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Background: While the resident microbiome of tumors has been shown to be associated with the 
occurrence and progression of non-small cell lung cancer, there remains a significant knowledge gap in 
understanding the correlation between the microbial spectrum and immunity response to cancer therapy. In 
the case of lung adenocarcinoma (LUAD), the tumor microenvironment, encompassing a diverse array of 
microbes and immune cells, plays a crucial role in modulating therapeutic response. Towards comprehending 
the underlying mechanism, we present the microbe-immunity interactive networks to delineate the 
microbiota and immunity repertoires for two distinct molecular subtypes in LUAD.
Methods: We obtained multi-omics data of LUAD patients from the publicly available database. In 
this study, we conducted a systematic exploration of the microbial and immunological etiology of cancer 
prognosis, by integrating the microbiome, genome, transcriptome, and clinic data. The mutational signature 
analysis, transcriptome analysis, gene set enrichment analysis, and microbiota-immunity network analysis 
were performed.
Results: Based on the transcriptome repertories, we classified the patients into two molecular subtypes 
and observed that the overall survival of molecular subtype 2 (MS2) was notably shortened. We identified 
the microbial biomarkers in patients that distinguished between these molecular subtypes. The significant 
up-regulation of γδT and neutrophil in MS2, suggesting the inflammation augmentation and stimulation 
of γδT activation. What is more, the MS2 are characterized by a correlation network between microbiota 
biomarkers and γδT cell, which may contribute to suppression of anti-tumor immunity and poor overall 
survival.
Conclusions: Our findings not only display the repertoires of tumor microbiota and immune cells, but 
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Introduction

The tumor resident-microbiota constitutes an intrinsic 
component within the tumor microenvironment, interacting 
with immune and epithelial cells across various types of 
cancer (1-4), suggesting that the intratumor microbiota can 
reside intracellularly (4-6). In vitro and preclinical animal 
models highlight the role of the intratumor microbiota 
in tumor progression (7-9), immunosurveillance (10) and 
chemoresistance (11,12). 

The lower respiratory tract of healthy individuals harbor 
diverse bacterial communities (13). Accumulating research 
indicates significant disparities in lung microbiota between 
lung cancer patients and healthy subjects, including 
variations in bacterial species diversity as well as prevalence 
of specific bacterial groups (14,15). Jin et al. investigated 
the mechanisms underlying how lung microbiota promotes 
proliferation of lung cancer cells through inflammation 
augmentation and stimulation of γδT cell proliferation 
and activation (10). Their findings highlight the crucial 
role played by lung microbiota in orchestrating local 

inflammatory responses and promoting tumors.
Lung cancer is currently the leading cause of global 

cancer-related mortality, with lung adenocarcinoma 
(LUAD) being its most prevalent pathological type 
(16,17). The enrichment of Aspergillus sydowii fungi within 
tumors from patients with lung LUAD is associated with 
immunosuppression and disease progression (18). The 
interplay between tumor microbiota and microenvironment 
holds significant implications for tumor progression and 
response to immunotherapy treatment (19). Nevertheless, 
there remains a dearth of comprehension regarding 
the diverse molecular subtypes of tumors and how the 
microbiota interfaces with immune cell components, 
ultimately shaping the effectiveness of immunotherapy. 

Herein focusing on LUAD specifically, we aim to 
delineate the complex network of interactions between 
microbiome markers and immune cells within the tumor 
microenvironment, via integrating microbiome, genomic, 
transcriptome, and clinical data. Our findings offer profound 
insights into the role of tumor resident microbiome in 
shaping molecular subtype immunoprofiles and patient 
survival outcomes. We present this article in accordance with 
the STROBE reporting checklist (available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-24-393/rc).

Methods

Study design

We obtained the genome, transcriptome, microbiome and 
clinical data of LUAD patients from publicly available 
database, including The Cancer Genome Atlas (TCGA), 
cBioPortal database (20) and the publicly available dataset 
(ftp://ftp.microbio.me/pub/cancer_microbiome_analysis/) 
generated by Poore et al.

To ensure the accuracy of our comparative microbial 
analysis, we implemented strict inclusion criteria. 
Specifically, we only included LUAD patients with stage 
II–IV, which are the stages eligible for immunotherapy (21).  
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Samples without microbial information were excluded from 
the analysis, as they had been removed from the microbiome 
quantification pipeline by the original authors (22).  
Furthermore, samples with driver mutations (including 
ROS1, ERBB2, MET, KRAS, ALK, RET, EGFR, BRAF) of 
non-small cell lung cancer (NSCLC) derived from NCCN 
(National Comprehensive Cancer Network) were also 
excluded. Following these criteria, a total of 220 eligible 
patients were included in the downstream analysis. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Identification of molecular subtype in LUAD

The fragments per kilobase of transcript per million mapped 
reads (FPKM) metric was then used to standardize the read 
counts. Subsequently, unsupervised non-negative matrix 
factorization (NMF) clustering method was performed 
using NMF package on the metadata set (23). The values 
of k where the magnitude of the cophenetic correlation 
coefficient began to fall were chosen as the optimal number 
of clusters (24). We classified patients into the molecular 
subtype 1 (MS1) and molecular subtype 2 (MS2) according 
to the NMF clustering result.

Mutation and mutational signature analysis

The MAFtools was used to summarize somatic mutations (25). 
The deconstructSigs program (26) was used to disassemble 
mutational signatures using default settings. A collection of 
thirty cosmic signals were used for mutational signatures 
identification (27). Additionally, a cosine similarity 
analysis was performed to evaluate how similar different 
components and signatures were to one another. The 
similarity scores showed a shift from total dissimilarity to 
maximum similarity, with a range of 0 to 1.

Transcriptome and gene set enrichment analysis (GSEA)

We performed GSEA (28) utilizing the FPKM matrix via 
clusterProfiler (29). Furthermore, we used the matrix of 
signed multi-omic feature weights (Wsigned) to compute 
the normalized enrichment scores (NES) of signature gene 
sets (30).

Immune infiltration

To define the immunological landscape within the tumor 

microenvironment, we used ImmuCellAI (31) to examine 
24 different immune cell types. ImmuCellAI is a tool to 
estimate the abundance of immune cells from RNA-Seq 
data, in which the 24 immune cells are comprised of 18 
T-cell subtypes (including CD4_T, CD8_T, NKT, Gamma_
delta, CD4_naive, Tr1, nTreg, iTreg, Th1, Th2, Th17, Tfh, 
CD8_naive, cytotoxic, exhausted, MAIT, Central_memory, 
Effector_memory) and 6 other immune cells: B cell, NK 
cell, monocyte cell, macrophage cell, neutrophil cell and 
DC cell.

Microbiota diversity

We obtained the microbe abundance data from the publicly 
accessible microbiota dataset, which was produced by Poore 
et al. (22). We imported the taxonomic data, sample metadata, 
and microbiota counts using the Microeco tools (32).  
We utilized stacked bar plots to show group averages in 
order to visually represent the abundant taxa. We used two 
important metrics, α-diversity and β-diversity, to quantify 
the diversity. Within a specific sample or group, α-diversity 
characterizes the observed quantity of distinct species (also 
known as richness) and their evenness. It sheds light on 
the evenness and microbiological richness of our LUAD 
samples. Conversely, β-diversity describes how different 
groups are from one another. It clarifies the ways in 
which the MS1 and MS2 groups’ microbial compositions 
vary from one another. To find group-specific microbial 
biomarkers that distinguish one group’s communities from 
others, we used the linear discriminant analysis (LDA) effect 
size (LEfSe) study. In addition to assisting us in identifying 
relevant indicator taxa whose abundances differ significantly 
across the MS1 and MS2 groups, our methodology 
facilitates high-dimensional comparisons (33). Lastly, we 
added these microbial indicators to the microbe-immune 
network analysis that followed.  

Microbiota-immune network

To visualize the complex interactions between bacterial 
biomarkers at the genus level and hallmark gene sets, we 
utilized the Microeco toolkit (32) to evaluate the correlation 
matrix. To accurately capture these relationships, we 
employed the Spearman rank correlation coefficient. 
Significant microbiota-gene correlations were imported 
to construct a representative correlative network using 
Cytoscape (34). The size of each node in the visual element 
indicates its degree of importance. Positive and negative 
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correlations are represented by red and blue lines in 
networks, respectively.

Drug sensitivity analysis

Drug sensitivity for molecular subtypes is predicted 
using oncoPredict (35). The half maximal inhibitory 
concentration (IC50), which represents the concentration 
of a compound or drug that can inhibit a biological process 
or activity by 50% under specific conditions (36), serves as 
an indicator of drug potency, with lower values indicating 
increased efficacy.

Statistical analysis

All statistical analyses were conducted utilizing the R 
program. To visualize and compare survival distributions 
between the MS1 and MS2 groups, Kaplan-Meier plots 
were employed, with statistical significance assessed using 
log-rank tests. In describing baseline characteristics, binary 

variables were summarized as frequencies and percentages, 
while numerical variables were reported as medians with 
their corresponding interquartile ranges. Appropriate 
statistical tests were applied to compare these variables 
between the MS1 and MS2 groups: the Pearson Chi-
squared test for binary variables and the Wilcoxon rank sum 
test for numerical variables. Statistical significance was set 
at a two-sided P value threshold of <0.05.

Results

Systematic review and characteristics of the MS1 and MS2 
samples

According to the schematic representation of our analysis 
pipeline (Figure 1A), 514 LUAD patients were evaluated for 
eligibility according to the selection criteria, and 220 patients 
in total were included. We categorized patients into two 
molecular subtypes via NMF method, with 132 in the MS1 
group and 88 in the MS2 group (Figure 1B,1C, table available 
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Figure 1 The multi-omics workflow and NMF clustering for patients with LUAD. (A) Schematic diagram showing the analysis pipeline for 
molecular subtype in LUAD. (B) The values of k where the magnitude of the cophenetic correlation coefficient began to fall were chosen as 
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at https://cdn.amegroups.cn/static/public/tlcr-24-393-1.
xlsx). Of all included patients, 152 (69%) were aged 60 years 
or older, 108 (49%) were female. Baseline characteristics 
were generally balanced between the groups (Table 1). 
After adjustment for covariates, the molecular subtype was 
an independently associated factor with higher hazards of 
death with median overall survival of 40.6 months [95% 
confidence interval (CI): 31.3–49.3] in the MS1 group 
(Figure 2A,2B) and 21.6 months (95% CI: 15.7–34.3) in the 
MS2 group [hazard ratio (HR): 1.74, 95% CI: 1.17–2.6; 
P=0.006] (Figure 2A,2B). The median progression-free 
survival was 22.6 months (95% CI: 19.0–35.8) in the MS1 

group (Figure 2C,2D) compared with 22.8 months (95% CI: 
12.8–35.5) in the MS2 group (HR: 1.33, 95% CI: 0.89–2.0; 
P=0.16) (Figure 2C,2D).

Immune infiltration atlas

We demonstrated that patients in the MS1 group had 
significantly higher stromal scores, immune scores, and 
estimate scores compared to those in the MS2 group  
(Figure 3A). Furthermore, analysis of immune cell 
composition revealed that the MS1 group exhibited a higher 
level of immune activity, which was significantly increased 

Table 1 Patients characteristics stratified by molecular subtype

Characteristic Overall (N=220) MS1 (N=132) MS2 (N=88) P value*

Age (years), n (%) 0.40

<60 68 (31) 38 (29) 30 (34)

≥60 152 (69) 94 (71) 58 (66)

Sex, n (%) <0.001

Female 108 (49) 79 (60) 29 (33)

Male 112 (51) 53 (40) 59 (67)

Race, n (%) >0.9

American Indian or Alaska Native 1 (0.5) 1 (0.8) 0

Asian 3 (1.4) 2 (1.5) 1 (1.1)

Black or African American 25 (11) 15 (11) 10 (11)

Unknown 26 (12) 14 (11) 12 (14)

White 165 (75) 100 (76) 65 (74)

Stage, n (%) 0.30

II 114 (52) 74 (56) 40 (45)

III 79 (36) 42 (32) 37 (42)

IV 27 (12) 16 (12) 11 (13)

New tumor event, n (%) 0.40

No 101 (46) 64 (48) 37 (42)

Unknown 34 (15) 17 (13) 17 (19)

Yes 85 (39) 51 (39) 34 (39)

Radiation, n (%) 0.053

No 155 (70) 101 (77) 54 (61)

Unknown 22 (10) 10 (7.6) 12 (14)

Yes 43 (20) 21 (16) 22 (25)

*, Pearson’s Chi-squared test. MS1, molecular subtype 1; MS2, molecular subtype 2.

https://cdn.amegroups.cn/static/public/tlcr-24-393-1.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-393-1.xlsx


Liang et al. Microbiota modulate tumor immune repertories2688

© AME Publishing Company.   Transl Lung Cancer Res 2024;13(10):2683-2697 | https://dx.doi.org/10.21037/tlcr-24-393

in CD4 T cells, CD8 T cells, NK cells, and macrophages 
(Figure 3B). Interestingly, we found a significant increase in 
neutrophils and γδT cells within the MS2 group (Figure 3B),  
indicating a heightened inflammatory response. The 
immune-cell association profiles are similar for both 
subtypes (Figure 3C,3D). Overall, our findings suggest 
that patients with MS2 exhibit a stronger inflammatory 
response.

Gene mutational landscapes and transcriptomic profiles in 
molecular subtypes

To gain a more comprehensive understanding of the 
association between mutation repertoires and microbiota 
profiles, we examined the patterns of gene mutation and 
mutational signature. In the cohort of 220 subjects, we 
identified 77,797 single nucleotide variants (SNVs), 2,347 
deletions, and 1,011 insertions. The top mutated genes were 
TP53 (49%), TTN (48%), MUC16 (38%), RYR2 (37%), and 
CSMD3 (36%) (Figure 4A). Furthermore, we investigated 
the transcriptomic gene sets between MS1 and MS2 groups 
comprehensively. Gene set enrichment analysis revealed that 

the top ten hallmark gene sets were significantly enriched 
in the MS1 and MS2 group (Figure 4B). Specifically related 
to immune response processes in oncology, these gene sets 
highlighted their significance in shaping molecular subtype 
patterns.

To explore potential carcinogenic factors associated with 
mutational spectrum involvement in molecular subtypes, we 
conducted an extensive analysis of mutational signatures. 
Signature 4 was found to be predominant in both MS1 
and MS2 patients (Figure 4C,4D); however, it exhibited a 
significant increase specifically within the MS2 subgroup. 
This suggests that smoking-related mutagenesis signature 
4 is a risk factor for MS2 subgroup with poor survival 
outcomes.

Microbiota biomarkers were associated with molecular 
subtype

We investigated the relative abundances in each group at 
various taxonomic levels (Figure S1). At the phylum level 
(Figure 5A), Proteobacteria (MS1: 47.59%, MS2: 45.64%), 
Actinobacteria (MS1: 26.59%, MS2: 27.22%), Bacteroidetes 
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Figure 3 The immune landscape for LUAD in molecular subtypes. (A) Insights of immune status by 4 immunological scores. The P values 
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(MS1: 15.18%, MS2: 15.81%), Firmicutes (MS1: 7.60%, 
MS2: 8.04%), and Chlamydiae (MS1: 2.16%, MS2: 
2.27%) were predominant. At the genus level (Figure 5B), 
Terrabacter (MS1: 22.74%, MS2: 23.32%), Neisseria (MS1: 
16.17%, MS2: 12.07%), Bacteroides (MS1: 12.08%, MS2: 
12.85%), Proteus (MS1: 5.61%, MS2: 6.25%), and Listeria 
(MS1: 4.58%, MS2: 4.99%) were predominant in our 
included samples. 

In order to investigate the impact of molecular subtype 
on microbiota diversity, we evaluated its effect on α-diversity 
using Shannon’s index (Figure 5C) as well as Fisher’s index, 
Simpson’s index, InvSimpson’s index (Figure S1). However, 
no statistically significant differences were observed between 
the MS1 and MS2 groups based on these indices (P>0.05). 

Similarly, β-diversity analysis based on Bray-Curtis distances 
also did not reveal any notable dissimilarities (P=0.58) 
(Figure 5D). The microbiota spectrum were similar between 
the MS1 and MS2 groups. To identify high-dimensional 
biomarkers, we utilized the LEfSe software to discover 
predominant bacterial taxa associated with different clinical 
characteristics. We observed significant differences in five 
genera, namely Aeromonas, Bordetella, Alistipes, Salmonella, 
and Campylobacter, which exhibited higher abundance in 
the MS1 group compared to the MS2 group (Figure 5E,5F; 
Figure S2). Conversely, Desulfococcus, Terrabacter, Bacteroides, 
Shigella, Listeria, Proteus, and Neisseria showed significantly 
higher abundance in the MS2 group than in the MS1 group 
(Figure 5E,5F).

https://cdn.amegroups.cn/static/public/TLCR-24-393-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-393-Supplementary.pdf
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The γδT cells were correlated with microbiota biomarkers 
for suppressing immunity

In order to better characterize host-microbe interactions 
within the immune system context, we assessed the 
correlative matrix between microbiota biomarkers and 
immune profiles as represented by a refined network for 
MS1 (Figure 6A) and a closely connected network for 
MS2 (Figure 6B). These variations in microbiome and 
immune repertoires provide valuable insights for studying 
correlations between bacterial profiles and immune profiles 
in LUAD. Within this analysis of networks, we showed eight 
microbiota biomarkers, including Aeromonas, Bordetella, 

Salmonella, Desulfococcus, Terrabacter, Bacteroides, Proteus, and 
Neisseria, that correlated with γδT cells specifically within 
the context of the MS2 network (Figure 6B). Notably, the 
refined network for MS1 (Figure 6A) demonstrated closer 
correlations among Treg cells, CD4 cells, and B cells when 
compared to those observed within the MS2 network.

Diverse drug sensitivity may serve as novel approach for 
underpinning cancer immunotherapy

To gain a comprehensive understanding of potential 
disparities in treatment options, we conducted an 
investigation into the drug sensitivity across molecular 
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subtypes (table available at https://cdn.amegroups.cn/static/
public/tlcr-24-393-2.xlsx). Notably, there were no significant 
variations observed in the sensitivity to cisplatin, paclitaxel, 
docetaxel, gemcitabine, and common targeted drugs between 
the two molecular subtypes (Figure 7A-7L). However, it was 
found that MS2 exhibited heightened sensitivity towards 
savolitinib (Figure 7M), and venetoclax (Figure 7N)—
a BCL-2 protein binder that displaces pro-apoptotic 

proteins—resulting in mitochondrial outer membrane 
permeability and caspase activation to restore apoptotic 
processes (37). Additionally, MS2 demonstrated increased 
susceptibility to MK-8766 (38), an agent targeting cell cycle 
regulation (Figure 7O). Conversely, MS1 displayed greater 
responsiveness to ERK-2440 (Figure 7P) which modulates 
the ERK/MAPK pathway. These findings on drug 
sensitivity suggest a close association between MS2 and cell 

https://cdn.amegroups.cn/static/public/tlcr-24-393-2.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-393-2.xlsx
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cycle regulation while highlighting potential avenues for 
targeted drug development.

Discussion

There is abundant evidence that the microbiota affects the 
immune response to cancer (39). A deeper understanding 
of the intratumor microbiota’s impact on the tumor 
microenvironment (TME) holds immense potential for 
advancing tumor immunotherapy or microbiota-targeted 
therapies. Our findings uncover a previously unappreciated 
role of immune landscape in the interaction between 
immune cells and microbiota, promoting the prognosis of 
LUAD from an anti-tumor immunity state to progression. 
It is worth noting that microbiota biomarkers strongly 
correlate to γδT and neutrophil cells in the molecular 
subtype subject poor prognosis. Current pre-clinical studies 
and clinical trials with immunotherapy most are in the 
setting of gut microbiome, where the gut-lung axis plays 
a remote regulatory role, promoting antitumor immune 
responses (40,41), but also inducing pro-tumorigenic effects 
(42). However, the microbiota-immunity microenvironment 
in lung is very different from that of the intestinal system. 
More importantly, we demonstrated the molecular subtype 
with microbiota characteristics being different in the anti-
tumor drugs sensitivity. Our observations warrant further 
investigation towards rationally harnessing the microbiota 
tumor heterogeneity profiles in the immunotherapy (43).

Recent studies have linked commensal microbiota to 
activation of oncogenic signaling pathways (44,45), or 
promotion on tumor progression (46). How the microbiota 
and TME act together to regulate the balance between 
tumor-promoting inflammation and anti-tumor immunity 
remains unclear. Our results displayed that tumor micro-
environment landscapes were highly correlated with 
bacterial biomarker, indicating a relatively more significant 
contribution of the microbiota in lung cancer immune 
remodeling. We demonstrated that MS2 resulted in a worse 
survival prognosis. And there were significant differences in 
the composition of immune cells between the two molecular 
subtypes. The Neutrophils and γδT cells in MS2 were 
increased, and the macrophages, NK cells, CD4 T cells 
and CD8 T cells in MS1 were increased. This difference 
in immune cell composition may contribute to the varying 
survival outcomes observed between the two subtypes.

Evidence that commensal bacteria stimulated Myd88-
dependent IL-1β and IL-23 production from myeloid cells, 
inducing proliferation and activation of Vγ6+Vδ1+ γδT 

cells that produced IL-17 and other effector molecules to 
promote inflammation and lung cancer cell proliferation 
has well been documented (10). This study also confirmed 
MS2 with a inflammatory profile and presented a strong 
association with microbiota biomarkers (Figure 6A,6B). 
For example, in the MS2 group, γδT cells were associated 
with eight biomarkers. Our results further reveal that 
intratumoral microbial markers can modulate gamma-delta 
T cell activity, leading to poorer tumor prognosis.

It has been documented that the abundance of Aeromonas 
is increased in tumor tissues such as thyroid cancer (47). 
These results strongly suggest the importance of lung 
microbiota in driving local inflammation and tumor 
promotion. In mouse studies, it has proved to be technically 
challenging to selectively manipulate the airway microbiota. 
Although the low biomass of microbial cells in the lung 
also makes the characterization of lung microbiota difficult 
(13,48), future studies will focus on defining the role of 
specific composition of the lung microbiota in tumor 
microenvironment.

Increas ing evidence suggests  that  dysbiosis  of 
intratumoral microbiome (49,50), serving as hallmarks of 
cancer, exert profound influences on tumor progression and 
responses to anticancer therapies (51-53). The Desulfococcus, 
Terrabacter, Bacteroides, Shigella, Listeria, Proteus, and 
Neisseria were significantly more abundant in MS2 than 
MS1 group (Figure 5A,5B). Specifically, the Desulfococcus, 
Terrabacter, Bacteroides, Proteus, and Neisseria were correlated 
with γδT cell, suggesting a strongly microbiota-immune cell 
interactive network.

Recent studies have report that diverse biomarkers, 
especially Bacteroides, Proteus, and Neisseria, may affect on 
tumor progression and prognosis, as well as the responses 
to ICI therapy. Recent studies have report that diverse 
biomarkers, including Bacteroides, Proteus, and Neisseria, may 
affect on tumor progression and prognosis (54-56), as well 
as the responses to ICI therapy (57). 

It is probable that the microbiota effect is not solely 
reliant on a single biomarker, but rather a consequence 
of diverse microbiota repertories, contributing to the 
immunomodulatory reprogramme (39). Our findings 
further provide the evidence of the critical role of 
microbiota profiles in immunomodulatory. Furthermore, 
the sensitivity of tumor to chemotherapy is potentially 
regulated by the intratumoral flora.

In order to escape the apoptosis caused by chemotherapy, 
such as gemcitabine and cisplatin, the intratumoral bacteria 
can enhance tumor resistance by metabolizing drugs into 
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compounds that have no therapeutic effect (12). A more 
thorough analysis of metabolites revealed that the drug-
resistant group exhibited elevated levels of compounds 
like acetylcholine (58) and carnitine, which can promote 
tumor progression (58,59). However, there was no 
noteworthy variation in sensitivity towards commonly used 
chemotherapeutic agents between the two immunosubtypes 
(Figure 7). Intriguingly, MS2 exhibits greater sensitivity to 
venetoclax, a drug that binds to the BCL-2 protein, thereby 
suppressing pro-apoptotic proteins. This action leads to 
increased mitochondrial outer membrane permeability and 
the activation of caspases, ultimately restoring apoptosis.

Due to the limitations of the current experimental 
system for studying intratumoral flora, previous studies 
have not been able to accurately determine the influence 
of intratumoral microbiota on the efficacy of immune 
checkpoint inhibitors. The identification of the pivotal roles 
played by microbiota and immune cell composition holds 
immense significance for the development of novel clinical 
drugs specifically targeting the microbiota.

Limitations

It is an important issue of tumor microbiota immunity 
to analyze whether the disorder of tumor microbiota can 
trigger innate immunity and how to induce tumor-specific 
immune tolerance to drive the process of tumor metastasis. 
The interplay between smoking, lung microbiota, and 
immune infiltration necessitates further preclinical 
modeling for confirmation. However, unfortunately, we 
are yet to be able to elucidate the mechanisms by which 
the bacteria modulate the transcripts repertoire in different 
tissues. Ultimately, low levels of the bacterial contamination 
were not able to be excluded perfectly, further studies are 
needed to verify microbe-host interactions. 

Conclusions

In conclusion, our results revealed distinct profiles of 
microbiome and transcriptome residing within LUAD. 
Furthermore, the microbiota biomarkers were correlated 
with cell composition with the increased of neutrophils 
and γδT cells, which in turn intensifies tumor immune 
infiltration and cell cycle, ultimately promoting tumor 
development. The findings of this study hold significant 
implications for the development of personalized 
immunotherapy strategies for LUAD.
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