements mediated over all passive markers ranged between 
1.9–3.3 mm across all patients. Table 1 also includes the group mean, systematic, and random 
errors(22) of the rotations and translations estimated for each spatial direction. These errors were 
obtained from the mean and standard deviation of the rotations and translations estimated for 
each patient between the passive marker planning positions and the corresponding intra-DIBH 
positions associated with each treatment field delivery in all monitored sessions.

Table 2 lists for each patient the changes in CTV and OAR doses related to the estimated 
rotations and translations. We did not find any significant difference between dose variations 
obtained by considering all monitored sessions or the single worst session. As depicted in Table 2, 
in both cases the dosimetric indices averaged over all patients revealed a slight decrease in CTV 
coverage and OAR sparing compared to the original planning condition. CTV D95% decreased 
by a maximum of 2.1% across all patients. Variations of ipsilateral lung V20Gy and contralat-
eral breast D1cc did not exceed 2.5% and 1.8%, respectively. Changes in heart V5Gy were less 
than 1.2% for all patients except patient P4, who had a variation of +3%. For each dosimetric 
index, the measured differences met within 1% the prescribed dose constraints, except for CTV 

Table 1.  Rotations and translations between the treatment and planning positions of all passive markers. The median 
value ± interquartile range (difference between 75th and 25th percentiles) of the residual displacements is listed for 
each patient. Group mean (M), systematic (Σ) and random (σ) errors for the rotations and translations estimated over 
all patients are also reported.

	 Translation (mm)	 Rotation (°)	 Residual
	Patient	 LL Axis	 AP Axis	 CC Axis	 LL Axis	 AP Axis	 CC Axis	 Displacements (mm)

	 P1	 0.1	 -4.1	 -0.9	 1.7	 -1.1	 -0.6	 2.2 ± 1.5
	 P2	 0.4	 -0.3	 -4.4	 -1.1	 -0.4	 0.4	 2.2 ± 1.0
	 P3	 1.5	 4.0	 -5.1	 -1.0	 0.8	 2.1	 3.3 ± 1.1
	 P4	 0.9	 -2.5	 5.4	 -1.5	 -0.8	 0.1	 2.7 ± 1.0
	 P5	 1.7	 5.6	 -4.9	 -1.6	 0.1	 1.3	 1.9 ± 2.3
	 P6	 1.5	 1.5	 1.2	 -1.4	 -0.2	 0.5	 2.0 ± 1.1
	 P7	 0.6	 1.3	 -6.3	 -0.6	 0.3	 -0.9	 2.4 ± 1.1
	 M	 0.8	 0.9	 -2.2	 -0.8	 -0.4	 0.4		
	 Σ	 0.7	 3.6	 3.8	 1.2	 0.7	 1.0		
	 σ	 1.6	 2.1	 3.6	 0.7	 0.6	 0.6		
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coverage in patient P4 (D95% = 93.9), who showed, however, the same dosimetric condition 
also in the original treatment plan (Table 2).

 
IV.	 DISCUSSION

Stability and reproducibility of repeated DIBHs under spirometer-based control were quantita-
tively evaluated on seven left-breast cancer patients, assessing the variability in the position of 
multiple passive markers placed on the patients’ surface and acquired by means of IR optical 
tracking. Our results showed that in some cases the combined effect of intra- and inter-DIBH 
variability during DIBHs performed at planned inspired volumes (± 0.1 liters) can lead to dis-
placements of the external surface up to 6.3 mm along a single spatial direction. We are aware 
that the interpretation of the reported results may be influenced by a number of measurement 
uncertainties, including variability in passive marker repositioning on skin landmarks,(23) 
limited spatial resolution of the couch shifts applied for setup corrections, and inaccuracies 
in radiopaque marker CT segmentation and passive marker optical localization. However, the 
applied methodological solutions (for example the subtraction of the free-breathing baseline 
to reduce passive marker mispositioning and residual setup errors) allows limiting the size 
of these uncertainties, thus increasing the reliability of the reported results in terms of DIBH 
variability associated with spirometer-based monitoring.

The reproducibility in the position of different anatomical structures (breast, nodal targets, 
heart, and arteries) under spirometric guidance has already been studied at various breath hold 
states by means of repeated CT scans and 2D portal images.(3,24-26) The innovative aspect of our 
approach is the use of noninvasive optical tracking for 3D surface monitoring, which  permits 
a continuous and long-term observation of DIBH reproducibility. The proposed method allows 
for the assessment of inter- and intra-DIBH variability, as well as of setup uncertainties along all 
three spatial directions. These factors may explain the worse picture for DIBH reproducibility 
obtained in the present study with respect to the referenced works,(3,24-26) which were limited 
to 2D portal images or up to three CT images per patient.

The lack of correlation found between passive marker positions and inspired volumes suggests 
the estimated surface displacements do not depend on the variability of the inspiratory level 
reached within the tolerated range. For example, patient P3 exhibited surface displacements 
greater than 3 mm in each direction, but showed an interfraction variability of the mean inspired 
volume of 0.07 liters, which is significantly lower than the tolerance of 0.2 liters. Therefore, the 
reduction of the volumetric tolerance is not expected to provide any improvement in intra- and 
interfraction surface reproducibility. As shown in Fig. 5, even during a single DIBH, a constant 

Table 2.  Dosimetric indices for CTV coverage and OAR sparing in the original treatment planning condition (C1), 
and after applying the rotations and translations derived from DIBH variability related to all monitored sessions (C2), 
and to the worst session (C3).

	 Contralateral	 Ipsilateral
	 CTV D95% (%)	 Heart V5Gy (%)	 Breast D1cc (%)	 Lung V20Gy (%)
	Patient	 C1	 C2	 C3	 C1	 C2	 C3	 C1	 C2	 C3	 C1	 C2	 C3

	 P1	 96.0	 95.9	 96.0	 0.9	 1.0	 0.9	 6.2	 3.0	 6.9	 10.6	 12.0	 13.1
	 P2	 95.5	 95.2	 95.9	 1.5	 2.6	 2.3	 5.3	 5.8	 5.4	 13.5	 14.3	 13.7
	 P3	 95.3	 94.5	 95.3	 0.1	 0.8	 1.3	 4.0	 5.3	 5.3	   9.2	   6.5	   7.2
	 P4	 93.9	 93.9	 94.3	 0.8	 3.8	 3.7	 4.8	 5.3	 5.1	 11.2	 12.8	 12.8
	 P5	 98.2	 96.1	 96.5	 0.4	 0.8	 1.4	 3.8	 4.1	 4.3	 10.0	   8.1	   9.5
	 P6	 96.3	 94.5	 96.1	 0.7	 0.1	 1.5	 2.0	 2.5	 2.3	 10.0	   5.9	   9.8
	 P7	 97.7	 95.8	 96.5	 1.6	 1.9	 0.6	 5.8	 7.6	 7.1	   9.3	   8.1	   7.1
	 Mean	 96.1	 95.1	 95.8	 0.9	 1.6	 1.7	 4.6	 4.8	 5.2	 10.5	   9.7	 10.5
	 Std	   1.5	   0.8	   0.8	 0.5	 1.3	 1.0	 1.4	 1.7	 1.6	   1.5	   3.3	   2.8
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inspired volume can be associated with surface displacements of up to 4 mm due to shoulder 
lowering and abdominal relaxation. This reinforces our finding that volume invariance during 
single or repeated DIBHs is not a reliable index of the geometric stability and reproducibility 
of patients’ thoraco–abdominal surface. 

The observed intra- and interfraction surface variability can be associated with the complex-
ity of the respiration processes, especially during forced inspiration, involving the composed 
movements of the abdomen and thoracic rib cage.(27) The same level of inspired volume can 
be reached with different combinations of thoracic elevation in CC direction and abdominal 
filling in AP direction. In the examined patient population, an inverse relationship between the 
AP coordinate of the abdominal passive markers and the CC coordinate of the thoracic passive 
markers was observed, with upper abdomen displacements during DIBHs being accompanied 
by caudal shifts of the thorax. 

The performed dosimetric evaluation (Table 2) revealed that, in all patients, the measured 
surface displacements did not lead to significant changes in CTV coverage and OAR sparing. 
The prescribed dose constraints were met considering DIBH variability, both mediated over all 
treatment sessions and related to the single session with the highest surface differences compared 
to planning conditions. The margin of uncertainty for the interpretation of the obtained dosimetric 
alterations is given by the 3D residual displacements after correcting passive marker positions 
for the estimated rotations and translations (Table 1). The measured residual displacements are 
similar to the results of Baroni et al.,(20) thus representing an acceptable range of confidence. 

 
V.	C onclusions

This work demonstrates that spirometric control for DIBH left-breast radiotherapy treatments 
does not always guarantee a stable and reproducible position of the external breast surface. 
The CTV–PTV clinical margins of 15 mm applied in the present study were adequate to 
cope with the measured DIBH variability under spirometer-based guidance. However, when 
reduced margins and setup uncertainties are required for improving normal tissue sparing and 
decreasing cardiac and pulmonary toxicity in DIBH radiotherapy, the reported results suggest 
the need for more robust DIBH monitoring methods. For example, spirometric techniques 
can be integrated with the IR localization of multiple passive markers placed in proximity to 
the target volume.(28) Optical surface imaging systems can also be applied to increase surface 
position reproducibility during repeated DIBHs,(12,13) especially if combined with deformable 
registration algorithms for the extraction of multidimensional breathing signals from marker-
less surface acquisitions.(29)
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