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Abstract: Traffic congestion experience in urban areas has negative impact on our daily lives by
consuming our time and resources. Intelligent Transportation Systems can provide the necessary
infrastructure to mitigate such challenges. In this paper, we propose a novel and scalable solution to
model, store and control traffic data based on range query data structures (K-ary Interval Tree and
K-ary Entry Point Tree) which allows data representation and handling in a way that better predicts
and avoids traffic congestion in urban areas. Our experiments, validation scenarios, performance
measurements and solution assessment were done on Brooklyn, New York traffic congestion simula-
tion scenario and shown the validity, reliability, performance and scalability of the proposed solution
in terms of time spent in traffic, run-time and memory usage. The experiments on the proposed data
structures simulated up to 10,000 vehicles having microseconds time to access traffic information and
below 1.5 s for congestion free route generation in complex scenarios. To the best of our knowledge,
this is the first scalable approach that can be used to predict urban traffic and avoid congestion
through range query data structure traffic modelling.

Keywords: connected vehicles; scalability; data structures; congestion avoidance; urban traffic; simulation

1. Introduction

Traffic congestion is one of the major challenges encountered by our world, especially
in the urban areas. Because of this, drivers spend a lot of their time in traffic: billions of
hours of extra time sitting in traffic which results in hundreds of billions of USD congestion
cost [1,2]. In the major US urban areas 32% of the daily travel time occurred under congested
traffic [3].

Intelligent Transportation Systems (ITS) come with approaches that attempt to predict
traffic and dynamically enhance vehicle routes to avoid congestion by correlating knowl-
edge from a large spectrum of data. Such amount of data also comes with specific challenges
such as scalability [4]. A key aspect of ITS that impacts scalability is the information sharing
between vehicles. Clear overviews of the state-of-the-art in the ITS development and vehic-
ular communication are done in [5,6] while more specific information sharing approaches
that use various communication channels and architectures are presented in [7–9]. As
shown in [9], besides the specific features supported by different architectures of the traffic
applications, the performance of such applications can be influenced by their architecture:
centralized vs. decentralized. ITS’ traffic prediction and congestion avoidance is strongly
related to route planning algorithms. Route planning algorithms use and impact different
aspects (e.g., traffic information) of daily travel experience as is presented and evaluated in
various works [10–16]. From implementation cost perspective, it was shown that traffic
modeling through simulation is an efficient and reliable approach [17–23]. Considering all
the above mentioned challenges and achievements, we found that there is an urgent need
to develop a scalable traffic modeling database that can be used by navigation systems to
predict and avoid congestion based on accurate traffic information during route planning.
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The main goal of this work is to develop a novel and scalable traffic modeling solution
in order to efficiently predict and avoid traffic congestion in urban areas. The main
contributions of this paper are:

1. We present a conceptual architecture of the traffic congestion prediction strategy
based on three main pillars in order to support traffic storage and traffic control: Map
Topology, Route Planning Algorithms, Range Query Data Structures. Similar to the
methodology in [24], our work uses route planning algorithms to generate routes
considering the map topology and the existing real-time information about traffic
(already generated routes) that are efficiently stored using range query data structures.

2. Two novel range query data structures K-ary Interval Tree and K-ary Entry Point
Tree) that can be used to represent and control large-scale traffic information in a
V2C infrastructure.

3. The KI Tree and KEP Tree were integrated with the OSMAnd Navigation System [25]
in order to store and control the generated vehicle routes.

4. Adaptation of the OSMAnd Navigation System to behave like a cloud service. OS-
MAnd’s Route Planning Algorithm was adapted to support tens thousands of concur-
rent routes on the road network (map) in order to simulate traffic in urban areas.

The rest of the paper is structured as follows. The Section 2 discusses related work
from the literature. In Section 3 we present the conceptual architecture and pillars of the
used traffic congestion prediction and avoidance strategy. In the Section 4 we present
and analyze the conceptual model of the traffic database from data structure perspective.
Section 5 contains a description of the algorithms used to efficiently process and store
traffic in the V2C infrastructure database. The evaluation and experimental results of the
proposed solution are discussed in Section 6. The Section 7 concludes the paper and gives
an overview of the planned future work.

2. Related Work

Different aspects of the vehicular traffic were discussed, analyzed and evaluated by the
literature in recent years. In the first two parts of this section, we present the related work
in the literature regarding traffic prediction and congestion avoidance. The last subsection
discusses the main known large-scale traffic simulation solutions from the literature.

2.1. Traffic Prediction

Several traffic prediction solutions in the literature use simulation and data mining
for short-term traffic prediction in non-urban areas. One worth-mentioning solution that
predicts the fundamental traffic parameters speed, flow and density [26,27] is proposed
in [28] and is based on online change-point-based (OCPB) model. The work in [29] describes
a short-term traffic flow prediction approach based on dynamic tensor completion (DTC).
An interpretable and adaptable spatio-temporal Bayesian multivariate adaptive-regression
splines (ST-BMARS) approach for short-term highway traffic prediction is described in [30]
and is shown its superiority in comparison with temporal multivariate adaptive regression
splines (MARS) model, the parametric auto regressive integrated moving average (ARIMA)
model, the state-of-the-art seasonal ARIMA model and the kernel method support vector
regression. Another perspective for predicting short-term traffic flow is presented in [31]
and is based on a unified spatio-temporal model. Its behaviour depends on the road
network topology. The authors of this proposal proved that its accuracy is superior to
space-time auto regressive integrated moving average (STARIMA) and back propagation
neural network (BPNN) approaches on freeway traffic prediction. Spatio-temporal related
approaches for short-term traffic flow prediction can be found also in [32,33]. The authors
in [33] use a space-time k-nearest neighbour (ST-kNN) method to predict highway short-
term traffic. Deep learning approaches to predict traffic information are presented in [34,35].
The work in [35] uses weather information to predict traffic flow on highways while the
approach in [34] tries to predict short-term traffic based on traffic data from ring roads in
Beijing. The work in [17,36,37] are simulation-based traffic prediction approaches. In [36]
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are used Generalized Beta-Gaussian Bayesian Networks on less than 250 map links while
in [37] is used SUMO [38] to simulate traffic in Cologne, Germany for two models that
predicts traffic on time intervals that are less than 1 min and greater than 1 min, respectively.
A macroscopic traffic flow model is used in [3] to real-time traffic prediction and congestion
on highways. The work in [3] is able to warn the driver in less than 7 s before entering
traffic jam. Highway traffic prediction methods are also presented in [39] and are based
on time-aware multivariate nearest neighbour regression algorithms. A segment-based
regression kriging (SRK) method is presented in [40]. It predicts traffic by differentiating
heavy and light vehicles and shows that the impact of heavy vehicles on road maintenance
is much larger than the one of light vehicles and it varies across space.

The literature work regarding urban traffic prediction is not that various and complete
as for non-urban case. The work in [41] approaches various urban traffic indicators (e.g.,
flow, speed, accident risk) for prediction based on deep learning. In [42] is described
a neighbor-regularized and context-aware non-negative tensor factorization model (NR-
cNTF) to discover and interpret urban dynamics based on urban heterogeneous data. In this
work, a large amount of historical data was processed (six million trips from 20 thousand
taxis and 400 thousand POI records in Beijing) with the risk of becoming irrelevant due to
fast changes of the traffic context in time. The authors of work in [43] present a STARIMA
based approach that efficiently predicts travel time using large volumes of traffic data
information in Berlin and Thessaloniki. A communications-oriented perspective on traffic
management systems for smart cities is discussed in [44] with main focus on short-term
traffic forecasting. The work in [45,46] elaborates neural network-based traffic forecasting
models in urban areas.

2.2. Traffic Congestion Prediction and Avoidance

On top of traffic prediction approaches discussed in the previous subsection, in this
section are presented various approaches for traffic congestion prediction and avoidance
solutions that can reduce the time spent in traffic. The work in [47] uses unsupervised
incremental learning approach for road traffic congestion detection and profiling, dynam-
ically over time. They are evaluating 190 million vehicular movement records obtained
from Bluetooth identifiers placed at the intersections in the State of Victoria, Australia,
in order to predict short-term traffic. Additionally, short-term traffic congestion prediction
was approached in [48] by developing a deep autoencoder neural network that was trained
to learn temporal correlations of a transportation network and to predict traffic congestion
on data sets from a Seattle area. An interesting and promising approach used to analyze
traffic congestion is proposed by the authors in [49]. Their methodology geocodes traffic-
related events that are coming from Twitter to gather training dataset on which applied a
Support Vector Machine method is applied to obtain a prediction model. From this model
is produced a spatio-temporal traffic information that can be used to analyze the traffic
congestion in Mexico City. The authors in [50] proposed different re-routing methods to
avoid traffic congestion. They use 1000 vehicles simulation (based on SUMO [38] and
TraCI [51]) to test the approaches. The work in [52] presents multi-platooning leaders
positioning and cooperative behavior algorithms for communicant automated vehicles
to increase traffic capacity. Traffic Congestion Avoidance in Urban Areas based on Inter-
Vehicular Communication is approached in [53,54]. For the work in [53] traffic simulations
and measurements are done on New York map while the work in [54] is evaluated in
the city of Colima, Mexico by combining inter-vehicular communications, fixed roadside
infrastructure, infrastructure-to-infrastructure connectivity and big data. A traffic conges-
tion avoidance method based on multiple agents vehicle re-routing is described in [55].
It tries to achieve a trade-off between the individual and global benefits by giving the
vehicles optimal guidance suggestions to bypass a blocked road ahead. The approach was
tested using artificial grid maps. In the context of microscopic traffic models, it is worth
mentioning the work in [56] that approaches traffic patterns detection. Human factors
impact on traffic are evaluated in [57] and proved that they have a big impact on traffic
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stability and can lead to sudden traffic breakdowns. A more targeted approach used to
improve urban traffic and reduce congestion is the work in [58]. The proposed solution tries
to optimize the lighting systems at the road network intersections by applying the Swarm
Intelligence Algorithm which considers the average delay time of vehicles, the average
number of stops of the vehicles and the traffic capacity as the evaluation indexes.

In addition to many works that analyzed and showed the benefits of urban traffic
simulation based on TraffSim [59–62], an interesting approach for urban traffic prediction
and congestion avoidance based on routing algorithms is described in [63]. They use
microscopic traffic simulation of 2000 and 3000 vehicles on artificial and real world maps.
This work resembles with the current work in some aspects, especially on using routing
algorithms to predict and avoid congestion and on simulation step to evaluate the approach.
Another route centric approach is the solution shown in [64]. This approach does not
consider the overall traffic state but can re-route an individual vehicle in order to balance
the traffic. The authors of [65] showed the benefits of the cooperative route planning
against egoistic driving mode. Cooperative route planning is also one of the main pillars of
our work.

2.3. Large Scale Traffic Simulation

In the previous subsection, we discussed different traffic congestion avoidance solu-
tions, especially for urban-areas. All of the presented solutions lack one important aspect:
scalability. In this subsection are discussed large-scale traffic simulation methods that were
developed in past. Traffic simulation in urban areas must consider scalability in order to
be able to be as close as possible to real world scenarios. Table 1 summarizes the existing
solutions used to model large scale traffic scenarios in various cities. The work in [18]
represents a Vehicular Network Simulator (VNS) that integrates the DIVERT 2.0 traffic
simulator to mimic traffic. They were using Quad Tree data structure to represent vehicles
(by their position) on the large-scale road network (Porto City). In [19,20] is integrated the
INTERGRATION traffic simulator in order to accurately model large-scale traffic in Down-
town LA. The vehicle storage data structure representation is not described. The authors
in [21] propose a large-scale traffic modeling solution that is based on INTEGRATION
traffic simulator where the vehicle positions are stored, updated and queried using Grid
Cells data structure with update index. Their query operation is linear with the number of
vehicles on the road network and the update operation is constant. The query operation
can become a bottleneck when the query frequency is high or the number of vehicles on
the road network is high (traffic congestion). An innovative traffic modeling solution is
described in [22] where the traffic state is defined by the generated vehicle routes that sim-
ulates the traffic. For traffic simulation they integrated and adapted OSMAnd navigation
application to generate vehicle routes like in real world route planning context. In their
proposed solution, it is possible to query the number of vehicles on a road segment at a
specific time, therefore also having a vehicle level accuracy. The data structure used to
store, update and query traffic information is Segment Tree. As is shown in Section 6, this
data structure has scaling limitations due to performance of update and query operations.
Following the same methodology [24] like the approach in [22] our work is proposing
a novel and scalable solution based on K-ary Tree. Using this approach, we efficiently
model simulated traffic in order to predict and avoid traffic congestion in urban areas. Our
proposal adapts OSMAnd navigation system to behave like a cloud service in order to
simulate as much as possible real world navigation scenarios in a V2C infrastructure and
at the same time to be cost effective.
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Table 1. Large Scale Traffic Simulation Solutions.

Solution Vehicle Positions Traffic Simulator Road Network Query Performance Update Performance

Proposed K-ary Tree OSMAnd Brooklyn, New York O(k× logk n) O(logk n)

VNS [18] Quad Tree DIVERT Porto City NA NA

Elbery [19,20] NA INTEGRATION Downtown Los Angeles NA NA

Farag [21] Grid cell INTEGRATION Downtown Los Angeles O(n) O(1)

Stan [22] Segment Tree OSMAnd Cluj-Napoca City O(log n) O(log n)

3. Congestion Prediction Pillars

In our Vehicle to Cloud (V2C) simulated infrastructure, the entire traffic information
is stored and processed by the cloud service that is represented by the adapted OSMAnd
navigation application. In our solution we considered 3 main pillars that are the basis of an
efficient traffic prediction and congestion avoidance solution: map topology of urban areas,
data structures used to store traffic information and routing algorithms used to generate
all routes in a V2C ecosystem. The congestion prediction and avoidance method applied,
assigns a utility score (cost) to each road segment on the map. If a segment has the potential
to become congested, its utility score is decreased, making it less likely to be picked by the
routing algorithm in favor of other alternative road segments (that become alternatives).
In this way, the traffic is spread over a larger part of the road network in an attempt to
minimize traffic congestion.

In Figure 1 are represented the 3 pillars and their relations. Considering the pillars’
classification in [24], for different map topologies (e.g., grid, historical, mixed) can be
used different range query data structures (e.g., Segment Tree, K-ary Interval Tree, K-ary
Entry Point Tree, van Emde Boas Tree) to store the traffic information on road segments on
the map. On top of this, different route generation algorithms (e.g., A*, A* Bidirectional,
Dijkstra) can be used to generate vehicle routes based on map data and traffic information.
Moreover, there can be scenarios where it is more efficient to apply a specific route planning
algorithm over a specific map topology [16].

Figure 1. Vehicle to Cloud Congestion Prediction Pillars.

It is worth mentioning that the key element that provides the ability to have an
overall perspective and control over traffic distribution on roads, is the data representation
and storage strategy of the computed routes that generate the traffic data. The most
granular level for data representation in our proposal is based on the road segment. In
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our case, a road segment is a map element that represents a unique portion of a road.
A road is composed by multiple road segments. For simplification, in the rest of the paper,
we refer to a road segment using the term segment. Based on this data representation
approach we propose a cost effective and efficient solution that uses simulation to generate
random routes that are supposed to be followed by the vehicles. Considering all the above,
for our purpose we adapted OSMAnd navigation system to be used as a cloud service
that store and control traffic information in a range query data structure through route
planning algorithm. We modified OSMAnd navigation solution to be able to request tens
of thousands of concurrent routes generation in a short amount of time. OSMAnd is a
mobile navigation solution on Android that uses Open Street Map (OSM) that contains
all the necessary information for vehicle navigation (roads, POIs, speed limits, traffic light
information, etc.). In this way, the simulation environment is close to reality from map data
and route planning perspective.

The route planning algorithm from OSMAnd application was modified to consider
and store (through range query data structures) already generated traffic and potential
traffic congestion generation when a segment is used to compute a route. Algorithm 1
shows the simplified flow of the route planning algorithm we used. It is a modified version
of the bidirectional A* route search algorithm where the number of backward steps is
limited to a constant c. In our case c = 10 and ensures that the destination point is reached.
The value was found after multiple evaluations of the algorithm during testing.

Algorithm 1 Forward Oriented Search A* Algorithm

1: procedure COMPUTE ROUTE(ps, pd)
2: init( f orwardQueue, ps) . initialize forward graph search cost queue
3: init(backwardQueue, pd) . initialize backward graph search cost queue
4: backwardSteps← 10
5: while forward search unmet all backward processed segments do
6: forwardHead← forwardQueue.head()
7: backwardHead← backwardQueue.head()
8: if backwardSteps == 0 OR f orwardHead < backwardHead then
9: segmentID← forwardQueue.pop()

10: else
11: segmentID← backward.pop()
12: backwardSteps← backwardSteps-1
13: end if
14: processSegment(segmentID)

15: end while
16: end procedure

The key step of the algorithm used to predict and avoidance congestion is the process-
ing segment statement that is presented in Algorithm 2. The notations used by Algorithm 2
are defined as follows:

• ps—starting point of a route given as GPS coordinates
• pd—destination point of a route given as GPS coordinates
• segmentID—segment on the navigation map represented by segment ID
• Cmap(segmentID)—map cost value of a segment from the map (e.g., Euclidean dis-

tance, turn costs, speed limit on the segment, etc.)
• N(segmentID)—set of neighbour segments of segmentID
• visited(segmentID)—returns TRUE if segmentID was visited in the routing algorithm

search graph and FALSE otherwise
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• Cmax—constant representing the maximum cost value possible on the map (used to
limit the forward search exploration algorithm)

• Cvehicles(ρ(segment, t))—cost factor corresponding to predicted vehicles’ density on a
segment at a specific time

• θ—threshold value that indicates traffic congestion
• vehiclesCount(segmentID)—total number of connected vehicles that navigates through

a specific segment on the map
• vehicleLength—the average length of a vehicle. In this work we considered to be

7 meters
• lanesCount(segmentID)—number of lanes on a segment used for vehicles’ den-

sity computation
• predicted vehicles’ density on a segment at a specific time ρ(segmentID, t) defined as

vehiclesCount(segmentID, t)× vehicleLength
length(segmentID)× lanesCount(segmentID)

The predicted time (t) represents the entrance moment on the given segment and
depends on the vehicle speed and vehicles’ density (ρ) on the roads. In the segment
processing step, a segment can be considered a good candidate of becoming congested in
future if the vehicles’ density on the segment reaches a threshold value θ. The algorithm
addresses the congestion issue by setting the cost on the current segment to a maximum
value. In this way the congestion on the current segment is predicted and, if there exist
other alternative segments they are preferred by the routing algorithm and congestion is
avoided on the current segment. In order to have a realistic setup of the algorithm we used
for θ the value found by the work in [23].

Algorithm 2 Process Segment

1: procedure PROCESS SEGMENT(segment)
2: for each segmentID in N(segment) do
3: if [not visited(segmentID) then
4: Cmap ← Cmap(segmentID)

5: t← predicted time when the vehicle arrives on segment
6: if θ < ρ(segmentID, t) then
7: Cvehicles ← Cmax . force to try another segment
8: else
9: Cvehicles ← Cvehicles(ρ(segmentID, t))

10: end if
11: costValue← Cmap × Cvehicles

12: updateCost(segmentID, costValue)
13: end if
14: end for
15: end procedure

4. Range Query Data Structures

The core of our system is the traffic data representation on segments. In this paper we
propose a novel and scalable solution that stores and controls the traffic information in a
V2C ecosystem. Our solution is basically using range query data structures as is described
in this section. First of all, it is worth mentioning that range query data structures can
be used to answer various traffic queries. In [24] are listed 3 queries that provide traffic
information from different perspectives. The first query, Q1, focuses on the number of
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vehicles that pass a road during any specific time interval. The work in [22] adapts the
segment tree data structure to answer this query.

Considering that Q1 should be answered during a fixed period of time (e.g., a day)
and it refers to specific time intervals to be queried, we can state that a static range query
data structure can be used for the purpose of answering Q1. This data structure should
support efficient update operations too. Segment tree is such a data structure and it was
proposed by the work in [22] for the purpose of representing traffic information. In their
proposal the segment tree represents the entire time interval (e.g., a day) for traffic query
and update on a specific map segment. Deeper technical description of Segment Tree can
be found in [66].

In order to answer the other two traffic related queries from [24] regarding Q2: max-
imum number of vehicles on a road during any specific time interval and Q3: number
of vehicles on a road at any specific moment, we propose, implement and analyze two
novel range query data structures that store traffic information corresponding to a time
interval (e.g., a day) on a specific map segment. The static property of these structures is a
requirement that ensures the fact that the entire storage is used efficiently for each map
segment i.e., the traffic information stored for each segment corresponds to the entire time
interval we want to measure (e.g., a day).

The idea behind highway hierarchies [67] of having an overview of a certain map area
and only requesting more detailed information as we need it (e.g.,we are close to required
location), can be applied to the data structures as well. We can observe that this idea is
well reproduced by the aggregation property of a segment tree node in [22] that aggregates
traffic data from its children. There are many other tree like data structures that are based
on this idea. For instance, k-ary hierarchical bit vector [68] is based on the same idea of
having its nodes aggregating required information from their children. The bit vector from
Figure 2 represents the set of numbers 2, 3, 5, 8, 9, 17, 23, 24, 25, 27, 28, 29, 30, 33, 34 (have
the value 1 if a number is in the set, otherwise 0). This bit vector is logically represented by
the k-ary hierarchical bit vector from Figure 3. The lowest level represents a single element,
while the above layers aggregate information about more positions. A value of 1 at an
upper layer means that there is at least one element present at a leaf rooted at the current
node. From storage perspective it requires additional memory compared to the bit vector.

Figure 2. Bit Vector Representation.

Figure 3. K-ary Hierarchical Bit Vector Representing 2, 3, 5, 8, 9, 17, 23, 24, 25, 27, 28, 29, 30, 33, 34.

To answer Q2 and Q3 queries and starting from the perspective of the k-ary hierar-
chical bit vector, we propose two corresponding range query data structures that support
traffic data representation and storage efficiently.

For addressing the challenges associated with Q2, we designed a K-ary Interval (KI)
Tree data structure. The conceptual representation of the KI Tree Node is shown in Figure 4.
KI tree node structure is a specialized K-ary tree node with the following content.
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Figure 4. KI Tree Node Structure.

• min—represents the start time stamp of a time interval covered by the node
• max—represents the end time stamp of a time interval covered by the node
• cluster—an array of references to child nodes
• vehiclesCount—aggregates vehicle counting from its children in order to compute the

maximum number of vehicles on a road during any specific time interval
• lowerLevelMaxCount—aggregates maximum vehicle counting information from its

children in order to compute the maximum number of vehicles on a road during any
specific time interval

The data aggregation procedure is described and exemplified in the next section
together with update and query operations.

For Q3, the specific moment is the time when a vehicle enters on a segment (entry
point). For this purpose we designed a K-ary Entry Point (KEP) Tree data structure used to
count the number of vehicles that enters on a segment. The logical representation of the
KEP Tree Node is shown in Figure 5. The structure is similar with the KI tree node with the
difference that it has only one field vehiclesCount that aggregates data from its children
in order to compute the number of vehicles on a segment entrance. As for KI tree node,
the data aggregation procedure is described and exemplified in the next section, together
with update and query operations.

Figure 5. KEP Tree Node Structure.

Another data model that has similar structure with ours is van Emde Boas Tree [69–71].
A van Emde Boas Tree node has the number of children exactly equal with the square
root of maximum number of elements that can be stored in the entire tree. Together with
the above discussed data structures, it is one of the range query data structures that has
potential to be used to answer traffic related queries. Table 2 shows asymptotic time and
space complexities for all mentioned data structures. We denote by n the number of nodes
in the tree. Thee root corresponds to the entire time interval to be covered, while each node
covers recursively sub-intervals of the parent node’s interval, with each second represented
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by a leaf in the tree. In this way n corresponds asymptotically to the number of seconds in
the time interval that is covered by the root of the tree (e.g., seconds in a day).

From the experimental analysis in Section 6, we concluded that it is efficiently to
implement the range query data structure using arrays and linking node parents with
children through indexes. Therefore, in all our implementations, all structures from Table 2
have linear complexity for construction operation and storage space.

As shown in [22], search, insert and delete operations for segment tree have logarith-
mic time. The search operation of the KI tree queries the maximum number of vehicles on
a segment during a time interval. It queries the tree nodes, starting from root, as follows: if
a node is fully included in the queried time interval, its corresponding value is returned; in
the case that a node partially intersects the queried time interval, its children are queried re-
cursively. The recursive approach goes top-down in the tree and introduces the worst case
complexity factor of logkn (that represents the height of the tree). Passing all the children
of a node takes O(k) and therefore, the search operation complexity is O(k× logk n).

Table 2. Complexities of Range Query Data Structures.

Previous Solution Current Solution Future Potential Solution

Operation Segment Tree K-ary Interval Tree K-ary Entry Point Tree Van Emde Boas Tree

Construction O(n) O(n) O(n) O(n)

Search O(log n) O(k× logk n) O(k× logk n) O(log log n)

Insert O(log n) O(k× logk n + log2
k n) O(logk n) O(log log n)

Delete O(log n) O(k× logk n + log2
k n) O(logk n) O(log log n)

Space O(n) O(n) O(n) O(n)

Insert operation sets the time stamp of the time interval when a vehicle enters on a
segment. Delete operation sets the time stamp of the time interval when a vehicle leaves a
segment. For a vehicle that stays on a segment for a specific time interval, the insert and
delete operations on the KI tree behaves as follows: following a bottom-up approach, if a
time interval fully covers all the children of a parent tree node, only the parent tree node is
considered for changes, otherwise the child nodes information is changed. The information
changed in both cases must be propagated bottom-up until it reaches the root of the tree.
The number of changes that represent a vehicle that stays on a segment for a specific
time interval corresponds to O(logkn) operations in a KI tree. For each change, it is
required to do O(logkn) steps in order to propagate the change to the root. Additionally,
the number of children that are passed in a KI tree for a vehicle that stays on a segment
for a specific time interval is O(k). Hence, we have the time complexity for insert and
delete O(k× logk n + log2

k n). For the k-ary entry point tree, the search operation has the
same flow as for KI tree and therefore the time complexity is O(k× logk n). The KEP tree
keeps simpler information than KI tree and therefore, the insert and delete operations are
simpler. The insert operation updates the data in all the nodes that logically contain the
time represented by the moment when a vehicle enters on a segment. Delete operation
updates the data in all the nodes that logically contain the time represented by the moment
when a vehicle leaves a segment. In this way, the complexity of both insert and delete
operations is O(logk n).

A promising range query data structure that we are currently under work for experi-
mental evaluation is Van Emde Boas Tree that has O(log log n) complexity for search, insert
and delete operations.

5. Algorithms

To answer Q2 and Q3 questions we designed and implemented an algorithm for query
and update operations on both KI and KEP trees. In this section we describe the proposed
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algorithms. For simplicity, in the rest of the paper we denote with Query algorithm the
Search operation a range query tree and with Update algorithm the combination of Insert
and Delete operations that correspond to the update of a range query tree based on vehicle’s
time interval on a segment.

For efficiency reasons, the implementation of the KI tree and KEP tree algorithms
(Query and Update) is based on indexed arrays that easily support direct access on the tree
nodes. From experimental evaluation from Section 6, we found 10-ary trees (k = 10) to be
the best choice. However, for the sake of exemplification, for the below algorithms we use
examples with k = 4. We use 1 based indexed arrays to store the K-ary trees, meaning that
in this case the time starts at second t = 1. The k-ary tree levels are numbered increasingly
from top-down.

In our Query and Update Algorithms for both KI tree and KEP tree we defined the
main parameters as follows:

• tstart—start of a time interval
• tend—end of a time interval
• l—level of a node in a K-ary Tree
• t—specific time
• llowest—the lowest level in a K-ary Tree
• sizel—time interval length corresponding to a node at level l in a K-ary Tree
• lmax—maximum level of a K-ary Tree (the lowest level)
• mvl,i—maximum number of vehicles at a KI Tree node indexed by level l and position i
• llml,i—maximum number of vehicles from a lower level corresponding to KI Tree

node at l and position i
• vpo—vehicles passing over a time interval
• vpol,i—vehicles passing over that corresponds to the K-ary Intreval Tree node at l and

position i. vpol,i = mvl,i − llml,i
• start—start index in a KI Tree array storage corresponding to the beginning of a

time interval
• end—end index in a KI Tree array storage corresponding to the end of a time interval
• tquery—specific time for a query representing an index in the KEP Tree
• countl,i—number of vehicles for at a KEP Tree node indexed by level l and position i
• maxl—maximum value found at a certain level in a KI Tree. It is passed as a parameter

to Propagate routine. Based on its value, the llm at higher levels is changed or not.

5.1. K-ary Interval Tree

The KI Tree Query algorithm answers Q2. The pseudo-code of the algorithm is shown
in Algorithm 3. In the following paragraphs we describe the implementation of the KI Tree
Query algorithm using an example that shows vehicles presence on a segment during time.

Assuming the requirement to query maximum number of vehicles during time interval
given by tstart = 11, tend = 27, on the segment represented in Figure 6. The queried time
interval can be seen in Figure 6 as the area underlined with purple. The green lines in
Figure 6 cover the positions iterated by the query, with one green line for each position.

Each gray slot marks a single unit of time, while the above blue layers represent a
summary for a larger interval. For our example, we use k = 4 as the ratio between layers.
For each layer we keep the maximum number of vehicles which are simultaneously on the
segment at some point during the covered interval (mvl,i—the number in the center of the
rectangles) and the maximum number of cars counted by the layers beneath ( llml,i—left
corner of the rectangle). The difference between the two numbers gives the number of
vehicles passing over (vpo). The black segments from the bottom of the Figure 6 represent
the time period when a vehicle is on the segment.
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Algorithm 3 KaryIntervalTreeQuery

1: procedure QUERY(tstart, tend, l, vpo)
2: start← getIndex(tstart, l)
3: end← getIndex(tend, l)
4: max ← 0
5: for i← start; i <= end; i = i + 1 do
6: if l = llowest or Covers(l, i, tstart, tend) then
7: if max < mvl,i then
8: max ← mvl,i
9: end if

10: else
11: tnewStart ← i× sizel
12: if tstart > tnewStart then
13: tnewStart ← tstart
14: end if
15: tnewEnd ← (i + 1)× sizel − sizelmax−1
16: if tend < tnewEnd then
17: tnewEnd ← tend
18: end if
19: vponew = mvl,i − llml,v + vpo
20: maxnew ← Query(tnewStart, tnewEnd, l + 1, vponew)
21: if max < maxnew then
22: max ← maxnew
23: end if
24: end if
25: end for
26: return max + vpo
27: end procedure

Figure 6. KI Tree Query on Time Interval Starting at Second 11 and Ending at Second 37 .

The KI Tree Query algorithm runs in a top-down approach starting at topmost level
(level 1) and iterating through all the elements that intersect the input interval in at least
one point. For the given example, it checks all the three positions at the first level. Since
the interval represented at position 1 (first cell in the indexed array from level 1) does not
overlap completely over the purple area, it goes to the lower layers until it encounters an
interval completely contained in the input. As it descends, it adds up all the passing over
vehicles from the superior layers. In Figure 6 it can be seen that the number of vehicles
passing over for levels 1 (marked with red) and 2 (marked with blue) are added to the
values found at the lowest layer. At time t = 13 the query is back at level 2. It does not need
to look at a lower level, as mv2,4 overlaps completely the input time interval. Starting with
t = 17, the topmost level (level 1) can answer for the next time interval that starts at second
17 and ends at second 32. As we approach the end of the input interval, the query descends
again to lower layer and as it goes along it maintains a maximum of all the values found.
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These values are written down below the green lines. The maximum number of vehicles
which are on the segment in the requested interval is 5, given by mv1,2.

It is worth mentioning that the KI Tree Query algorithm uses an additional routine
called Covers. It decides whether an element in the array identified by the level and
position (a KI tree node) overlaps completely a given time interval.

The purpose of the KI Update algorithm, represented by the pseudo-code routines
Algorithms 4 and 5, is to update the KI Tree Data that corresponds to a vehicle which
passes a specific segment during time interval [tstart, tend]. As for KI Query algorithm, we
used the example approach to explain the algorithm’s implementation.

Algorithm 4 KaryIntervalTreeUpdate

1: procedure UPDATE(tstart, tend)
2: maxl ← 0
3: l ← lmax
4: t← tstart
5: i← 1
6: while t ≤ tend do
7: if CanGoUp(t, l, tend) then
8: Propagate(l − 1, maxl , t− sizel)
9: l ← l − 1

10: lmax ← 0
11: continue
12: end if
13: if MustGoDown(t, l, tend) then
14: Propagate(l + 1, maxl , t− sizel)
15: l ← l − 1
16: lmax ← 0
17: continue
18: end if
19: i← getIndex(t, l)
20: mvl,i ← mvl,i + 1
21: if mvl,i > lmax then
22: lmax ← mvl,i
23: end if
24: if t ≥ tend then
25: Propagate(l − 1, lmax, tend)
26: end if
27: t← t + sizel
28: end while
29: end procedure

Algorithm 5 Propagate

1: procedure PROPAGATE(l, lmax, t)
2: if l < 1 then
3: return
4: end if
5: i← getIndex(t, l)
6: if llml,i < lmax then
7: vpo ← mvl,i − llml,i
8: llml,i = lmax
9: mvl,i = lmax + vpo

10: Propagate(l − 1, mvl,i, t)
11: end if
12: end procedure
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Let us consider that the initial content of the KI Tree is the one shown in Figure 7 where
k = 4 and, as for KI Tree Query, each element at the lowest level represents one second.

Figure 7. KI Tree—Initial State.

In Figure 8, the 4th vehicle wants to enter the segment at time tstart = 10 and leave
at time tend = 23 (represented by the red segment on the bottom of the figure). Normally,
if there was only the lowest level (level 3), it would have to increment all the values from 10
to 23 one by one. This is not the case, as the values from 13 to 20 can be all increased in two
steps. The update procedure is done in a bottom-up manner. At every step, it is checked
whether the current position is the first one in an interval covered by the level above. In our
case, t = 10 is not, so vehicle number 4 stays on the lowest level and increments the values
found at positions 10, 11 and 12 by 1. When it reaches index 13, this corresponds to the
beginning of a new interval at level 2. Moreover, this interval ends before time tend = 23
when vehicle 4 leaves the segment. As a result, it is allowed to go one level up. Before it
does so, the Propagate routine (presented in Algorithm 5), is triggered from Algorithm 4
for the previously covered interval. As some values at a lower level have changed, it is
possible that the upper values are no longer valid. By increasing the elements at position 10,
11, 12, the lower level maximum at level 2 position 3, was also increased by 1 (cpo2,3 was 3).
The maximum numbers of vehicles in the interval changes to mv2,3 = llm2,3 + cpo2,3 = 4.
Additionally, llm1,1 is changed to 4, just like mv1,1. This example clarifies the difference
between llm and mv and the meaning of “vehicles passing over”: a vehicle is passing over
an interval (element) if it uses the segment for the full duration of that interval and causes
changes that occur only at higher levels of the KI Tree. Nevertheless, even if we do not
update each value from lower levels during that interval, when performing a query we
do have to account for that vehicle as well, as a the vehicle also uses the segment during
that time.

Figure 8. KI Tree Update for Vehicle 4.

Returning to our example, when vehicle 4 reaches position 5 at level 2, this corresponds
to an interval beginning at the topmost level (level 1). However, the top element goes
beyond tend = 23, so vehicle 4 stays at level 2. It is allowed to stay at this level until it
reaches position 6 (in level 2) and then it has to go one level lower, as position 6 covers
an interval ending at t = 24. Before it moves to the lower level, the Propagate routine
is triggered again, causing changes at both the first and second layer. Finally vehicle 4
updates elements 21, 22 and 23. The Propagate routine is triggered, but it only has an
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impact on lower 2 where it sets llm2,6 and mv2,6 to 1. The value of llm1,2 was previously
equal to 1 and therefore, no changes are triggered here.

Figure 9 shows a 5th vehicle arriving on the same segment at tstart = 26 and leaving at
tend = 30 (represented by the yellow segment at the bottom of the figure). This scenario
has many similarities with the previous one. The difference from the previous scenario
is that the vehicle 5 only affects (increases) values at the lowest level, as it does not stay
on the segment long enough to be able to change any of the higher levels. It only triggers
changes at layer 2 through the Propagate routine. The topmost level is not modified at all
as llm1,2 remains 1 even after the arrival of vehicle 5.

Figure 9. KI Tree Update for Vehicle 5.

In the last scenario of KI Tree Update, shown in Figure 10, we have a 6th vehicle
entering the segment at tstart = 25 and leaving it at tend = 30 (represented by the purple
line. This corresponds to a time interval started at a level 2 position. In this case the update
routine starts execution at level 2 and only goes down to level 3 to update time moments
29 and 30. In this case llm2,7 remains unchanged, while mv2,7 is increased by 1. Again,
the Propagate routine is triggered causing mv1,2 to become 5 and llm1,2 to become 2.

Figure 10. KI Tree Update for Vehicle 6.

Besides Propagate, there are a few more routines used by KI Tree Update algorithm,
as follows:

• GetIndex is a function that computes the index for a specific time moment at the
given interval

• CanGoUp is a function that determines if a data propagation can be done on a higher
level (depending on the current time, current level and vehicle time interval on
a segment)

• MustGoDown is a function that determines if a data propagation has to be done on a
lower level (depending on the current time, current level and vehicle time interval on
a segment) the vehicle exits the segment.

5.2. K-ary Entry Point Tree

The KEP Query algorithm shown in the pseudo-code of Algorithm 6 answers Q3.
Because the KEP Tree structure its simpler that KI Tree structure, the implementation of
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the algorithm is also simpler in comparison with KI Tree Query algorithm. KEP Tree does
not need to store lower level maximum (llm) value and therefore, less memory is used
by the implementation. As is shown in Figure 11, for each KI Tree node we only have a
data field (sum) that aggregates the data from children nodes. Entry Point Tree Query
algorithm is described in the next lines using the example in Figure 11. Similar to the KI
Tree figures, the lowest, gray level represents a single unit of time while the above, blue
layers summarize a larger time frame. For each of the elements we only store a simple
vehicles counter (the number in the center of the rectangles). The black segments from the
bottom of the figure represent the time interval when a vehicle is the segment. A query at
time t is performed by adding all the values from moment 1 up to and including t. It starts
at the highest level and, as it becomes closer to t, the query descends to lower levels, so
that it does not exceed the queried time interval. The entire queried interval is underlined
with green lines in Figure 11 and represents the values of (count1,2, count2,9, count3,37 and
count3,38). These values are summed to obtain the result 3 for t = 38. The lowest level is
treated separately, as it has to include the last index as well, whereas the upper levels stop
right before it.

Figure 11. KEP Tree Query at Time t = 38.

Algorithm 6 KaryEntryTreePointQuery

1: procedure QUERY(t)
2: result← 0
3: tquery ← 1
4: for l ← 1; l < lmax; l ← l + 1 do
5: start← getIndex(tquery, l)
6: end← getIndex(t, l)
7: for i← start; i < end; i← i + 1 do
8: tquery ← tquery + sizel
9: result← result + countl,i

10: end for
11: end for
12: start← getIndex(tquery, lmax)
13: end← getIndex(t, lmax)
14: for i← start; i ≤ end; i← i + 1 do
15: tquery ← tquery + sizel
16: result← result + countl,i
17: end for
18: return result
19: end procedure

The KEP Update operation is described in Algorithm 7. For any specific segment, it
increments by 1 the count value when a vehicle enters on the segment (tstart) and decrements
by 1 the very next moment after it leaves (tend − 1). The time stamp when a vehicle leaves
a segment is decreased by one. The increase/decrease operation is done at all the levels
which overlap with the given point in time. All other values remain unchanged. Starting
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from the state in Figure 12, let us suppose that the vehicle 4 enters the segment at tstart = 3
and leaves the segment at tend = 31. In Figure 13 shows the top-down flow of the update
operation. It increments the data corresponding to positions that overlap the interval in all
corresponding levels (marked by red). This corresponds to count1,1, count2,1 and count3,3.
When the vehicle leaves the segment (tend = 31), it triggers a decrease operation by 1 at
t = 32. Consequently, the values found at count1,2, count2,8 and count3,32 are decreased
by 1.

Figure 12. KEP Tree—Initial State.

Figure 13. KEP Tree Update for Vehicle 4.

Algorithm 7 KaryEntryPointTreeUpdate

1: procedure UPDATE(tstart, tend)
2: tend ← tend + 1
3: for l ← 1; l ≤ lmax; l ← l + 1 do
4: start← getIndex(tstart, l)
5: end← getIndex(tend, l)
6: countl,start ← countl,start + 1
7: countl,end ← countl,end − 1
8: end for
9: end procedure

6. Model Evaluation
6.1. Evaluation Scenario

Our model evaluation was done by simulating a large amount of vehicles that generate
traffic congestion in an urban area as follows:

• random routes were generated in Brooklyn, New York area shown in Figure 14 (start
and end points randomly chosen)

• the random routes represent 10,000 concurrent vehicles that run in a short period of
time (10 min) in order to generate traffic congestion

During evaluation we compared three range query data structures (Segment Tree
proposed in [22] and our proposed KI and KEP Tree) in terms of performance and their
usage impact on simulated traffic congestion scenario. All the results presented below
were obtained from tests that run on a Windows computer with an i7 4720HQ processor
and 8 GB of RAM (with swap memory extension). OSMAnd ran on this computer as a
cloud service that simulates a V2C environment.
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Figure 14. Open Street Map for Brooklyn, New York, USA.

6.2. Measurements
6.2.1. Metrics

To assess the utility, performance and scalability of the proposed range query data struc-
tures and their corresponding algorithms, the following metrics are evaluated and discussed:

• Average Query Time—The average time for executing Query algorithm on a segment
• Average Update Time—The average time for executing Update algorithm on a segment
• Total Number of Queries—Total number of requested queries on segments in order to

simulate vehicles through route generation requests
• Total Number of Updates—Total number of requested updates on segments in order

to simulate vehicles through route generation requests
• Average Estimated Time of Travel (ETT)—Average Estimated Time of Travel for

simulated vehicles through route generation requests

6.2.2. Average Query Time

Figure 15 represents the evolution of the average query time, according to number of
simulated vehicles, for the three evaluated range query data structures (Segment Tree, KI
Tree and KEP Tree). It can be observed that the Average Query Time for Segment Tree shows
a cvasi-linear increase with the number of cars. This is given by the asymptotic complexity
of the Segment Tree Search operation from Table 2 and the computational factors of the
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Segment Tree Search operation implementation. The asymptotic complexity of the Search
operations from the data structures we introduced (see Table 2) is strongly affected by
the logarithm base (k = 10) allowing query operations of the proposed data structures to
maintain a constant run time. In this way, the query operation scales without constraints.

Figure 15. Average Query Time for Segment, KI and KEP Trees.

6.2.3. Average Update Time

Figure 16 shows the Average Update Time for the proposed data structures compared
with segment tree implementation from [22]. It can be observed that segment tree has
different size of orders compared with KI tree or KEP tree (microseconds vs. nanoseconds).
While the Average Update Time for segment tree increases with the number of simulated
vehicles the Average Update Time remains constant at the bottom of the graph and cannot
be evaluated. Due to the large gap we need to analyze a separate graph in Figure 17 that
contains only Average Update Time for KI tree and KEP tree. The Average Update Time
values before having first 3000 simulated vehicles decreases from about 310 nanoseconds
to about 200 nanoseconds. This can be interpreted as a spike in the processor usage (by
other external running applications) which influences our measurements that are very
sensitive due to the measurement scale (nanoseconds). From 3000 simulated vehicles, it
can be observed that like the Average Query Time, the Average Update Time also follows a
constant pattern.

Figure 16. Average Update Time for Segment, KI and KEP Trees.
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Figure 17. Average Update Time for KI and KEP Trees.

Like for query operations, the Segment Tree Update operation follows a cvasi-linear
pattern given by the asymptotic complexity in Table 2 and the higher implementation
factors of that affects the Segment Tree Update operation implementation. The run time
for the update operations of the new introduced data structures follows a constant pattern
given by the logarithm base (k = 10) from the asymptotic complexities in Table 2 (see. Insert
and Delete operations complexities for KI and KEP trees).

6.2.4. Total Number of Queries

The graph in Figure 18 shows the total number of queries used to generate routes
for vehicle simulation. For the all the range query data structures we tested, the total
number of queries grows with the number of simulated vehicles, as expected. It can be
observed that the Total Number of Queries for Segment Tree is greater than the Total
Number of Queries for our proposed data structures with up to 25%. This happens because
they answer different queries and the internal representation of the data structures differs.
Specifically, segment trees give more pessimistic results because of the query they answer,
thus forcing more alternative routes to be considered and directly increasing the number of
queries performed. This is why we measured the average values for query operation as the
number of simulated vehicles increases.

Figure 18. Total Number of Queries Operations.
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6.2.5. Total Number of Updates

Figure 19 shows the total number of update requests used for vehicles simulation
based on different range query data structures. The values corresponding for the three
evaluated data structures are in the same range. The graph exploration algorithm used to
generate a route queries many segments (until generates the route) while update requests
happen only on the segments that are part of an already generated route. As a consequence,
the total number of queries has different order of magnitude compared to the total number
of updates (hundred of millions vs. hundred of thousands).

Figure 19. Total Number of Updates Operations.

6.2.6. Average Estimated Time of Travel (ETT)

To evaluate the usability and traffic congestion improvement we measured the
average ETTs for simulated vehicles that were generated through two different route
planning algorithms:

• Basic Routing Algorithm (BRA)—generates individual routes with smallest ETT at
the generation moment

• V2C-based Routing Algorithm (V2CRA)—generates routes by targeting congestion
avoidance and global time spent in traffic reduction (i.e., reduce average ETT for all
the routes). The V2CRA algorithm uses the traffic information stored in range query
data structures to improve the average ETT for all routes.

In Figure 20 we compare Average ETTs for BRA vs. V2CRA algorithms running on
Brooklyn, New York. The graph shows the context after 5000 vehicles were simulated and
traffic congestion started to appear in the urban area. On average, V2CRA provides routes
with 24 s faster than BRA. From this perspective, we can say that our proposed range query
data structures can be efficiently used to predict and avoid traffic congestion in urban areas.
In this way, the time spent in traffic is reduced and therefore, the urban areas vehicular
energy consumption (i.e., pollution) can be reduced by about 2.6%. This percentage can
be increased by fine tuning the route planning algorithm’s configuration and is part of
future work since the main purpose of this work was to model the urban traffic in an useful,
efficient and scalable way.

It is worth mentioning that, like in real life, short segments (e.g., segments in in-
tersections) can become easily congested. Mostly, they are segments that have below
50 meters. We did special treatment for such segments in order to have prediction as
accurate as possible.
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Figure 20. Average ETT for BRA vs. V2CRA.

6.2.7. Scalability

Considering the statistics in [72], an urban scenario with large amount of traffic can
have about 100,000 of concurrent vehicles on the roads at peak times. Let’s consider a
realistic V2C infrastructure as follows

• computing power equivalent with 1000 parallel computers that we used for our testing.
• 1TB of memory capabilities.

Below is analyzed the output of our measurements:

• 10,000 concurrent vehicles were simulated through route generation
• the total time for query and update operations during route generation is less than

150 s for KI Tree, meaning an average of less than 15 ms for each vehicle. KEP Tree is
more than 1.5 times faster thank KI Tree.

• for 10,000 generated routes were navigated 2772 different segments from the map and
for each segment we represented vehicle’s information for all the seconds in a day
(86,400 s) meaning 300 millions of nodes in KI and KEP trees. A KI or KEP tree node
used in the worst case 0.1 KB. In total for all 10,000 generated routes we used about
30 GB of memory.

Based on our measurements results and the proposed realistic V2C infrastructure,
for 100,000 concurrent simulated vehicles, the proposed data structures will use in total
less than 1.5 s on computation (meaning an average of 0.015 ms for each vehicle) while the
memory footprint will be 0.3 TB.

Considering all the above, our proposed data structures are scalable to model real
urban traffic scenarios and especially to reduce the congestion.

7. Conclusions and Future Work

Considering traffic congestion challenges in urban areas, in this paper we proposed a
novel traffic prediction and congestion avoidance approach based on traffic data modeling
range query data structures. We introduced two new range query data structures (KI
tree and KEP tree) that can be used to model vehicles on the road segments. Congestion
avoidance is done by adjusting the cost value of a certain segment based on the number of
vehicles on that segment at a certain time. By integrating the proposed data structures and
adapting the routing algorithm of the OSMAnd navigation solution the paper reports the
following achievements:

• Modelled real urban traffic congestion via simulation of large number of vehicles
(thousands) in a short amount of time (minutes);

• Prove scalability of the proposed data structures (KI and KEP) in a V2V infrastructure;
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• Predict traffic congestion by generating and controlling vehicle routes via OSMAnd as
cloud service. Our approach is designed to be as close as possible to real navigation
scenarios in a V2C infrastructure;

• Prove the structures can better predict traffic congestion and allow for improved
means of traffic avoidance.

We modelled traffic congestion by simulating 10,000 vehicles following their routes in
Brooklyn, New York. Employing the proposed data structures traffic information on a map
segment can be obtained in less than a millisecond during route planning, while time for
route generation is less than 1.5 s which make them effective on V2C infrastructure.

At this stage, an important challenge regarding traffic congestion avoidance in the
context of connected vehicles based on a V2C infrastructure is the run-time of the route
planning algorithm in a macroscopic simulation context. Therefore, fixing such an issue
will let us do more tests in different urban areas in order to widely test and calibrate our
congestion avoidance method. In this way the overall time spent in traffic can be reduced
even more. From data representation perspective we are currently working on Van Emde
Boas Tree following the same methodology as in [24] in order to compare its performance
with the current solution.

From a usability perspective, the proposed solution can be integrated in a traffic
simulation tool (e.g., SUMO, INTEGRATION) in future. Moreover, such an approach can
be integrated and used in a market navigation application (e.g., OSMAnd).

Another worth-mentioning further work is related to unpredictable traffic events that
can be considered and analyzed in terms of impact on the route planning, re-routing and
traffic flow.
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