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Abstract: In this work, we propose a general methodology to assess the bioactive potential (BP) of
extracts in the quest of vegetable-based drugs. To exemplify the method, we studied the anticancer po-
tential (AP) of four endemic species of genus Hypericum (Hypericum canariense L, Hypericum glandulosum
Aiton, Hypericum grandifolium Choisy and Hypericum reflexum L.f) from the Canary Islands. Microex-
tracts were obtained from the aerial parts of these species and were tested against six human tumor
cell lines, A549 (non-small-cell lung), HBL-100 (breast), HeLa (cervix), SW1573 (non-small-cell lung),
T-47D (breast) and WiDr (colon). The methanol–water microextracts were evaluated further for
cell migration, autophagy and cell death. The most promising bioactive polar microextracts were
analyzed by UHPLC–DAD–MS. The extraction yield, the bioactivity evaluation and the chemical
profiling by LC–MS suggested that H. grandifolium was the species with the highest AP. Label-free
live-cell imaging studies on HeLa cells exposed to the methanol–water microextract of H. grandifolium
enabled observing cell death and several apoptotic hallmarks. Overall, this study allows us to select
Hypericum grandifolium Choisy as a source of new chemical entities with a potential interest for
cancer treatment.

Keywords: bioactive potential; anticancer potential; total activity; screening; Hypericum canariense;
Hypericum glandulosum; Hypericum grandifolium; Hypericum reflexum

1. Introduction

The chemical bioprospecting of new therapeutic agents, pesticides, nutraceuticals,
and other products with biotechnological applications from plants is one of research lines
with the greatest impact worldwide [1–3]. The chemical bioprospecting protocol includes
(a) the selection and extraction of appropriate plants, (b) the evaluation of the bioactive
potential of the extracts to select the species with the highest bioactive potential, and (c) the
bioguided isolation of compounds from the best candidates [4]. Thus, the rationalization
of each stage of the chemical bioprospecting contributes to accelerate the discovery of
compounds with high added value [5,6].

Bioactive potential (BP) is a very often employed term in the search of bioactive
compounds from living organisms (bacteria, fungi or plants) but its definition is not
clear yet in the literature. BP can be subdivided into agrochemical or pharmacological
potential depending on the field of the research, i.e., agrochemistry or pharmacology,
respectively [3,7]. In drug discovery, the bioactive potential of extract from plants as
a source of high-value compounds has mainly focused the bioactivity evaluation and

Molecules 2022, 27, 6101. https://doi.org/10.3390/molecules27186101 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27186101
https://doi.org/10.3390/molecules27186101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1135-3891
https://orcid.org/0000-0002-7975-1960
https://orcid.org/0000-0002-1876-1321
https://orcid.org/0000-0001-6268-6552
https://doi.org/10.3390/molecules27186101
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27186101?type=check_update&version=2


Molecules 2022, 27, 6101 2 of 18

dereplication of extracts [8–10]. Eloff and coworkers introduced a parameter called total
activity, a mathematical relationship between extraction yield and the antimicrobial activity
for the quantification of the bioactivity of plan extracts during the screening [11]. However,
there are a few examples in the literature that use the total activity as a tool [12–14]. On
the other hand, rules or recommendations of thumb for defining anti-infective potential in
natural products were developed by Cos and coworkers [15]. It is worthwhile to mention
that these recommendations did not take into account the total activity previously reported
and they are only related to the anti-infective activity. From this state of art, we propose
to define bioactive potential as a combination of three parameters, namely, the extraction
process, the biological activity profiling (either agrochemical or pharmacological) and the
early chemical profiling. The main goal of the evaluation of BP is to prioritize, through
extracts from plants, the rational selection of the best vegetable species for the discovery
of new chemical bioactive entities. BP can be classified into different types depending on
the field of bioassays (antibacterial, anti-inflammatory, anticancer, biocidal, etc.). BP can be
also applied to the bioguided isolation process.

The genus Hypericum (Hypericacea) comprises high-value medicinal plants, partic-
ularly Hypericum perforatum L., which is largely used in folk medicine [16]. Extensive
pharmacological and chemical studies on the genus Hypericum have revealed its potential
as a source of antibacterial, anti-inflammatory, antiproliferative and antiviral drugs [17–22].
In the Canary Islands, the genus Hypericum is comprised of eight species: H. canariense,
H. coadunatum, H. glandulosum, H. grandifolium, H. humifusum, H. perfoliatum, H. perforatum
and H. reflexum. Likewise, the aerial parts of most of them have been used in the traditional
medicine as vulnerary, sedative, tranquilizer, vermifuge, diuretic, tinctorial and as food
for goats [23–25]. The chemical and pharmacological studies on these Hypericum species
from the Canary Islands have been conducted for more than 35 years [26–42]. From them,
eleven works have been published related to the evaluation of pharmacological actitivities
of extracts from H. canariense, H. glandulosum, H. grandifolium and H. reflexum [26–35,42] and
six papers have adressed the isolation of compounds from H. canariense, H. coadunatum and
H. reflexum [36–41]. Nevertheless, to date, there are no bioguided chemical studies on these
Hypericum species from the Canary Islands that provide information about compounds
responsible for the previous observed pharmacological activities.

Since 2019, our research interests focusses on the chemical bioprospecting of plants
from the Canary Islands as a source of high-added-value compounds and the evaluation of
their BP with a particular interest in the anticancer potential (AP). The aim of our approach
is to identify the plants with the highest AP. In this step, the extraction of plants at a small
scale (microextraction), the biological activity profiling of these microextracts, and their
early chemical profiling by LC–MS are considered relevant factors as a whole. The outcome
of this selection process is a sorted (prioritized) list of plants from the highest to the lowest
AP. In this work, we will show the implementation of our strategy with the evaluation
of the AP of four Hypericum species from the Canary Islands, namely, H. canariense L,
H. glandulosum Aiton, H. grandifolium Choisy and H. reflexum L.f. Notably, this is the first
time that these four species of Hypericum were profiled together both at the pharmacological
and at the chemical level.

2. Results and Discussion

Our evaluation protocol of the AP of plants consists of three sequential steps. Every
step provides relevant information to help in the assessment of the AP. In the next Sections,
we will present our implementation of the methodology and we will discuss the results
and the criteria we followed to prioritize the Hypericum species from the Canary Islands as
a source of bioactive compounds.



Molecules 2022, 27, 6101 3 of 18

2.1. Selection of Plants and Microextraction

H. canariense, H. glandulosum, H. grandifolium and H. reflexum were selected considering
chemosystematic and ethnopharmacological approaches [7]. The extraction process of these
species started with the maceration of their aerial part at a small scale (microextraction).
For this purpose, to perform the extraction in a sequential maceration, we selected as
solvents water, methanol and dichloromethane. The procedure we followed is an adapted
methodology previously described by Macías in the search of phytotoxic compounds [43].
This methodology was designed regarding the vast range of specialized metabolites in the
Hypericum genus (range of polarities and bioactivities) [22,44] and as a way to solve the
difficulty to obtain them using a single extraction [45]. Therefore, each plant dried material
(approximately 10 g) was sequentially macerated under the same conditions from polar
to non polar solvents considering a sample ratio of 20:1 (v/w). Firstly, a methanol/water
(1:1) mixture (MW), then methanol (MM), and finally a dichloromethane/methanol (1:1)
mixture (DM) were used, as depicted in Figure 1.
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Figure 1. Workflow procedure for the preparation of microextracts from aerial parts of Hypericum
species from the Canary Islands.

After the extraction process, three microextracts from each plant were obtained (MW,
MM and DM). Thus, a total of 12 microextracts were prepared. For each microextract, the
dry mass was weighed and the extraction yield, expressed in percentage, was calculated.
The results are shown in Table 1.
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Table 1. Yield of microextracts from Hypericum species from the Canary Islands.

Yield (%)

Species MW MM DM Total

C 8.5 9.5 2.4 20.4
G 7.5 8.0 1.9 17.4
L 13.9 7.6 9.1 30.6
R 14.3 6.9 1.2 22.1

C = H. canariense; G = H. grandifolium; L = H. glandulosum; R = H. reflexum; MW = methanol/water microextracts;
MM = methanol microextracts; DM = dichloromethane/methanol microextracts.

The extraction yield is a pharmacognostic parameter used for considering any vegetal
as a source of leads or drugs [14]. It also enables the calculation of the total activity (TA)
(Equation (1), ), a useful tool for the comparison of crude extracts during screening of plants
as a source of bioactive compounds [11]. In our study, the MW and MM microextracts from
the aerial parts of the four Hypericum species gave the highest yields. In contrast, the DM
microextracts provided the lowest yields, except for H. glandulosum. In general, these data
suggested that Hypericum species from the Canary Islands were rich in medium and polar
compounds. These results also match with a recently published study on Hypericum species
from the UK [14]. These 12 microextracts were submitted to the biological evaluation at
two levels.

2.2. Biological Evaluation

The scientific literature holds several examples of non-mammalian and mammalian
cell-based assays that have been used for the identification and characterization of bioactive
natural products [46]. In the therapeutic area of cancer, screenings based on mammalian cell
cultures have enabled the rapid study of a multitude of natural product extracts. In drug
discovery programs of plant extracts (such as the NCI’s), the first biological assessment is
an antiproliferative test against tumor cell lines (a general or primary bioassay) [47,48].

2.2.1. Antiproliferative Activity

Following the guidelines of the NCI, the antiproliferative activity of the 12 microex-
tracts (MW, MM and DM) obtained from the aerial parts of H. canariense (CMW, CMM
and CDM), H. glandulosum (GMW, GMM and GDM), H. grandifolium (LMW, LMM and
LDM), and H. reflexum (RMW, RMM and RDM) were evaluated against six human tu-
mor cell lines: A549, HBL-100, HeLa, SW1573, T-47D and WiDr. The maximum test
concentration was set at 250 µg/mL, according to NCI guidelines [49,50]. The results,
expressed as 50% growth inhibition (GI50), are given in Figure 2 (Table S1). According to
NCI calculations, GI50 values represent approximate values. Taken as a whole, the GI50
values enabled an arrangement of the plants in the following decreasing order of activity:
H. grandifolium > H. canariense > H. glandulosum > H. reflexum. Our results are in agreement
with a previous study where the antiproliferative activity of essential oils and polar ex-
tracts (methanol—acetone 1:1) from the aerial parts of H. canariense, H. grandifolium and
H. reflexum were evaluated against the human tumor cell lines A375 (malignant melanoma),
MDA-MB-231 (breast adenocarcinoma) and HCT116 (colon carcinoma) [42]. In that study,
the polar extract from H. grandifolium also exhibited a significant antiproliferative activity
and resulted the most active one. Noteworthy, our work represents the first study reporting
antiproliferative activity of H. glandulosum extracts.

When we are considering the solvent extraction, the sequence obtained (in decreasing
activity) for our samples was DM > MM > MW. In the particular case of H. grandifolium,
the DM and MM microextracts (i.e., GDM and GMM, respectively) were the most active
ones against all the tumor cell lines tested. They displayed the lowest GI50 values (in the
range 2.7–13 µg/mL) among the twelve assayed microextracts (Figure 2). However, these
GI50 values denote a highly cytotoxic profile (GI50 ≤ 20 µg/mL) according to the NCI’s
guidelines [50]. Noteworthy, the MW microextracts induced moderate cytotoxicity (GI50
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21–200 µg/mL). In our experience, highly cytotoxic samples induce large cell killing and
biological effects are more difficult to be observed. In contrast, samples with moderate
cytotoxicity allow to measure relevant phenotypic changes in treated cells. According to this
criterion and our interest in the pharmacognostic study of polar extracts, the hydroalcoholic
microextracts were the prioritized for further testing.
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2.2.2. Total Activity

The TA (Equation (1)) is a significant pharmacognostic parameter for the quantification
of the antimicrobial activity of plant extracts and it is very useful in the rational screening
of diverse plants. This tool has been used as a part of the evaluation of the antibacterial
activity of extracts from south African species [12]. TA, expressed in (mL/g), was defined
as “the largest volume to which the bioactive compounds in one gram of plant material can
be diluted and still inhibit the growth of the tested organisms” [11]. Analogously, we have
envisioned the calculation of the TA when considering the antiproliferative activity of plant
extracts against human solid tumor cells. From the pharmacological point of view, the
growth inhibition (GI50 in µg/mL) indicates the potency of extracts, while TA represents
the efficacy of the extracts [11].

TA
(

mL
g

)
=

mextract (mg)
mplant (g)

× 1
GI50 (µg/mL)

(1)

In this work, we calculated the TA of the Hypericum species to compare the antiprolif-
erative efficacy of their microextracts. To the best of our knowledge, this is the first time
that the TA is reported to assess the antiproliferative activity during the screening of the of
plant species.

Since our protocol involves the sequential extraction using three solvent systems
(Figure 1), we considered appropriate to compute the TA for each individual extract and
sum all the TAs corresponding to a virtual total extract from each plant and each cell
line. With this calculation, each TA value represents a theoretical activity of each theorical
total extract against each cell line that complies with the definition provided by Eloff [11].
Therefore, Figure 3 (Table S2) collects the TA for each of the plant species against each of
the six cell lines tested. The results enabled ordering the species according to decreasing
values of TA: H. grandifolium > H. glandulosum > H. canariense > H. reflexum.
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Based on the GI50 data (Figure 2), the TA values (Figure 3 and Table S2) and our interest
in polar extracts, we selected for further studies the MW microextracts from H. canariense
(CMW), H. glandulosum (LMW) and H. grandifolium (GMW). The sibling microextract of
H. reflexum (i.e., RMW) were also tested for comparison purposes. At this point, many
different phenotypic experiments can be considered to depict the overall mode of action
of the microextracts and give information about possible cell targets. These experiments
are generally termed as secondary bioassays. The literature reports diverse secondary
bioassays for the potential anticancer activity of Hypericum sp. extracts [19–21]. Herein, we
selected as secondary tests cell migration and vacuole formation, two relevant hallmarks
for cancer treatment, which have not been reported for the (four) Hypericum sp. (included
in this work). Cell migration experiments give an idea of the antimetastatic potential of the
tested samples [51], while vacuole formation is an indicator of autophagy [52] and drug
resistance mechanisms [53], among others.

2.2.3. Cell Migration Disturbances in A549 Cells

Cell migration is the ability of a cancer cell to undergo movement and invasion
allowing it to relocate within the tissues [51]. This process allows neoplastic cells to
enter lymphatic and blood vessels for dissemination into the circulation metastasize in
distant organs. The non-small-cell lung cancer (NSCLC) cell line A549 is considered as a
highly metastatic cancer cell line [54] and represents a good in vitro model to assess the
antimigratory properties using the wound healing assay [55].

To study the effects on A549 cell migration of the MW microextracts of the four
Hypericum species, we selected two doses, a high (100 µg/mL) and a low dose (50 µg/mL),
and two time points, 6 and 24 h (Figure 4). The use of this early time point enables avoiding,
at minimum, the effect of cell proliferation in the assay, limiting the response to the antimi-
gratory activity of the microextract. With the exception of CMW all microextracts, were able
to reduce the closure of the wound when compared to control wells after 6 and 24 h. GMW
was able to inhibit cell migration after six hours of treatment in a concentration dependent
manner, being the most active of all microextracts assayed. Interestingly, CMW, which
showed antiproliferative activity, failed to reduce the migration of A549 cells. Meanwhile,
both LMW and RMW did not show correlation between dose and inhibition of cell mobility.
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of each image.

2.2.4. Formation of Acidic Vacuoles in HeLa Cells

Considering the antiproliferative profile of the Hypericum extracts, CMW, GMW, LMW
and RMW were selected to perform acridine orange (AO) staining in order to evaluate
the formation of acidic vacuoles in the cells after the treatment. AO is a fluorescent dye
that binds to acidic compartments. Differences in fluorescence intensity could represent
changes in cell response to the plant microextract, of particular interest to the formation
of acidic vacuoles [56]. As a positive control we used 10 µM of tamoxifen (TAM), an
established anticancer drug whose ability to enhance cell vacuolization has been reported
previously [57]. As depicted in Figure 5a, GMW showed the highest fold change in RFU
over control, similar to the effect produced by TAM, whilst the rest of the microextracts did
not produce a representative fold change when treated with 100 µg/mL for 24 h. Taking
this into account and considering the previous result, we proceeded to evaluate GMW
microextract effects on HeLa cells under fluorescence microscopy. Images taken agreed
with the data obtained by spectrofluorimetric assays, with this microextract enhancing the
accumulation of the dye inside clearly visible vacuoles (Figure 5b).The accumulation of AO
inside acidic vacuoles produces a metachromatic shift from green to red fluorescence [58].
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To sum, the biological tests (primary and secondary bioassays) of the Hypericum
species resembled the aforementioned order based on the TA values. Thus, the rele-
vance of the plants was established as H. grandifolium > H. glandulosum > H. canariense
> H. reflexum. The lower TA values together with neglected effects observed in the bio-
logical tests (Figures 4 and 5) allow us do not consider the MW microextract H. reflexum
for the chemical analysis by LC–MS. Accordingly, the MW microextracts of H. canariense,
H. glandulosum and H. grandifolium were submitted to the study of their chemical profiling.
Overall, the results might anticipate a different chemical profile of these microextracts.

2.3. Early Chemical Profiling of MW Microextracts

The final step for the evaluation of the anticancer potential was to analyze the chem-
ical composition of the selected bioactive MW microextracts from the aerial parts of
H. canariense, H. glandulosum and H. grandifolium (i.e., CMW, LMW and GMW, respectively).
In an effort to estimate their chemical qualitative composition in terms of specialized
metabolites, they were analyzed by UHPLC–DAD–MS (Table 2). Methanol and acetone–
methanol extracts from H. canariense and H. grandifolium were analyzed by LC–MS and
reported previously [33,42]. This work represents the first preliminary chemical study of
H. glandulosum extract.

Table 2 shows the chemical profiles of the three Hypericum MW microextracts at 280 nm.
These chromatograms also show the UHPLC fingerprint of these species and the substantial
differences in their chemical composition, both in terms of the number of peaks and in
the proportion of common peaks (Figure S1). We speculate that this differential profile
is responsible for the differences observed in the biological activity of the microextracts
(Figures 2, 4 and 5).
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Table 2. Qualitative analysis of polar microextracts by liquid chromatography photodiode array
detection mass spectrometry (LC–PDA–MSn).

Peak RT (min) (max) MS
[M+H]+

MS
[M-H]− CMW GMW LMW Putative Compound

1 3.3 269 171.03 169.03 - 4 - gallic acid [59]
2 6.6 259, 293 154.99 153.07 4 4 - 3,4-dihydroxybenzoic acid [60]
3 7.6 214, 256 205.30 203.18 - - 4 unidentified compound
4 7.8 202, 279 - 315.22 4 - - unidentified compound
5 8.1 205, 262, 294 343.19 341.18 - 4 - unidentified compound
6 11.3 214, 325 355.2 353.25 4 4 4 neochlorogenic acid [61]
7 12.9 287, 316 343.21 341.28 - - 4 unidentified compound
8 14.4 209, 311 339.27 337.27 - 4 4 p-coumaroylquinic acid isomer [62,63]
9 15.4 217, 310 339.20 337.21 4 4 4 p-coumaroylquinic acid isomer [62,63]
10 16.5 279 579.19 577.19 4 - - dimeric procyanidin type B [64]
11 17.9 216, 325 355.20 353.25 4 - 4 chlorogenic acid [42]
12 20.0 214, 325 355.19 353.24 - - 4 cryptochlorogenic acid [63]
13 21.7 280 579.20 577.19 4 - - dimeric procyanidin type B [64]
14 23.3 279 579.17 577.19 4 4 4 dimeric procyanidin type B
15 24.6 279 291.13 289.17 4 4 4 catechin [64]
16 25.9 203, 257, 318, 369 423.19 421.16 4 - - mangiferin/isomangiferin [63]
17 27.2 203 407.18 405.28 - 4 - neolancerin/xanthohypericosider [60]
18 29.2 279 865.23 863.23 - 4 - unidentified procyanidin
19 30.2 279 867.24 865.26 4 4 4 trimeric procyanidin type C [64]
20 33.2 279 - 576.17 a 4 4 4 tetrameric procyanidin B type [64]
21 35.9 279 - 720.22 b - 4 4 pentameric procyanidn B type [64]
22 37.6 209, 255, 354 611.21 609.20 - - 4 rutin [19,42]
23 38.5 256, 353 465.18 463.14 4 - 4 quercetin 3-O-glucoside [63]
24 39.8 203, 255, 353 479.16 477.18 4 - - quercetin 3-O-glucuronide [63]
25 41.4 286 - 361.17 4 - - unidentified compound
26 42.4 203, 265, 344 595.20 593.19 - - 4 kaempferol 3-O-rhamnoglucoside
27 43.7 203, 255, 350 449.19 447.17 - 4 - quercetin 3-O-rhamnoside [19,42]
28 55.5 203, 254, 368 303.11 301.1 4 4 4 quercetin [19,42]
29 60.0 217, 310, 353 611.17 609.20 4 4 - quercetin O-p-coumaroylhexoside [63]
30 65.1 218, 368 287.10 285.08 - - 4 kaempferol [19]
31 67.7 219, 342 749.16 747.18 - 4 - unidentified compound
32 68.4 265, 340 749.15 747.17 - 4 4 unidentified compound
33 71.1 268, 335 539.16 537.30 4 4 4 amentoflavone [19]
34 78.8 284, 369, 483, 565 367.34 365.30 - - 4 unidentified compound
35 79.2 287, 369, 483 381.32 379.36 - - 4 unidentified compound
36 86.7 221, 291 363.32 361.32 - - 4 unidentified compound
37 87.4 287, 369 349.31 347.33 - - 4 unidentified compound
38 91.9 221, 291 363.35 361.35 - - 4 unidentified compound
39 97.3 221, 290 333.31 331.27 - - 4 unidentified compound
40 100.0 221, 291 347.33 345.33 - - 4 unidentified compound
41 101.0 221, 287 333.34 331.34 - - 4 unidentified compound

a [M-2H]2−. b [M-2H]2−.

According to these preliminary results, a total of forty one main compounds in terms
of specialized metabolites were detected in the methanol–water microextracts CMW, GMW
and LMW, respectively. Twenty four were known compounds tentatively identified based
on their retention times, spectral properties (UV-Vis and MS/MS patterns) and from the
comparison of literature. These known compounds belonged to the family of phenolic
secondary metabolites and they have previously been described or isolated from Hypericum
extracts [19,42,60,62–64]. Among these known compounds 6, 9, 14, 15, 19, 20, 28 and 33
were ubiquitous in all MW microextracts. A careful analysis of the UV trace at 280 nm
of CMW, GMW and LMW microextracts enabled the detection of at least the presence of
eighteen, nineteen and twenty seven specialized metabolites, respectively. Additionally,
these MW microextracts also contained a total of fifteen unidentified compounds whose
spectral data suggested their novelty as natural products from Hypericum species since they
were not found in the literature.

In the case of CMW microextract (from H. canariense), six major compounds were
detected and identified as chlorogenic acid isomers (6 and 11), mangiferin isomers (16),
quercetin-3-O-glucouronide (24) and quercetin (28). Only two detected compounds in
CMW (4 and 25) were not associated to a described natural product previous detected in
Hypericum species. Following the same analysis for GMW, we found three outstanding
peaks, including p-coumaroylquinic acid isomer (19), quercetin 3-O-rhamnoside (327) and
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quercetin (28). The chromatogram obtained for GMW (from H. grandifolium), showed the
presence of several minor compounds, four of them (5, 18, 31 and 32) were not possible
to identify it, considering their UV spectra and their MS/MS fragmentations. Likewise
the analysis of LMW microextract (H. glandulosum) by LC–MS revealed the presence of
twenty seven compounds, including seven major compounds, among them, chlorogenic
acid isomers (6, 11 and 12), catechin (15), rutin (22), kaempferol -3-O-rhamnoglucoside(26)
and an unidentified component (40). This analysis also enables detecting another ten
unidentified compounds (3, 7, 32, 34–39 and 41). These unidentified secondary metabolites
in LMW are mostly less polar compounds. This microextract is also characterized by the
presence of several minor compounds.

In spite of this preliminary analysis by UHPLC–DAD–MS of MW microextracts from
H. canariense, H. glandulosum and H. grandifolium, several minor detected compounds
cannot be identified due to many of them being co-eluted with major compounds. In this
framework, further bioguided isolation studies might be required to clarify their identity.

2.4. Bioactive and Anticancer Potential

In this work, we discussed the microextraction with three different solvents, the
evaluation of bioactivity of the obtained microextracts, and the chemical analysis of the
most polar microextracts from the aerial parts of four Hypericum species from Canary
Islands. These experiments might address the selection of the species with the highest
bioactive potential. Therefore, we propose an empirical equation for the calculation of the
bioactive potential (BP, Equation (2)) based on the previous works by Eloff and Cos [11,15],
our experience on the screening of plants [65,66] and the results described in previous
sections. Basically, BP and TA have similar definitions, but BP refers to the efficacy of the
plant material in several related bioassays and the possibility to find new compounds as
the responsible of the initial observed biological activity.

(BP) = (N + 1) × Total Activity × Chemical novelty (2)

Chemical novelty =
total number of detected compounds

number of known compounds
(3)

(BP) = (N + 1) × Yield extraction × 1
Bioactivity

× Chemical novelty (4)

In summary, the calculation of BP involves three experimental components (Equation (4)):
the extraction process (yield extraction), the bioactivity evaluation (bioactivity in primary
bioassays), and the chemical analysis by LC–MS (chemical novelty, Equation (3)); and a
fourth factor defined as N + 1, where N means how many times a sample becomes the most
active one in a bioassay. This fourth factor (N + 1) implies that BP never could be zero since
an extract might be bioactive in any sort of biological test (intrinsic bioactivity). Therefore,
after applying Equation (4), the resulting value of BP enables the sorting and prioritizing
a list of plants from the highest to the lowest BP during a screening. agrochemical or
pharmacological studies) related to the search of high-value products from plants.

To exemplify the calculation of BP, considering our special interest in the anticancer
activity in the polar extracts from of the aerial parts of Hypericum species, we applied and
modified BP formulae to calculate the anticancer potential (AP) of methanol–water microex-
tracts (MW) from H. canariense (CMW), H. grandifolium (GMW) and H. glandulosum
(LMW) (Equation (5)). From the biological tests and regarding GI50 values, the MW mi-
croextract from H. reflexum (RMW) was not subjected to the chemical analysis by LC–MS,
and consequently it was considered the sample with the less AP.

Anticancer Potential (AP) = (N + 1) × Total Activity × Ctotal
Cknown

(5)
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The anticancer potential values from the MW were obtained based on one primary and
two secondary bioassays related to anticancer activity (Figure 6). From the first biological
test we conclude that none of the MW microextracts were the most active one. Finally,
GMW was selected as the most active one in two of the secondary bioassays: cell migration
disturbances in A549 cells and formation of acidic vacuoles in HeLa cells. Table 3 shows the
N and chemical novelty values considered for the calculation of the AP of MW microextracts
from H. grandifolium, H. glandulosum and H. canariense. The TA for these MW microextracts
were computed in Section 2.2.2 (Table S2). Overall, the AP values permit to sort the
microextracts: GMW > LMW> CMW (H. grandifolium > H. glandulosum > H. canariense).
These results also allow select H. grandifolium Choisy as the species with the highest AP as
a source of polar potentially bioactive compounds.
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Table 3. Anticancer potential for the most bioactive MW Hypericum extracts.

Chemical Novelty Anticancer Potential (mL/g)

Microextracts N Ctotal Cknown Ctotal/Cknown A549 HBL-100 HeLa SW1573 T-47D WiDr

CMW 0 18 16 1.125 1074 1087 1427 1242 1347 846
GMW 2 19 15 1.266 3475 2689 7699 3559 5180 2966
LMW 0 27 16 1.688 2897 3503 6175 3977 3207 2637

2.5. MW Microextracts of H. Grandifolium Induce Cell Death in HeLa Cells

Based on this, we selected the MW microextract of H. grandifolium (GMW) to run a more
detailed study on HeLa cells using label-free continuous live-cell imaging. Live-cell imaging
opens a new window in the study of cell response to potential bioactive compounds. The
ability to evaluate the behavior of a population at single cell level facilitates the study of
phenotypic changes between subgroups of individuals. Moreover, live imaging enables
checking the effects at continuous time points, changing the concept of dose–response
relationship at fixed times.

HeLa cells were exposed to GMW and the effects were monitored for 15 h. For
comparison purposes, we used TAM. Figure 7 depicts how GMW is able to induce death to
HeLa cells earlier and in extended populations than TAM (Figure 7a). In consonance with
AO staining results (Figure 5), cells are highly vacuolated (Figure 7b) in the GMW-treated
group. This feature could be induced not only by the pharmacological activity of the extract
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but as a cell response to an external agent, trying to isolate the exogenous substances.
Since live imaging has enabled us to observe cell death progressively, we can differentiate
several apoptotic hallmarks. Treatment with GMW induced nuclear condensation and cell
shrinkage after 10 h of incubation in a broader way than TAM. For the same time period, cell
death was not observed in the control group (Figure 7a, Supplementary material V1). The
observed effects were analyzed and quantified with STEVE software (Figures 7c and S2–S4).
Cell death is represented as a drastic decrease in the percentage of confluence in the GMW-
treated samples. The formation of apoptotic bodies by cell shrinkage is depicted in the
diminished cell area. In agreement with this last result, dry mass density is increased in the
GMW-treated cells when compared to the control, reflecting the collapsing of cells caused
by the extract.
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Figure 7. Live-cell imaging study on HeLa cells. (a) Representative images of the experiments
for untreated (control) cells and cells exposed to 10 µM TAM or 100 µg/mL GMW. (b) Images of
cell vacuolization after treatment with GMW for 5 h. Yellow arrows indicate cytoplasmic vacuoles
observed. (c) Confluency, Mean Cell Area and Average Dry Mass Density obtained with STEVE
software based on refractive indices resulting from CX-A observation over time. Green: untreated
cells. Yellow: TAM (10 µM). Blue: GMW (100 µg/mL).
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3. Materials and Methods
3.1. General Experimental Procedures

Acetonitrile, methanol, and formic acid for UHPLC were purchased from Merck
(Darmstadt, Germany). Water for UHPLC was purified with a Millipore Simplicity System
(Bedford, MA, USA). Solvents for the extraction of plant material were of analytical grade.

3.2. Plant Material

The aerial parts of H. canariense, H. grandifolium, and H. reflexum (6 to 8 kg of fresh
material) were collected in La Palma and Tenerife (Canary Islands, Spain), during the
period between June and July 2019. 7 kg of the aerial parts of H. glandulosum, were collected
in La Palma and Tenerife (Canary Islands, Spain), in June 2021. All the specimens were
collected and identified by Dr. Pedro Luis Pérez de Paz, University of La Laguna. A
voucher specimen of species was deposited at TFC Herbarium, University of La Laguna
(Tenerife, Spain) (Table 4). Plant material was dried in airy oven at 38 ◦C temperature for
one week. Finally, plant material was stored at room temperature in the darkness.

Table 4. Collection data of four Hypericum species.

Plant Species Common Name Collection Site Voucher

Hypericum canariense L. granadillo Breña Baja. Las Ledas (La Palma island) 53,351

Hypericum glandulosum Aiton malfurada del monte In between Mirador de Gallegos and Roque
Faro (La Palma island) 53,775

Hypericum grandifolium Choisy malfurada Villa de Mazo. La Tablada (La Palma island) 53,350
Hypericum reflexum L.f cruzadilla Arico-Granadilla (Tenerife island) 53,346

3.3. Extraction of Plant Material

Ground aerial parts (10 g) from H. canariense, H. glandulosum, H. grandifolium, and
H. reflexum, were sequentially extracted with the same volume (200 mL) of methanol–water
(1:1, v/v, MW), methanol (MM), and dichloromethane–methanol (1:1, v/v, DM) for 24 h at
room temperature. The resulting extracts were filtered and concentrated under reduced
pressure to evaporate the less volatile solvent. All extracts were resuspended in water and
lyophilized affording MW, MM and DM extracts, respectively. Thereafter, the microextracts
were weighed and stored at 4 ◦C until further processing.

3.4. UHPLC–DAD–MS3 Analysis

UHPLC–DAD–MS analyses of raw and aqueous extracts were conducted using a
previously established method [67] with some modifications. Thus, 10 mg of polar mi-
croextracts (CMW, GMW and LMW) were dissolved in 1 mL of methanol–water (1:1, v/v)
and subjected to UHPLC analyses. The separation was carried out on a Kinetex XB-C18
(150 mm × 2.1 mm × 1.7 µm, Phenomenex, Torrance, CA, USA). The mobile phases were
0.1% formic acid in water (A), and 0.1% formic acid in acetonitrile (B), and elution was
conducted with the following gradient: 0 min–3% B, 60 min–26% B, 120 min–95% B. The
flow rates were 0.3 mL/min. The UV–Vis spectra of the detected compounds were recorded
over the 190–600 nm range. The chromatograms of these microextracts) were recorded at
280 nm. Mass spectra were recorded in the positive and negative ion modes. Compounds
were characterized based on the maxima observed in their UV–Vis spectra and on their
MS spectra. Additionally, the Reaxys database was searched for compounds previously
detected and identified in Hypericum species.

3.5. Cell, Culture and Plating

The human solid tumor cell lines A549 (lung), HBL-100 (breast), HeLa (cervix), SW1573
(non-small-cell lung), T-47D (breast), and WiDr (colon) were used in this study. These cell
lines were a kind gift from Prof. Godefridus J. Peters (VU Medical Center, Amsterdam, The
Netherlands). Cells were maintained in 25 cm2 culture flasks in RPMI 1640 supplemented
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with 5% FBS and 2 mM L-glutamine in a 37 ◦C, 5% CO2, 95% humidified air incubator. For
all tests, exponentially growing cells were trypsinogen and resuspended in an antibiotic-
containing medium (100 units penicillin G and 0.1 mg of streptomycin per mL). Single-cell
suspensions were counted with Moxi Z. After counting, dilutions were made to give the
appropriate cell densities for inoculation onto the appropriate (microtiter) plates.

3.6. Antiproliferative Tests

The tests were performed in 96-well plates using the SRB assay [68] with the following
specifications. Cell seeding density was 2500 cells/well for A549, HBL-100, HeLa, and
SW1573, and 5000 cells/well for T-47D and WiDr. Stock samples were dissolved in DMSO
at an initial concentration of 100 mg/mL. Test samples were prepared by decimal serial
dilutions of the stock sample to give a final test concentration of 250, 25 and 2.5 µg/mL.
The incubation time was 48 h. The optical density of each well was measured at 530
(primary) and 620 nm (secondary) using a microplate reader (Power Wave XS, BioTek,
Winooski, VT, USA). The antiproliferative activity, expressed as 50% growth inhibition (GI50)
values, was calculated according to the NCI formulas [49]. GI50 represent approximate
values. Following NCI guidelines, the concentrations giving PG values above and below
PG = 50 were used to make interpolations on the concentration axis.

The criteria used to categorize the cytotoxicity of the microextracts on the NCI’s
protocol was as follows: GI50 ≤ 20 µg/mL = highly cytotoxic, GI50 ranged 21–200 µg/mL
= moderately cytotoxic, and GI50 > 201 µg/mL = weakly cytotoxic [69].

3.7. Cell Migration Assay

To study cell migration, we used the wound healing (scratch) assay [70]. Single-cell
suspensions of A549 cells were seeded onto a 24 well plate at a density of 50,000 cells/well.
Cells were incubated until they reached >90% confluence. Afterwards, a mark was drawn
on the outside bottom of each well. This enabled finding the reference point when taking
pictures. For each well, a scratch on the cell culture was made perpendicularly to the mark
using a sterile p200 tip. Then, the medium was replaced with fresh medium with 2.5% FBS.
This allows us to diminished the interference caused by cell proliferation during the time of
assay, evaluating only the cell migration. Pictures were taken with a brightfield microscope
(Axiovert 40 CFL, Zeiss, Germany) at one magnification (5X) using the software ZEN 2012
(blue edition v1.1.0.0) (accessed on 10 August 2022) at different time intervals (0, 6 and 24 h
since the formation of the scratch). For the quantification of cell migration, TScratch, an
image software based in MATLAB, was used adapting threshold of images to measure the
area of the wound made [71]. Results are represented as percentage of the closed area as
defined by Equation (6).

Wound Closure %=
(

At=0 − At=∆t
At=0

)
× 100 (6)

3.8. Acridine Orange Staining Assay

To evaluate the induction of acidic vacuoles by the plant extracts the acridine orange
staining assay was used. Briefly, single-cell suspensions of HeLa were seeded onto a
6 well plate at a density of 100,000 cells/well. After 24 h extracts diluted in DMSO were
added and incubated for an additional period of 24 h. Then, the medium was removed,
cells were detached with trypsin, resuspended with PBS (200 µL), transferred to 1.5 mL
tubes and centrifuge 1200 rpm × 5 min (Centrifuge 5418 R, Eppendorf). Each group of
cell suspensions were incubated with 1 mL of acridine orange solution (20 µM in PBS)
for 30 min at room temperature under dark conditions. After centrifuge at 1200 rpm for
5 min, cells were washed twice with PBS to remove the excess of staining, centrifuged
one last time and resuspended in PBS. Then, 100 µL of each cell suspension were added
onto a black-walled, clear-bottom, flat bottom 96 well plate and measured fluorescence
intensity at 502/528 excitation/emission wavelengths using a microplate reader (Varioskan
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LUX VLBL0TD0, Thermo Fisher Scientific, Waltham, MA, USA). The number of cells was
normalized with crystal violet staining and suspending the dye with 1% SDS in PBS, and
finally measuring the optical density at 595 nm using a microplate reader as aforementioned.

For fluorescence microscopy images, cells were seeded onto a coverslip into a p6
well at the aforementioned seeding density. Treatments were made exactly the same as
previously described and then staining was performed directly on the wells after removal
of the medium. Two washes with PBS were made and coverslips were mounted fresh
over glass slides to observe under fluorescence microscopy using SP5 Leica apparatus with
LAS-AF software (Leica Microsystems) equipped with I3 (450–490) and N2.1 (515–560)
excitation filters for green and red channels, respectively. Both channels were merged into
individual images using ImageJ.

3.9. Live-Cell Imaging

A CX-A imaging platform microscope (Nanolive SA, Lausanne, Switzerland) was
used to measure refractive indices, creating a holotomographic 3D image of the cells.
HeLa cells were cultured at a density of 50,000 cells/well onto a IBIDI µ-Dish, 35 mm
high (Martinsried, IBIDI, Germany) and treated with or without 100 µg/mL of extract
right before the acquisition of the images. Data obtained were transferred to FIJI (NIH,
USA) for image analysis. STEVE software (Nanolive SA) was used for the analysis of the
refractive indices and obtention of the Confluency, Mean Cell Area, and Mean Average Dry
Mass Density.

4. Conclusions

In summary, we have proposed a general methodology and empirical equation to
assess the BP during the screening of extracts from plants. We applied the said protocol
to four Hypericum species from the Canary Islands (H. canariense L., H. glandulosum Aiton,
H. grandifolium Choisy and H. reflexum L.f.), specifically to evaluate the anticancer potential
(AP) of their methanol–water microextracts. The assessment of AP involved the evaluation
of the yield of extraction, the assessment of the antiproliferative activity of the microex-
tracts and their dereplication by LC–MS. After the application of this pharmacognostic
protocol, it was possible to assess the AP of the methanol–water microextracts and to select
H. grandifolium as the best candidate to carry out the bioguided isolation of polar natural
products with high added value.
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