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Abstract

Aims Cellular processes in the heart rely mainly on studies from experimental animal models or explanted hearts from pa-
tients with terminal end-stage heart failure (HF). To address this limitation, we provide data on excitation contraction cou-
pling, cardiomyocyte contraction and relaxation, and Ca2+ handling in post-myocardial-infarction (MI) patients at mid-stage
of HF.
Methods and results Nine MI patients and eight control patients without MI (non-MI) were included. Biopsies were taken
from the left ventricular myocardium and processed for further measurements with epifluorescence and confocal microscopy.
Cardiomyocyte function was progressively impaired in MI cardiomyocytes compared with non-MI cardiomyocytes when in-
creasing electrical stimulation towards frequencies that simulate heart rates during physical activity (2 Hz); at 3 Hz, we ob-
served almost total breakdown of function in MI. Concurrently, we observed impaired Ca2+ handling with more
spontaneous Ca2+ release events, increased diastolic Ca2+, lower Ca2+ amplitude, and prolonged time to diastolic Ca2+ removal
in MI (P < 0.01). Significantly reduced transverse-tubule density (�35%, P < 0.01) and sarcoplasmic reticulum Ca2+ adenosine
triphosphatase 2a (SERCA2a) function (�26%, P< 0.01) in MI cardiomyocytes may explain the findings. Reduced protein phos-
phorylation of phospholamban (PLB) serine-16 and threonine-17 in MI provides further mechanisms to the reduced function.
Conclusions Depressed cardiomyocyte contraction and relaxation were associated with impaired intracellular Ca2+ handling
due to impaired SERCA2a activity caused by a combination of alteration in the PLB/SERCA2a ratio and chronic dephosphory-
lation of PLB as well as loss of transverse tubules, which disrupts normal intracellular Ca2+ homeostasis and handling. This is
the first study that presents these mechanisms from viable and intact cardiomyocytes isolated from the left ventricle of human
hearts at mid-stage of post-MI HF.
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Introduction

The prevalence of heart failure (HF) in Western countries is at
present known to be over 23 million worldwide.1 In the in-
dustrialized part of the world, a common cause of HF is

ischaemic heart disease, where a myocardial infarction (MI)
often signals the onset of cardiac dysfunction that may prog-
ress to failure. HF is characterized by several abnormalities in
the excitation–contraction coupling, such as reduced and
slower systolic Ca2+ release from the sarcoplasmic reticulum
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(SR), elevated diastolic cytoplasmic Ca2+, and reduced dia-
stolic Ca2+ removal, leading to reduced contractile function.
Several mechanisms are responsible for this: disrupted cleft
spacing between the L-type Ca2+ channel and ryanodine re-
ceptors 2 (RyR2) by reduced density of transverse (T) tu-
bules;2 increased RyR2 Ca2+ sensitivity leading to increased
spontaneous Ca2+ release events from SR causing after-
depolarization and trigger arrhythmias;3 reduced SR Ca2+

adenosine triphosphatase 2a (SERCA2a) and increased Na+/
Ca2+ exchanger activities.4 All these changes at the cellular
level may explain the resulting breakdown of normal force–
frequency relationships in HF, causing inadequate cardiac
output responsiveness during physical effort.5 Attenuated
SERCA2a response, with reduced SR Ca2+ uptake at increased
stimulation frequencies, is especially important since this
leads to a blunted frequency-dependent acceleration of relax-
ation (FDAR), thereby impairing diastolic filling at high heart
rates.3

However, all the presented findings are only predicted
from experimental animal models and investigated in
explanted human hearts at the terminal end stage of HF, a
condition in which all interventions have failed to restore vi-
able pump function. Despite research efforts on mechanisms
of deteriorated cardiomyocyte contraction and relaxation
and Ca2+ handling after MI, data from patients with post-MI
HF are limited, and especially, data from earlier pre-terminal
stages are almost absent. Given that coronary artery disease
and MI are the most common causes of HF, data from the
heart of patients with post-MI HF at earlier stages of the dis-
ease are needed. When a targeted treatment focused on in-
tracellular molecules and physiologic processes that directly
cause dysfunction in HF is aimed for, it will be necessary to
confirm mechanisms of failure as well as improvement in hu-
man cardiomyocytes at stages of HF where rescue may still
be possible. Therefore, in order to determine cardiomyocyte
contraction and relaxation, Ca2+ handling, and T-tubule den-
sity in addition to key protein regulations involved in the pro-
gression towards heart failure, we analysed cardiomyocytes
freshly isolated from the intact left ventricular myocardium
of post-MI patients at mid-stages of HF.

Methods

Patient characteristics

Nine post-MI patients with reduced left ventricle ejection
fraction (EF < 35%) and eight patients without previous MI
and normal EF (EF > 60%) (hereafter designated as control
patients) scheduled for elective coronary artery bypass
grafting (CABG) at the Department of Cardiothoracic Surgery,
St. Olavs University Hospital, Trondheim, Norway, took part in
the study. All patients included were on optimal treatment

(Table 1). The study was approved by the Regional Commit-
tee for Medical and Health Research Ethics, Norway (study
ID: TRIM 158-04; clinical trial registration information:
NCT00218985). All patients gave informed consent to partic-
ipate in the study.

Biopsy sampling

All biopsies were sampled after sternotomy and
pericardiotomy during CABG surgery. Biopsies were taken be-
fore aortic cross-clamping from non-fibrotic and viable left ven-
tricle mid-myocardium in the remote non-infarcted area
between the apex and base using a BioPince™ needle from
Angiotech Pharmaceuticals, Inc (Vancouver, Canada). All peri-
operative procedures were performed according to standard
routines of the department. Biopsies were put into an ice-cold
stabilizing physiological solution for further processing of cells
and fibres within 20–30 min, whereas biopsies for biochemical
analyses were snap-frozen in liquid nitrogen within 30 s.

Cardiomyocyte isolation

The biopsies were put into a Ca2+-free HEPES-based solution
for free dissection of fibres by fine forceps under a micro-
scope. Samples were then transferred to 95% O2 and 5%
CO2 gassed Ca2+-free Krebs–Henseleit solution with collage-
nase Type 2 (Worthington, Lakewood, NJ) and essential
fatty-acid-free bovine serum albumin (Sigma) that was
shaken for 20 min at 37°C. Next, the biopsies were filtered
through a 150 μm masked nylon mesh and thereafter centri-
fuged at 60 g at 20°C for 30 s, whereafter the supernatant
was removed and the pellet resuspended in a HEPES-based
solution with a stepwise increase in Ca2+ concentration
(0.1–1.8 mmol/L) with centrifugation between each step.

Cardiomyocyte shortening and Ca2+ cycling

Fura-2/AM-loaded (2 μmol/L, Molecular Probes, Eugene, OR)
cardiomyocytes were stimulated by bipolar electrical pulses
with increasing frequency (1–3 Hz) on an inverted
epifluorescence microscope (Nikon TE-2000E, Tokyo, Japan),
whereupon cell shortening was recorded by video-based
myocyte sarcomere spacing (SarcLen™, IonOptix Corporation,
MA). Intracellular Ca2+ concentration was measured by
counting 510 nm emission with a photomultiplier tube
(PMTACQ, IonOptix, Milton, MA) after exciting with alternat-
ing 340 and 380 nm wavelengths (F340/380 ratio) (OptoScan,
Cairn Research Ltd, Kent, UK). During the stimulation proto-
col, cells were continuously perfused with a normal physio-
logical HEPES-based solution (1.8 mmol/L Ca2+) in room
temperature of 22 ± 0.5°C.
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Transverse-tubule density recordings

Isolated quiescent cardiomyocytes loaded with the
membrane-specific Di-8-ANEPPS dye (10 μmol/L for
20 min, Molecular Probes) were confocal imaged to study
T-tubules throughout the cell. The relative density of T-
tubules normalized to cell size was obtained from five im-
ages per cell, captured from the middle of each cell and
analysed using a custom-made application in IDL 6.0
(ITT Visual, Boulder, CO, USA), by counting pixels stained
with the dye relative to the total number of pixels after
removing pixels associated with the non-T-tubular
sarcolemma.

Sarcoplasmic reticulum Ca2+ adenosine
triphosphatase 2a Ca2+ uptake measurements

Biopsy samples were excised and permeabilized by saponin
(50 μg/mL, for 30 min, at 4°C), before being transferred to an
adenosine triphosphate solution containing (mmol/L) 0.05
egtazic acid, 5 adenosine triphosphate, 10 CrP, 25 HEPES, 100
KCl, and 5.5 MgCl. We added Fura-2 (10 μM;Molecular Probes)
to probe Ca2+, oxalate (10 mM) to stabilize intra-SR Ca2+, and
ruthenium red (3 μM) to inhibit SR Ca2+ efflux and mitochon-
drial partitioning. The experiment was initiated by stirring

tissue samples in a 150 μL cuvette while monitoring extra-SR
Ca2+ using the optical system described above and adding
50 μM Ca2+. Ca2+ loading induced an immediate increase in
Ca2+ concentration, followed by a decline that was attributed
to SERCA2a Ca2+ uptake. The ratio signal was converted to total
Ca2+ concentration by measuring Rmin and Rmax in each tissue
sample, and the rate of SR Ca2+ uptake was subsequently
plotted against the corresponding free Ca2+. A logistic curve
was fitted to estimate maximal Ca2+ uptake rate (Vmax).

Protein expression and phosphorylation

Biopsies were homogenized with radioimmunoprecipitation
assay buffer [10 mM Tris–HCl, pH 7.5, 150 mM KCl, 0.1% so-
dium dodecyl sulfate, 1% NP-40, 5 mM ethylenediaminetetra-
acetic acid, protease and phosphatase inhibitor cocktails
(Roche, Indianapolis, IN)] and centrifuged for 10 min at
20 000 g at 4°C, whereupon the supernatant was removed.
The lysates were then loaded onto 8% SDS-PAGE for detec-
tion of phospho-Thr-286-CaMKII (Affinity Bioreagents,
Golden, CO) and SERCA2a (ABR, Rockford, IL) and on 12%
SDS-PAGE for total phospholamban (PLB), phospho-Thr-17-
PLB, and phospho-Ser16-PLB (Badrilla, Leeds, UK). α-Actin
(Chemicon-Upstate, Charlottesville, VA) was used to normal-
ize protein levels. Proteins were transferred onto

Table 1 Physical characteristics of the patients at hospitalization before coronary artery bypass grafting

Post-myocardial-infarction
heart failure patients (n = 9)

Control without previous
myocardial infarction (n = 8)

Men/women 9/0 7/1
Age 69.2 ± 6.2 61.4 ± 10.0
Body mass index 27.6 ± 5.2 28.9 ± 3.0
Systolic blood pressure, rest (mmHg) 126.4 ± 14.7 142.5 ± 18.3
Diastolic blood pressure, rest (mmHg) 68.3 ± 11.5 79.4 ± 12.1
Work load (W)a 87.5 ± 17.7b 133.3 ± 43.8
Ejection fraction 30.1 ± 3.3b 72.4 ± 10.4
Number of previous myocardial infarctions

One 6 None
Two 2 None
Three 1 None

New York Heart Association class of functional capacityc

I 0 1
II 2 4
III 6 3
IV 1 0

Diabetes mellitus 3/9 1/8
Medications

Beta-blockers 7/9 8/8
Angiotensin-converting enzyme inhibitors 7/9 2/8
Ca2+ channel blockers 1/9 3/8
Diuretics 6/9 1/8

aWork load during clinical evaluation of stress test electrocardiogram.
bSignificantly different from patients without previous myocardial infarction (P < 0.01).
cThe patients were clinically characterized according to the New York Heart Association classification of functional capacity and objective
assessment of patients with diseases of the heart (defined both by classifications of angina pectoris symptoms and by symptoms of dys-
pnoea and left ventricle failure55). In the control patients without previous myocardial infarction, the New York Heart Association func-
tional classification was only defined by their symptoms of angina as neither signs of dyspnoea nor left ventricular failure was present,
whereas the patients with myocardial infarction also were limited by dyspnoea and symptoms of left ventricular failure.
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nitrocellulose membranes (Bio-Rad, Hercules, CA), and
membranes were blocked with TBS-T/milk for 1 h at room
temperature followed by overnight incubation with the
mentioned antibodies. For protein detection, goat antirabbit
or antimouse horseradish-peroxidase-conjugated secondary
antibodies (Amersham GE, Freiburg, Germany) and enhanced
chemiluminescence (Thermo Fisher Scientific Inc, Rockford,
IL) were used. Densitometric analysis was performed using
ImageJ software (NIH, Bethesda, MD).

Statistical analysis

Data are shown as mean ± standard deviation unless other-
wise stated. The Mann–Whitney U test was used to identify
statistical differences between the groups. P < 0.05 was con-
sidered statistically significant.

Results

Human cardiomyocyte fractional shortening was similar
between patients with non-MI and MI at 0.5 Hz stimulation
frequency (i.e. 30 b.p.m.), but in contrast to cardiomyocytes
from non-MI, we found a negative shortening–frequency
relationship in MI cardiomyocytes: at a 2 Hz stimulation rate,
cardiomyocyte shortening was significantly depressed
(P < 0.001, Figure 1). Rates of contraction were also reduced,
as time to peak shortening was significantly longer at 1–2 Hz
(12% and 26%, respectively, P < 0.01, Figure 1). Ca2+

transient amplitude was significantly impaired at 0.5–2 Hz
stimulation in MI patients, with as much as a ~45% reduction
at 2 Hz (P < 0.01, Figure 1). The rate of Ca2+ release (time to
peak Ca2+ transient amplitude) was markedly slower, with a
difference of 15% (not significant) at 0.5 Hz, increasing to
20% and 21% at 1 and 2 Hz, respectively (P < 0.01, Figure 1).

Because rapid and controlled activation of the Ca2+

transient amplitude is at least partly determined by the cleft
area between the SR and plasma membranes, we studied
T-tubule density as a measure of this property. Correspond-
ing to the reduced Ca2+ transient amplitude, we report a
~35% reduction in the T-tubule density in MI cells (P < 0.01,
Figure 2A,B), where the most marked reduction was found
in the mid-regions of the cardiomyocyte (Figure 2C).

The time from peak cardiomyocyte contraction to re-
lengthening provides a measure of diastolic cardiomyocyte
relaxation. At 2 Hz stimulation, time to 50% re-lengthening
was 41% longer in MI cardiomyocytes, indicating severe dia-
stolic dysfunction (P < 0.01, Figure 3A).

Under normal conditions, negative FDARwith increasing heart
rates accommodates adequate ventricular filling with shorter di-
astolic periods. We found negative FDAR in both non-MI and MI
cardiomyocytes at slow stimulation rates (0.5–1 Hz, i.e. from 30
to 60 b.p.m.). When stimulation frequency is increased further

(1–2 Hz, i.e. from 60 to 120 b.p.m.), a marked shift occurred;
whereas non-MI cardiomyocytes further reduced time to 50%
re-lengthening, the MI cardiomyocytes did not (Figure 3A), sug-
gesting impaired adaptability at higher heart rates in these
patients.

Cardiomyocyte relaxation during diastole is controlled by
the removal of cytoplasmic Ca2+. Time to 50% Ca2+ decay
was 33% (P < 0.01), 30% (not significant), and 40%
(P < 0.01) longer at 0.5, 1, and 2 Hz, respectively, in MI
cardiomyocytes (P < 0.01, Figure 3B). Moreover, the effect
of increasing stimulation frequencies on frequency-
dependent acceleration of Ca2+ decay was similar to those
observed for FDAR, suggesting that observed differences be-
tween groups are due to abnormal Ca2+ handling, which was
further evidenced by significantly higher diastolic Ca2+ levels
in MI cardiomyocytes (Figure 3C).

In human cardiomyocytes, the main contributor to Ca2+ tran-
sient decay during diastole is SERCA2a.6Wemeasured SERCA2a
pump function directly in separate tissue samples and found
that the maximal rate of Ca2+ removal via SERCA2a was 26%
lower in MI samples (P< 0.01, Figure 4A), while Ca2+ sensitivity
of SERCA2a was 24% reduced (P< 0.05 Figure 4B). Cardiomyo-
cyte cytosolic Ca2+ concentrations during diastole were signifi-
cantly higher in MI hearts; 12% (P < 0.05), 16% (P < 0.01),
and 20% (P< 0.05) at 0.5, 1, and 2 Hz, respectively (Figure 3C).

Mechanisms were explored by measuring protein ex-
pression of SERCA2a and PLB, its innate inhibitor. Total
SERCA2a protein levels and PLB/SERCA2a ratio revealed a
tendency of lower levels in MI vs. non-MI (P = 0.11 and
0.055, respectively) (Figure 5). Notably, PLB phosphoryla-
tion was significantly reduced at both serine-16 and
threonine-17 (P < 0.05, Figure 5). This is important, as
phosphorylation of PLB at either site leads to higher activ-
ity of SERCA2a. To further determine the upstream signal-
ling of reduced PLB phosphorylation of PLB at Thr-17, we
found that the activity of CaMKII (measured by phosphory-
lated CaMKII at the Thr-286 site) was significantly reduced
in MI (P < 0.01, Figure 5). In summary, these findings sug-
gest a mechanism that could account for reduced cardio-
myocyte Ca2+ transient decay rate and longer time to re-
lengthening.

Finally, MI cardiomyocytes had significantly more sponta-
neous Ca2+ releases between regular electrical stimulated
contractions; as much as 90% of the total number of cells
had spontaneous Ca2+ release events between regular twitch
stimulations at 0.5 Hz, in contrast to only 20% in non-MI
cardiomyocytes (P < 0.01, Figure 6). This observation implies
that MI cardiomyocytes may be more prone to Ca2+-medi-
ated triggering of ventricular arrhythmias, which is further
supported by the observation that MI cardiomyocytes show
lower response to electrical stimulation from 2 to 3 Hz (corre-
sponding to 180 b.p.m.); only 20% of MI cardiomyocytes
followed stimulation at 3 Hz, in contrast to 80% in non-MI
(P < 0.01, Figure 6).
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Discussion

The abnormalities in systolic and diastolic Ca2+ handling by al-
teration in several Ca2+ transporters and regulatory proteins
are key mechanisms of contractile dysfunction in HF and have
been extensively studied during the last decays (reviewed in
several papers7–11). However, these studies and therefore
our knowledge of cellular processes in the heart have relied
mainly on experiments performed in animal models or
explanted hearts from patients with terminal end-stage HF
in which heart transplantation is necessary or death is inevi-
table. This is an obvious limitation in existing knowledge,
since data from earlier stages of the disease are more rele-
vant for optimizing treatment. To address this limitation, we
examined freshly isolated cardiomyocytes in biopsies from
the remote non-infarcted area of the left ventricle mid-
myocardium in hearts from post-MI HF patients scheduled

for CABG at the mid-phase stage of HF. The procedure of bi-
opsy sampling during CABG opens a window for detailed and
quantitative assessment of cellular physiology of the human
myocardium before it enters end-stage HF, in a manner not
previously available. The present data confirm that contrac-
tile dysfunction in post-MI patients at mid-stage of HF is at
least partly caused by abnormalities in systolic and diastolic
Ca2+ handling, by a loss of T-tubules and hence the tight
control of the structure of the cleft area between the plasma
membrane and the SR, and by differential regulation in
several Ca2+ transporters and regulatory proteins.

Cardiomyocyte dysfunction

In healthy hearts, the increased peripheral demand for oxy-
genated blood is met by both increasing cardiac frequency

Figure 1 Cardiomyocyte function and Ca
2+
handling. Example recordings of cardiomyocyte contraction–relaxation (A) and Ca2+ transients (B) at 2 Hz stim-

ulation in post-myocardial-infarction heart failure patients (MI) (N = 9, n cells per patient: 6–10) (red lines) vs. non-myocardial-infarction patients (NON-MI)
(N = 8, n cells per patient: 6–10) (blue lines), reported by edge detection microscopy and Fura-2/AM ratio (F340/380), respectively. (C) Cardiomyocyte
fractional shortening. (D) Time to peak shortening. (E) Ca

2+
transient amplitude. (F) Rates of Ca

2+
release (time to peak Ca

2
transient amplitude).
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and myocardial contractility, which is in contrast to failing
hearts that cannot adapt to ventricular function normally
with consequences of dyspnoea and fatigue.12 We show that
the underpinnings to reduced cardiac function are present at
the cellular level already at early stages of HF in post-MI pa-
tients. Aggravation of cardiomyocyte contractility during in-
creasing stimulation frequencies suggests that MI patients
with reduced EF have somewhat preserved contractile capac-
ity at rest, but a reduced ability to increase contractile capac-
ity at higher heart rates such as during physical activity.

Impaired cytosolic and sarcoplasmic reticulum
Ca2+ handling

The corresponding changes of reduced contractility and intra-
cellular Ca2+ handling in MI cardiomyocytes, and the link

between these features,10 suggest that the observed differ-
ences in Ca2+ handling could subsequently explain reduced
contractility. Reduced fractional shortening, rate of diastolic
re-lengthening, and FDAR in MI cardiomyocytes paralleled re-
duced Ca2+ transient amplitude, rate of Ca2+ transient decay,
and frequency-dependent acceleration of Ca2+ transient de-
cay, respectively, which led us to perform several follow-up
experiments to support a mechanistic understanding of the
phenotype. First, direct measurements of SR Ca2+ uptake in
permeabilized myocardial fibres revealed reduced SERCA2a
function in MI, which explains the reduced rates of Ca2+

transient decay. The observed reduction in SR Ca2+ uptake
by SERCA2a may partly contribute to the observed increase
in diastolic intracellular Ca2+ concentration in MI
cardiomyocytes. Elevated diastolic Ca2+ may cause contractile
dysfunction by preventing full relaxation of the myofila-
ments,13 as well as electrical disturbances, since it increases

Figure 2 Transverse (T)-tubule structure. T-tubule density in post-myocardial-infarction heart failure patients (MI; N = 9, n cells per patient: 6–10) vs.
non-MI patients (NON-MI; N = 8, n cells per patient: 6–10). (A) Example confocal images of T-tubules in a di-8-ANEPPS-stained cardiomyocyte from an
MI patient. (B) Display of a significantly reduced T-tubule density in MI vs. NON-MI and (C) T-tubule densities along relative cell length. The largest
reduction in T-tubule density of MI patients (red) compared with NON-MI (blue) was found in the mid-regions of the cardiomyocyte. Data are pre-
sented as mean ± standard deviation. *P < 0.01.

MI NON-MI
0.0

0.1

0.2

0.3
P < 0.01

T
-t

u
b

u
le

 d
en

si
ty

 w
h

o
le

 c
el

l
0 10 20 30 40 50 60 70 80 90 100

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

% cardiomyocyte length

T
-t

u
b

u
le

 d
en

si
ty

ce
ll 

ar
ea

 d
is

tr
ib

u
ti

o
n

* ***** *

A B

NON - MI

MI

C
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Ca2+ extrusion by the Na+/Ca2+ exchanger, which may in-
crease the incidence of delayed after-depolarizations and
hence arrhythmic events.3 The increased frequency of spon-
taneous Ca2+ release events also observed in the present
study would further accentuate arrhythmic events. Thus, im-
paired diastolic Ca2+ handling probably translates into both
contractile and electrical abnormalities with detrimental clin-
ical consequences such as reduced inotropy and higher sus-
ceptibility to ventricular arrhythmias in failing hearts.
Furthermore, a lack of response to higher stimulation fre-
quencies (3 Hz) substantiates deterioration of contractile
and electrical properties in MI.

Despite the direct recordings of impaired SERCA2a
function, we did, however, only observe a tendency towards
reduced SERCA2a protein expression in the left ventricle from
MI patients. Limited data exist on the regulation of SERCA2a
from human sources, and all data are from explanted hearts
at terminal end-stage HF, that is, a substantially different
cohort than the current patients. Notwithstanding this,
controversies exist regarding regulation of SERCA2a proteins,
where several reports show no change of SERCA2a protein in
HF,14–20 and others show reduced protein levels of
SERCA2a.21–23 Despite the controversies on the extent of
SERCA2a protein regulation in human HF, a clinical trial with

Figure 4 Sarcoplasmic reticulum (SR) Ca
2+

adenosine triphosphatase 2a (SERCA2a) function. SERCA2a function assessed as SR Ca
2+

uptake
measurements in separate biopsies of the left ventricle myocardium in post-myocardial-infarction heart failure patients (MI) (N = 9) vs. non-
myocardial-infarction patients (NON-MI) (N = 8). (A) Maximal rate of SR Ca2+ uptake was lower in MI. (B) SERCA-2a sensitivity to cytosolic Ca2+ (Km
of free Ca

2+
concentration evoking half SR Ca

2+
uptake rate) was significantly lower in MI; higher Ca

2+
levels are needed to activate SERCA2a.

P < 0.01
P < 0.05

Figure 5 Protein expression. Western blot data from left ventricle biopsies in post-myocardial-infarction heart failure patients (MI) (N = 6) vs. non-
myocardial-infarction patients (NON-MI) (N = 5). (A) Sarcoplasmic reticulum Ca

2+
adenosine triphosphatase 2a (SERCA2a) only showed a tendency

of down-regulation (P = 0.11) in MI patients. (B) Phospholamban (PLB) was not changed, but (C) the ratio PLB/SERCA2a revealed a tendency
(P = 0.055) of increased levels in MI compared with NON-MI. (D) Both the phosphorylation site of PKA at PLB serine-16 (pPLB Ser-16) and (E) the phos-
phorylation site of CaMKII at PLB theorine-17 (pPLB Thr-17) was significantly lower activated in MI patients. (F) Phosphorylated CaMKII at the auto-
activating site threonine-286 (pCaMKII Thr-286) was lower in MI. (G) Representative images of Western blot for each group. Data are presented as
mean ± standard error of the mean. *P < 0.05, **P < 0.01.
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the aim of increasing the SERCA2a protein levels in patients
with HF was designed using recombinant adeno-associated
virus Serotype 1/SERCA2a;24 the initial data from the clinical
Phase 1 trial reported promising results,25 but the continued
Phase 2b trial failed to improve the clinical course of patients
with HF and reduced EF.26 It is therefore likely that other
components, especially in the functional regulation of
SERCA2a, contribute to the overall function of SR Ca2+ uptake
and are therefore integral for treatment to succeed. One key
mechanism for the regulation of SERCA2a is PLB that upon in-
hibitory binding to SERCA2a inhibits the Ca2+ transport of the
pump; therefore, we analysed expression levels of PLB and
determined the ratio between the two. This comparison did
not strengthen our explanation of reduced SERCA2a function
as PLB was unchanged between the groups and the ratio be-
tween PLB/SERCA2a only revealed a strong tendency
(P = 0.055). PLB interaction with SERCA2a relies, however,
on the phosphorylation status of PLB. We found a significant
lower expression of phosphorylated PLB at both Ser-16 and
Thr-17 in MI hearts. Phosphorylation of both the protein ki-
nase A (PKA) site Ser-16 and the CaMKII site Thr-17 relieves
the PLB inhibition of SERCA2 and thus increases its capacity
to remove cytosolic Ca2+. Although reduced PLB phosphoryla-
tion is regarded as an important mechanism of lower
SERCA2a activity in HF, conflicting results exist from both an-
imal models and the limited work done in human HF; human
data from explanted dilated cardiomyopathy hearts with ter-
minal HF found both Ser-16 and Thr-17 phosphorylations of
PLB to be reduced,15,16 but a later report found only Ser-16,
but not Thr-17, phosphorylation to be reduced.17

To further determine the upstream signalling of reduced
PLB phosphorylation at Thr-17, we analysed the activity of
CaMKII by measuring phosphorylated CaMKII at the Thr-286
site. pCaMKII-Thr-286 increases the affinity of the CaMKII
complex and traps CaMKII on the autophosphorylated sub-
unit. As a result, the kinase retains close to full activity as long

as CaM is trapped, regardless of the Ca2+ concentration. Our
data display significantly reduced pCaMKII in post-MI HF that
may further explain the dephosphorylated Thr-17 PLB in
these patients. The reduced CaMKII phosphorylation in mid-
phase stage HF patients in the present study is not easy to
reconcile with earlier studies from both experimental animal
models (reviewed by, e.g. Maier and Bers27) and explanted
end-stage human hearts showing augmented levels and activ-
ity of CaMKII.28,29 However, more recent reports indicate con-
troversies in terms of the activity of CaMKII in HF; data from
explanted end-stage failing human hearts show an important
role of increased CaMKII activity measured by significantly in-
creased RyR phosphorylation on the Ser-2814 site,30 but im-
portantly, this study did on the contrary not find increased
levels of CaMKII phosphorylation on the RyR in severe aortic
stenosis patients with compensated hypertrophy, indicating
that CaMKII is not activated at earlier stages of HF in these
patients.30 Furthermore, a different study reported that
CaMKII activity was increased in explanted failing hearts with
dilated cardiomyopathy but not in patients with ischaemic
cardiomyopathy, whereas other labs report significantly in-
creased CaMKII levels in explanted ischaemic cardiomyopa-
thy hearts.31 Furthermore, CaMKII phosphorylation was also
examined because of the previously noted role in causing
RyR Ca2+ leaks,30 which could support our findings of in-
creased spontaneous Ca2+ releases in MI. Given that we
found reduced CaMKII Thr-286 phosphorylation, other mech-
anisms for a potential RyR leak are probably present. In 2000,
Marks et al. proposed that PKA hyperphosphorylates the
RyR2 at Ser-2808 site, causing FK506 binding protein 12.6
(FKBP 12.6) dissociation from the RyR, with subsequent dia-
stolic SR Ca2+ leak. This initial observation was followed up
by a series of reports supporting the hypothesis,32–34 though
it has however been challenged in recent years.35–37 Our re-
sults indicate that it is unlikely that PKA can explain the ob-
served increased in spontaneous Ca2+ release events, given

Figure 6 Spontaneous Ca
2+
release and irregular cardiomyocyte activation. Percentage of cells with spontaneous Ca

2+
release events between regular

electrical stimulated twitch Ca2+ releases (upper graphs) was higher in post–myocardial-infarction heart failure patients (MI) (N = 9, n cells per patient:
6–10) compared with non-MI patients (NON-MI) (N = 8, n cells per patient: 6–10). Lower graphs display that the cardiomyocytes from MI had impaired
ability to follow electrical stimulation when increasing the frequency from 2 to 3 Hz.

P < 0.01

P < 0.01

Human cardiomyocytes and myocardial infarction 339

ESC Heart Failure 2018; 5: 332–342
DOI: 10.1002/ehf2.12271



that pPLB Ser-16 (which is the PKA phosphosite of PLB) was
almost undetectable in biopsies from MI patients. Other can-
didates therefore include accessory protein-mediated effects;
for example, S100A and sorcin are both Ca2+ binding proteins
known to modulate RyR open probability independent of
phosphorylation status.38–40 Moreover, several of the pro-
teins involved in the excitation contraction coupling of
cardiomyocytes have been shown to be influenced by oxida-
tive modifications.41 Differences in antioxidant enzyme activ-
ity and oxidative stress in the MI patients, previously
established,42 could possibly alter the activation state of
CaMKII, as oxidation of CaMKII (at methionine 281/282) in-
creases its activity and consequently causes more leaky RyR
channels independent of Thr-286 phosphorylation.43 We
were unfortunately not able to explore these mechanisms
in our limited biopsy material. Further studies are therefore
warranted to fully explain the aetiology and phenotype of
mid-stage post-MI HF in human heart. Nonetheless, these
studies indicate that there are large discrepancies and con-
troversies on protein regulation and their phosphorylation
status in HF. This discrepancy may be linked to both stages
of the disease and the different aetiologies of HF; both these
factors should therefore be considered carefully.

Transverse-tubule density and distribution

The presence of a dense network of T-tubules connected to
the plasma membrane ensures a rapid and coordinated RyR
Ca2+ release during systole,44 whereas loss or disorganization
of T-tubules contributes to impaired Ca2+ cycling and contrac-
tile failure.45 Disrupted T-tubule density has previously been
demonstrated in explanted end-stage HF human hearts from
different aetiologies, also including ischaemic heart dis-
ease.2,45–49 Data from both larger animal models like pig
and dogs49,50 and smaller animal models like mice and rats
report disrupted T-tubule density also in earlier stages of
the disease.51 Data from the present study confirm therefore
that T-tubule disorganization and loss are present also at ear-
lier, not terminal, stages of human post-MI HF. Although we
do not directly assess the functional consequence of the loss,
the observed slower time to Ca2+ transient may indicate re-
duced coupling between membrane excitation and SR Ca2+

release, because of disrupted cleft spacing between the L-
type Ca2+ channels and RyRs.49

In conclusion, for the first time, viable and intact
cardiomyocytes have successfully been isolated from the mid-

myocardium in remote, non-infarct areas of the left ventricle
of human hearts at a stage of post-MI and mid-phase of HF, be-
fore the condition has decompensated and reached end-stage
HF. This is an obvious departure from previously published
studies of HF in human patients21 or animal studies, of which
large animal models utilizing dogs or rabbits have been thought
to provide the most clinically useful replacements.11 Nonethe-
less, although large animal models present with important sim-
ilarities to humans, for example, with respect to excitation
contraction coupling and contractile mechanisms, they also dif-
fer with respect to aetiology and have been reported to differ
in aspects of cardiac function and response to injury;52–54 see
also the review by Hasenfuss.11

Functional assessments of the human left ventricle
cardiomyocytes in the current study reveal contractile and in-
tracellular Ca2+ handling dysfunction. Depressed cardiomyo-
cyte function was associated with impaired systolic and
diastolic intracellular and SR Ca2+ handling, probably due to im-
paired SERCA2a activity. This results from a combination of al-
teration in PLB/SERCA2a ratio and chronic dephosphorylation
of PLB as well as loss of T-tubules, which disrupts normal intra-
cellular Ca2+ homeostasis and handling. To our knowledge,
these mechanisms are not previously explored in human left
ventricle myocardial samples from MI patients at mid-stage
of HF. The controversies existing on the cellular mechanisms
explored in the present paper further highlight the importance
of considering both the stages and the aetiology of the disease.
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