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Introduction
In the early 1980s, methodology was established to allow for 

culture of pluripotent embryonic stem cells (ESCs) isolated 

from the inner cell mass of mouse blastocysts (for review see 

Glaser et al., 2005). Gene targeting in ESCs was soon thereafter 

achieved through homologous recombination, followed by gen-

eration of mouse strains from such manipulated ESCs. Occa-

sionally, gene targeting results in early embryonic lethality, 

which precludes understanding of the contribution of genes to 

subsequent developmental processes including de novo blood 

vessel formation (vasculogenesis) and formation of new blood 

vessels from preexisting vessels (angiogenesis).

Blood vessels are essential for the delivery of nutrients 

and oxygen to tissues, as well as for removal of waste products. 

All blood vessels share a number of basic features, although 

the detailed gene expression pattern, morphology, and function 

vary between different vascular beds (e.g., arteries, veins, and 

capillaries). The inside of blood vessels is lined with endothe-

lium, a thin layer of endothelial cells (ECs), which separates 

the blood from tissues. The outside of the endothelium is cov-

ered with a specialized layer of connective tissue (the base-

ment membrane) followed by a layer of mural cells (pericytes 

and vascular smooth muscle cells). Angiogenesis is a tightly 

controlled process where EC proliferation and migration is 

regulated by secreted factors as well as by surrounding cells 

and matrix. There are currently considerable efforts invested 

into the development of drugs aimed to control blood vessel 

growth in conditions such as ischemia and cancer, character-

ized by defi cient or excessive vessel growth, respectively. To 

this end, it is essential to create easily accessible models by 

which vessel development can be both manipulated and studied 

at high resolution.

Vascular development and sprouting 
angiogenesis in embryoid bodies
The isolation of EC lines and the establishment of conditions 

required for their maintenance in cell culture represents a mile-

stone in the vascular biology fi eld (Gimbrone et al., 1973). 

However, such cultures do not provide a proper microenviron-

ment, involving three-dimensional (3D) interactions between 

ECs and adjacent supporting cells and matrix that are known to 

be absolutely vital in regulation of vascular processes. In con-

trast, cultures of human and murine ESCs possess the capacity 

to differentiate into most if not all major cell lineages (Thomson 

et al., 1998), creating an environment with parallel development 

of several cell types. Thus, in differentiating ESCs assembled 

into embryoid bodies (EBs), vascular development occurs in a 

context of continuous interactions with adjacent non-ECs. The 

fi rst indication that EC development and subsequent vascular 

morphogenesis in differentiating ESC cultures proceed in an 

in vivo–like fashion was provided by Doetschman et al. (1985).

Formation of EBs can be controlled through aggregation 

of ESCs in hanging drops (Fig. 1, A and B), after the removal of 

feeder cells and leukemia inhibitory factor that otherwise are 

used to keep the ESCs pluripotent. The hanging drop culture 

proceeds for a few days to allow EB growth and differentiation, 

followed by seeding into a two-dimensional (2D) culture (Fig. 1, 

C and E), or into a 3D collagen gel (Fig. 1, D and F). For more 

information on EB culture procedures, see Jakobsson et al. 

(2006) (detailed protocols will be made available upon request 

to the authors). At d 3 of differentiation, the onset of vasculo-

genesis is demonstrated by the presence of a precursor common 

for endothelial and hematopoietic cells, the hemangioblast. The 

hemangioblast, which expresses T cell acute leukemia 1/stem 

cell leukemia (TAL/SCL), vascular endothelial growth factor 

receptor (VEGFR)-2, and brachyury, has also been detected in 

human EBs (Choi et al., 1998; Kennedy et al., 2007). Subse-

quently, hemangioblasts will be committed to either the hema-

topoietic or the EC lineage. The EC precursors, the angioblasts, 

undergo sequential maturation to eventually express a set of 

markers characteristic for mature ECs such as VEGFR-2, CD31, 
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vascular endothelial (VE)– cadherin, Tie-1, and Tie-2. Angio-

blast development in EBs thus closely mimics the in vivo matu-

ration process (Vittet et al., 1996).

The primary vascular plexus in the EB is remodeled from 

d 6 and onwards, by sprouting angiogenesis. This process is regu-

lated by growth factors, which may be produced endogenously or 

added in as exogenous factors. Also without growth factor treat-

ment but in the presence of 15% serum, vascular development is 

evident by the presence of blood islands that differentiate to form 

small networks of ECs located in the center of the EB. Addition of 

growth factors stimulates further expansion of the endothelium. 

There is a distinct morphology of the vascular plexus formed in 2D 

EB cultures dependent on the growth factor present in the culture; 

VEGF isoforms VEGF-A121 and VEGF-A165, fi broblast growth 

factor-2, and platelet-derived growth factor (PDGF)-BB each en-

hance vessel formation in a distinct pattern. Typically, VEGF-A165 

stimulates the formation of a peripheral capillary plexus in 2D EB 

cultures (Fig. 1, C and E) (Jakobsson et al., 2006).

Invasive angiogenesis in 3D collagen gels is preferen-

tially induced by VEGF-A165 and manifested around d 8 by 

the formation of EC sprouts protruding from the central core 

of the EB. The stalk cells are guided by tip cells with numer-

ous fi lopodia, a process with striking similarities to vascular 

development in zebra fi sh and the retina (Fig. 1, D and F; and 

Fig. 2 A) (Lawson and Weinstein, 2002; Gerhardt et al., 2003). 

Subsequently, the sprouts branch and occasional tip cells fuse 

with adjacent vessels to form networks. The EC sprouts are 

surrounded by perivascular cells that share features such as 

morphology (i.e., close apposition to the endothelial cells) and 

protein expression pattern (expressing nerve-glia2 [NG2] and/or 

α-smooth muscle actin [αSMA]) with pericytes seen in vivo 

(Fig. 2 A). Furthermore, the vessels are enclosed by a vascular 

basement membrane whose detailed composition, dynamics, and 

Figure 1. Outline of 2D and 3D EB models for vasculogenesis and angio-
genesis. Stem cells are trypsinized (d 0), (A) and aggregated to create EBs, 
in drops hanging from the lid of a Petri dish (B). Aggregation can also oc-
cur spontaneously by seeding ESCs in suspension in a nonadhesive Petri 
dish, resulting in EBs of variable size. After 4 d, EBs are seeded on a tissue 
culture slide (2D), (C) or alternatively embedded in a 3D collagen gel (D). 
Addition of VEGF induces formation of a peripheral vascular plexus in 2D 
(C and E) and endothelial cell sprouts (“angiogenesis”) in 3D (D and F) 
(bottom panel in F adopted from Magnusson et al., [2005]). Whole-mount 
stainings for CD31 of 2D (E) or 3D (F) EBs at d 10 of differentiation, un-
treated (Ctrl, top) or induced with VEGF (bottom). Bars, 500 μm.

Figure 2. Angiogenic sprouts invade the surrounding matrix. (A) Features 
of blood vessel sprouts formed in 3D collagen matrix in response to VEGF. 
Expression is shown of the endothelial cell marker CD31/platelet-endothelial 
cell adhesion molecule (PECAM; red), the pericyte markers αSMA (green, 
top), and NG2 (green, bottom middle). Hoechst 33342 was used to indi-
cate nuclei (blue). Lumen formation is evident in larger vessels (left, cross 
section [z-stack] of a sprout [d 18] generated by confocal microscopy). The 
tip cell at the front of growing sprouts send out fi lopodia to sense growth 
factor gradients. Occasional fi lopodia are also detected on stalk cells that 
lack pericyte coverage. Bars, 10 μm. (B) Knockout EBs and the assembly 
of chimeric EBs. Cells defi cient in production of HS (Ndst1/2−/−) or lack-
ing VEGFR-2 (vegfr2−/−) do not form vascular sprouts in the EB model. 
However, chimeric EBs generated by mixing of the two ESC lines before EB 
formation respond to VEGF and form sprouts. In the chimeras, the endothe-
lial cells (CD31; red) are derived from Ndst1/2−/− cells expressing VEGFR-2, 
whereas functional HS is provided by pericytes (αSMA; green) lacking 
VEGFR-2 (Jakobsson et al., 2006). Bar, 300 μm. 
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function in the EBs remain to be described. Lumen formation 

is detectable at about d 10 of EB differentiation, and occasion-

ally a mature lumen is evident at d 12 (Fig. 2 A). Subsequently, 

large lumenized vascular networks become established. It is an 

interesting possibility that the EB endothelium has the capacity 

to undergo arterial/venous specifi cation, as endothelial cells 

formed from ESCs in vitro specifi cally express either ephrin B2 

or EphB4, which are markers for arterial and venous endothe-

lium, respectively (Muller-Ehmsen et al., 2006).

Embryoid bodies; beyond early lethality 
of transgenic animals
Inactivation of genes with a vascular function (vegfr2, vegfa, 

VE-cadherin, or pdgfrß) results in similar phenotypes in the EB 

model as in vivo, with regard to temporal effects on develop-

ment and consequences for EC morphology (Table I) (Olsson 

et al., 2006). For example, deletion of VEGF-A, one of the main 

VEGFR-2 ligands, results in an arrest in vascular development 

and remodeling in vivo as well as in vitro (Ng et al., 2004). The 

EB model is particularly suitable in this context because it al-

lows rapid and easy testing of the unique contribution of dif-

ferent VEGF-A isoforms to vascular development. Accordingly, 

treatment of VEGF-A–defi cient EBs with purifi ed VEGF-A165 

rescued EC morphogenesis (Bautch et al., 2000), in agreement 

with the fact that mice expressing only VEGF-A165 display 

normal vascular development. In certain cases, data generated 

using in vivo models have been extended by studies performed 

in different ESC-based culture models. For example, VEGFR-2 

was shown by differentiation of vegfr2−/− ESCs to be required 

for vascular morphogenesis but not essential for early endothe-

lial and hematopoietic cell commitment (Schuh et al., 1999). 

Furthermore, a number of gene deletions have resulted in devel-

opmental arrest before the onset of vasculogenesis, for example 

due to defects in implantation. However, by generation of ESCs 

from recombinant blastocysts, critical stages incompatible with 

in vivo growth may be studied in the EB model (see Table I for 

a comparison of vascular phenotypes in gene-targeted embryos 

and EBs).

A severe developmental phenotype (lethal before gas-

trulation) is caused by simultaneous deletion of the enzymes 

N-deacetylase/N-sulfotransferase 1 and 2 (NDST1/2), central to 

the synthesis of heparan sulfate (HS) (Holmborn et al., 2004). 

Proteins modifi ed by attachment of HS, so-called  proteoglycans, 

are essential co-receptors for many tyrosine kinase receptors, 

including VEGFR-2. Deletion of the NDST1/2 enzymes se-

verely hampers ESC differentiation with a close to complete 

loss of vascular development (Fig. 2). However, rescue of vas-

cular development was achieved in chimeric EB cultures com-

posed of a mix of Ndst1/2−/− and vegfr2−/− ESCs (Jakobsson et al., 

2006). Here, endothelial cells derived from the HS-defi cient 

Ndst1/2−/− stem cells (expressing VEGFR-2) were comple-

mented by normal HS produced by pericytes derived form the 

vegfr2−/− ESCs (Fig. 2). This exemplifi es the versatility of the 

EB model, which allows combinations of knock-out ESCs to 

study the requirement for genes in subpopulations of cells during 

cell specifi cation and development, to unravel new mechanisms 

in cell communication.

Restrictions of the EB model
Although ESCs have the capacity to produce cells of essen-

tially any type, it is likely that complex processes that require 

progression through several developmental stages may be under-

represented. For example, although blood EC development is 

faithfully reproduced, the subsequent differentiation of lym-

phatic ECs from blood vessels is diffi cult to control (Kreuger 

et al., 2006). Furthermore, EBs lack blood fl ow, and dependent 

Table I. Vascular phenotypes in mouse embryos and EBs, as a consequence of specifi c gene targeting

Phenotype

Genotype Embryo EB

vegfr2−/− aE8.5–9.5. Defective blood-island formation and vasculogenesis 
 (Shalaby et al., 1995)

Defective EC development and vascular remodeling 
 (Jakobsson et al., 2006)

vegfa+/− E11–12. Defective vascular development 
 (Carmeliet et al., 1996; Ferrara et al., 1996)

Reduced EC development and vascular remodeling; partial 
 rescue by exogenous VEGF (Bautch et al., 2000)

vegfa−/− E9.5–10.5. Generated by aggregation of ESCs with tetraploid 
 embryos. More severely affected than vegfa+/− embryos 
 (Carmeliet et al., 1996)

Attenuated EC development and vascular remodeling; 
 partial rescue by exogenous VEGF 
 (Bautch et al., 2000; Ng et al., 2004)

VE-cadherin−/− E9.5. Defective vascular development and angiogenesis 
  (Carmeliet et al., 1999)

Defective vascular formation and morphogenesis 
 (Vittet et al., 1997)

N-cadherin−/− E10. Impaired angiogenesis, defective yolk sac vasculature 
  (Radice et al., 1997)

Reduced pericyte coating, otherwise intact vascular sprouting 
 and remodeling (Tillet et al., 2005)

pdgfrβ−/− Lethal shortly before birth, hemorrhagic (Soriano, 1994). 
 Loss of vSMC recruitment to small arteries in limb, heart and skin 
 (Hellström et al., 1999)

Loss of vSMC/pericyte recruitment to angiogenic sprouts 
 (Rolny et al., 2006)

Ndst1/2−/− Lethal before gastrulation (Holmborn et al., 2004) Attenuated vascular development; rescue by HS presented in 
 trans by non-EC (Jakobsson et al., 2006)

fgfr1−/− E9.5. Reduced blood-island formation (Deng et al., 1994) Exaggerated vascularization and angiogenic sprouting in the 
 absence of exogenous growth factors (Magnusson et al., 2005)

β1integrin−/− E5.5 (Fässler and Meyer, 1995) Poor vessel branching, disturbed VEGF-induced morphogenesis 
 (Bloch et al., 1997)

aIndicates time point of embryonic lethality.
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on the process under study, this aspect may be vital as fl ow-

induced shear stress infl uences remodeling of the vascular 

system (Nguyen et al., 2006). Another drawback is that the de-

tailed organization of vascular structures in individual EBs is 

much more variable compared with the precise vascular pat-

terning in embryos. In the authors’ experience, the serum cho-

sen for the embryoid body cultures infl uences the properties 

of the cultures with regard to spontaneous vascularization, or 

alternatively, the ability to respond to exogenously added growth 

factors. The ongoing development of serum-free culture con-

ditions might therefore contribute to an increased stability of 

the system. On the other hand, the model as such appears very 

stable as ESC lines of different genetic background show re-

markably similar properties with regard to vascular develop-

ment and sprouting angiogenesis.

Manipulated ESCs in vascular 
biology research
As described above, the fl exibility of the EB model is remark-

able due to the fact that ESCs can be derived from all types of 

genetically engineered mice. Thus, ESC-based models may in 

the future be used widely to complement and occasionally even 

replace animal experimentation, especially when very early 

embryonic lethality becomes a severe limitation (see Table I). 

ESCs from transgenic mice and gene-targeted mutant mice can 

be evaluated independently, or in combination, by generating 

chimeric cultures of two or more different ESC types (Jakobsson 

et al., 2006). Inducible gene expression and deletion systems, 

such as the Tetracyclin-On and -Off expression systems, and the 

site-specifi c DNA recombinase system Cre/loxP, in combina-

tion with labeling of cells by expression of reporter genes (e.g., 

β-galactosidase or fl uorescent proteins) will allow clonal analy-

sis and lineage tracing similar to what can be done in animal 

models (Glaser et al., 2005; Ueno and Weissman, 2006). 

Several ESCs with fl uorescent reporters under the control of 

EC-specifi c promoters have already been created, constituting 

powerful tools for live imaging at single-cell or even subcellular 

resolution by confocal or two-photon excitation microscopy 

(Fraser et al., 2005).

Generation of homozygous gene deletions and recom-

binant animals is expensive, time consuming, and laborious.  

Gene silencing can instead be achieved by RNA-interference, 

where RNAi can be delivered to both murine and human ESCs 

through lentiviral transduction (Zaehres et al., 2005). Because 

RNAi delivery can be traced and enriched through selection for 

reporter gene expression, a very high degree of silencing can be 

attained. Moreover, previously reported problems with clonal 

selection and loss of expression during differentiation of ES 

cells appear to be circumvented when using lentivirus as a strat-

egy for introduction of RNAi (see Zaehres et al., 2005 for fur-

ther discussion).

Future perspectives
The fact that stem cells under proper conditions have the ca-

pacity to differentiate into both blood and lymphatic ECs may 

be explored for therapeutic purposes (Nishikawa et al., 1998). 

Importantly, both mouse and human ESCs can be used to generate 

functional ECs contributing to formation of stable vessels that 

connect to the host circulation (Yurugi-Kobayashi et al., 2003; 

Wang et al., 2007). The use of human ESCs for therapeutic 

purposes obviously presents a moral dilemma. Possibly, re-

trieval of ESCs from other locations than the fetus, such as um-

bilical cord blood or amniotic sources may present a feasible 

alternative in the future (Zhang et al., 2006). Furthermore, it is 

an interesting possibility that pathological conditions charac-

terized by impaired blood and lymph vessel function may be 

treated by administration of adult stem cells or progenitors iso-

lated from the patient’s own bone marrow. For a recent review 

on the contribution of circulating stem cells to angiogenesis, 

see Kopp et al. (2006).

Despite striking similarities between mouse and human 

development, numerous therapies developed in mice (e.g., to treat 

diseases such as cancer) have failed when tested in humans. 

A contributing factor to such failures may be genetic differences 

between the species. Because most experimentation on humans 

is prohibited for ethical reasons, preclinical testing has relied 

solely on animal experimentation. In the future, application of 

human ESCs may constitute an additional step in the develop-

ment and testing of drugs, with regard to toxicity and terato-

genic effects. Furthermore, experimentation with human ESCs 

offers means to study human embryonic development. Already, 

homologous recombination and introduction of RNAi have 

been demonstrated in human ESCs, paving the way for new in-

sights in human biology (Zwaka and Thomson, 2003).
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