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It is widely feared that a novel, highly pathogenic, human transmissible influenza virus may
evolve that could cause the next global pandemic. Mitigating the spread of such an influenza
pandemic would require not only the timely administration of antiviral drugs to those
infected, but also the implementation of suitable intervention policies for stunting the
spread of the virus. Towards this end, mathematical modelling and simulation studies are cru-
cial as they allow us to evaluate the predicted effectiveness of the various intervention policies
before enforcing them. Diagnosis plays a vital role in the overall pandemic management fra-
mework by detecting and distinguishing the pathogenic strain from the less threatening
seasonal strains and other influenza-like illnesses. This allows treatment and intervention
to be deployed effectively, given limited antiviral supplies and other resources. However,
the time required to design a fast and accurate testkit for novel strains may limit the role
of diagnosis. Herein, we aim to investigate the cost and effectiveness of different diagnostic
methods using a stochastic agent-based city-scale model, and then address the issue of
whether conventional testing approaches, when used with appropriate intervention policies,
can be as effective as fast testkits in containing a pandemic outbreak. We found that for miti-
gation purposes, fast and accurate testkits are not necessary as long as sufficient medication is
given, and are generally recommended only when used with extensive contact tracing and
prophylaxis. Additionally, in the event of insufficient medication and fast testkits, the use
of slower, conventional testkits together with proper isolation policies while waiting for the
diagnostic results can be an equally effective substitute.

Keywords: intervention policy; stochastic agent-based model; fast testkit;
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1. INTRODUCTION

A global influenza pandemic has the potential to cause
extensive morbidity and mortality, as well as severe
social and economic disruptions. Past and present pan-
demics such as the Asian flu (1957, H2N2), the Hong
Kong flu (1968, H3N2) and the recent swine flu
(2009, H1N1) outbreaks have demonstrated the extent
to which the virus can be transmitted swiftly on a
global scale (Cox & Subbarao 2000; Fraser et al.
2009). In the case of the 2009 H1N1 flu pandemic,
although the H1N1 strain is not as lethal as originally
thought, there are fears that a deadlier strain may
emerge, sparking off the next wave of health crisis.
This is in addition to the existing threat of the highly
lethal H5N1 avian influenza virus (Hatta et al. 2001)
mutating into a human-transmissible variant (Hatta &
Kawaoka 2002).

It is recognized that a combination of early use of
antiviral medicine and social distancing measures can
orrespondence (cheld@nus.edu.sg).

plementary material is available at http://dx.doi.org/
009.0471 or via http://rsif.royalsocietypublishing.org.

ctober 2009
ovember 2009 1033
help contain a pandemic, or at least slow its spread
until proper vaccines can be developed (Nuño et al.
2007). However, due to limited medicine stockpiles
and resources, policies must be made such that they
optimize the drug usage while minimizing the cost
and economic impact of the intervention strategies.
Since it is not possible to experimentally assess the over-
all effectiveness of the various pandemic control
strategies, mathematical models play a major role as
they allow us to address such issues through simu-
lations. Notable past works include examining how to
contain a novel influenza strain at its source (Ferguson
et al. 2005; Longini et al. 2005), and failing that, how we
can limit its impact within the population (Ferguson
et al. 2006; Germann et al. 2006; Wu et al. 2006;
Nuño et al. 2007).

Diagnosis is an important component in the overall
pandemic management framework. With proper diag-
nosis, potential flu carriers can be identified before
they become symptomatic. Non-pharmaceutical
measures such as quarantine and contact tracing can
then be activated, thus maximizing the probability of
containment (Ferguson et al. 2005; Longini et al. 2005).
This journal is q 2009 The Royal Society
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Figure 1. Transmission model and infectiousness profile. (a) The state transition diagram depicting the SEPIR (susceptible–
exposed–pre-symptomatic–infectious–recovered) transmission model for pandemic influenza. The infectious phase is further
sub-divided into asymptomatic (IA), mild (IM) and critical (IC) cases. (b) The mean relative infectiousness of a person throughout
the various phases.
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Even in the event of an ongoing outbreak, it was found
that early detection and intervention can help mitigate
the spread of influenza. For instance, studies have
revealed that during the 1918 flu pandemic, cities in
the United States that enforced early interventions
had significantly reduced mortality rate (Hatchett
et al. 2007). Furthermore, during a pandemic, various
influenza-like illnesses (ILIs), as well as non-pandemic
seasonal influenza cases will continue to present them-
selves within the population. The ability to
differentiate between the pathogenic strains and the
less harmful ones can help channel antiviral drugs to
where they are needed. Such targeted treatment is
invaluable in the face of limited drug supplies,
especially in developing countries.

Current influenza diagnostic tests, especially when the
strains are evolving constantly, vary differently in terms
of efficiency, specificity and sensitivity (for a list of diag-
nostic tests, see Centers for Disease Control and
Prevention 2009). These factors will impact the interven-
tion policies that should be made during an outbreak. It
has been argued that a slow, low throughput laboratory-
based diagnostic test, such as immunofluorescence DFA
antibody staining and RT-PCR (real-time polymerase
chain reaction), may not be able to effectively assist pan-
demic mitigation (Wu et al. 2006). Ideally, a rapid PCR-
based diagnostic testkit should be able to detect the rel-
evant virus in less than 30 minutes, requiring nothing
more than a patient sample, and a portable device to per-
form extraction and drive the PCR cycle. This permits
testing to be done quickly, outside a laboratory setting,
and allows diagnosis to be performed more easily in
rural areas, where novel influenza is likely to emerge.
However, such testkits require time to develop for novel
strains, and may not be available during the initial
phases of a pandemic, during which one may have to
fall back on conventional laboratory-based approaches.

The constraints imposed by the availability of fast
and accurate diagnostic methods are factors that
should not be overlooked in flu intervention policy
making. However, previous works on pandemic model-
ling either treat ILIs as false positives that consume
resources, or assume perfect diagnosis without account-
ing for the costs associated with the use of the different
J. R. Soc. Interface (2010)
diagnostic techniques. In this work, we aim to investi-
gate the cost and effectiveness of various intervention
policies when implemented with different diagnostic
methods. Specifically, we want to address the following
questions—Is a fast and accurate testkit necessary in
mitigating the spread of an ongoing pandemic? In
addition, are there any other dominating factors that
should be given due consideration in forming pandemic
mitigation policies? To do so, we developed a stochastic
agent-based epidemic framework and implemented it
on a small city-scale model, typified by developed
countries such as Singapore and the United States.
The impact of testkits when used in the context of
different intervention policies is then assessed by com-
paring the severity of the outbreak with an aggregate
cost function which encompasses the various costs and
resources involved.
2. METHODS

2.1. Model outline

For our work, we developed a stochastic agent-based
pandemic model on a small-scale city. We extended
the typical transmission model (Wu et al. 2006) by
adding a pre-symptomatic phase, thus resulting in
the SEPIR (susceptible–exposed–pre-symptomatic–
infectious–recovered) model. In addition, we further
refined the infectious phase into one of the three poss-
ible categories—asymptomatic, symptomatic and
critical (for details, refer to figure 1a). To capture the
constraints imposed by societal norms, such as the
different population response patterns during different
times of the day, we set the granularity of the time
scale to be in terms of hours, rather than days.

We populated the city with 10 000 people, and simu-
lation proceeds in discrete time steps of 1 h. Within the
city, we identified the following location types—
(i) household, (ii) workplace, (iii) school, (iv) mall,
(v) hospital, and (vi) public transport. Whenever the
context is clear, both workplaces and schools are
simply referred to as workplaces, while malls, hospitals
and public transport are termed communities. For
workplaces, schools and malls, they are further divided
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into sub-locations. Workplaces have smaller work
groups, schools are divided into classes, and malls are
made up of several shops. At any point in time, each
individual in the city will be in any one of the locations
or sub-locations. Note that we classified hospital as a
separate location entity, as it will be the main facility
where diagnosis and treatment can be issued. The
number of people in each location was obtained by
fitting the model against demographic data for
Singapore (Statistics Singapore 2009).

Each location in the model, with the exception of
public transport, has an x–y coordinate assigned to it
on a 10 � 10 square grid. Inhabitants of the city move
from one location to the next according to their individ-
ual schedules. Commuting between grids is done by
either private (i.e. cars) or public transport. However,
between locations on the same grid coordinates, it is
assumed that movement does not require any forms of
transport. Public transport is considered as a location.
Instead of x–y coordinates, it is assigned to a route it
serves. The other locations in the city are grouped
into four districts (each occupying a quadrant in the
city grid). Travelling within and between the districts
is done via a specific transport route, giving a total of
16 routes. All individuals travelling along the same
route are considered to be in the same location, thus
allowing the spread of pandemic flu.

In the city, we assumed that there are two hospitals,
with one being designated as a flu treatment and iso-
lation centre during a pandemic outbreak. Patients
with flu-like symptoms will be directed to that hospital
for diagnosis and treatment. The other hospital will
handle other non-influenza-like illnesses (ONILIs) which
include cases such as bacterial infections and accidental
injuries. Normally, without a designated flu hospital,
these ONILI cases will present themselves as susceptible
targets for infection within the hospital. However, this
scenario is not considered in depth within our model.

As mentioned in the previous section, ILI is one of
the sources of drug wastage. It represents other types
of illnesses as well as non-pandemic seasonal influenza,
and is symptomatically indistinguishable from the pan-
demic strain. For these patients, they will be directed to
the designated flu centre for diagnosis and treatment.
Without proper diagnoses, these patients will consume
resources unnecessarily. Since ILIs are non-specific ill-
nesses, we assumed the number of new ILI cases to
surface at a constant rate, independent from the
spread of pandemic influenza. Variations due to seaso-
nal effects are currently beyond the scope of this
work. Based on published data from the Ministry of
Health, Singapore (Ministry of Health Singapore
2006b), we estimated the rate to be three new infections
per day, each lasting for 72 h. In the model, these indi-
viduals are randomly selected from the ILI-susceptible
population; those suffering from pandemic flu and
ONILIs can still be inflicted by ILIs. For ONILIs, we
estimated the daily new occurrences to be 45 people
(Ministry of Health Singapore 2006a), and they are ran-
domly selected from the ONILI-susceptible population.
Again, each ONILI case is assumed to last for 72 h. For
details on how the values are derived, refer to the
electronic supplementary material.
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2.2. Natural history of influenza

To model the spread of novel pandemic virus, par-
ameters governing its infection dynamics are required.
Since such parameters are not readily available for
novel variants, we referred to the natural history of
typical influenza viruses, adapting the values from pre-
vious works whenever possible. The basic function
describing the dynamics of transmission is the instan-
taneous force of infection experienced by the ith
individual, and it is summarized by the following
equation:

li ¼
X

k[K

X

xj[X=xi

GijkbkIjSi

Nak
k

; ð2:1Þ

where X and K are the sets of people and locations in
the city, respectively; bk is the transmission coefficient
associated with a particular location type. The trans-
mission coefficients are estimated such that without
any forms of intervention, the proportions of trans-
missions within the household (PH), workplace (PW)
and community (PC) are approximately 30, 37 and 33
per cent, respectively (Ferguson et al. 2006). This pro-
portion is location-dependent, and the values we
followed are reported to be estimated based on data
from the United States. Using our transmission coeffi-
cients (bh ¼ 1.89 � 1021 h21, bw ¼ 3.2 � 1021 h21 and
bc ¼ 6.51 � 1023 h21) the transmission proportions in
the model are computed to be PH ¼ 30.7 per cent,
PW ¼ 35.6 per cent and PC ¼ 33.7 per cent. Gijk is a
proximity function for two individuals xi, xj and
location k at a particular time instance. In the model,
the function will give 3 if xi and xj are in the same
sub-location and 1 if they are in the same location,
but different sub-locations. Otherwise it returns 0. Ij

and Si are parameters that describe the infectiousness
of xj and the susceptibility of xi, respectively. The prob-
ability of a person getting infected is then given by
p(Infectedi) ¼ 1 2 exp(2li Dt). To simulate external
reseeding, we randomly select one person each day
and infect him/her with pandemic influenza if he/she
is susceptible.

For the length of each phase in the transmission
model, we did not define a fixed duration. Rather,
guided by the values reported in Germann et al.
(2006), we divided the phases into a number of smaller
substages, each lasting approximately 5–6 h. This
increases the granularity of the transmission model,
and allows us to better scale the infectiousness profile
upon consumption of medicine. The smaller substages
do not include the susceptible and recovered phases.
Hence, given the reported mean lengths of the exposed
(1.2 days), pre-symptomatic (0.7 days) and infectious
phase (4.1 days), in the model we divided them into
5, 3 and 17 substages, respectively. Simulating the
model 20 000 times without any forms of intervention
policies or diagnostic approaches gave us an average
of 29 h for the exposed phase, 17 h for the pre-
symptomatic phase, and 98.5 h for the infectious
phase. Assuming that the total duration of infection fol-
lows a normal distribution, we computed the mean
length to be 144.5 h and a standard deviation of 6.13 h.
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Following previous works, presumably 33 per cent of
the infected people are asymptomatic (i.e. do not show
any symptoms) while the remaining 67 per cent show
symptoms of infection (Longini et al. 2005; Germann
et al. 2006; Wu et al. 2006). Of those who are sympto-
matic, 6 per cent are assumed critical and require
hospitalization (Wu et al. 2006). The other 94 per
cent will show only mild symptoms. For the critically
ill, they are 50 per cent more infectious as compared
with those showing mild symptoms, while the asympto-
matic cases are 50 per cent less infectious. In the current
model, we ignored the occurrence of deaths. However, it
can be assumed that the death rate is directly pro-
portional to the total attack rate. For each individual,
the susceptibility is assumed to be constant (unless
the person is on medication, or immunized against the
disease). However, the infectiousness (for a mildly
symptomatic person) follows a baseline profile as
shown in figure 1b. Both the susceptibility and infec-
tiousness can be modified by the consumption of
antiviral drugs. While an infected person is on medi-
cation, his/her infectiousness is reduced by 60 per
cent. On the other hand, the susceptibility of an unin-
fected person will be reduced by 30 per cent. In
addition, the probability of symptoms appearing will
be reduced to a minimum of 23.45 per cent depending
on the length of medication. Being on medication also
shortens the duration of the disease by a maximum of
25 h if the consumption of drugs is sustained through-
out the course of infection. Finally, once a person
has recovered from the disease, he/she is assumed to
be immune to further infection, and we set the
J. R. Soc. Interface (2010)
susceptibility to 0 (see the electronic supplementary
material for more details).
2.3. Handling index cases

In our model, each index case is handled by a decision
analytical model. The overview of the decision flow-
chart is described in figure 2. For simplicity, it is also
assumed that each decision is made independently of
other index cases. For instance, in the event that two
or more people in the same household display flu-like
symptoms, the decision for each of them visiting a
doctor is made independently. The probability of each
decision is also independent of any previous decisions
made. To simulate scenarios where some intervention
policies are not put in place, the associated probabilities
are simply adjusted to reflect them accordingly.

The decision process is triggered when a person
starts to show symptoms. Depending on the severity,
if the person is critically ill, he/she is admitted to the
flu hospital for diagnosis and given mandatory treat-
ment. Regardless of diagnosis outcome, the person
will be hospitalized and kept isolated. For one showing
mild symptoms, there is a 50 per cent chance that he/
she will visit the hospital to seek medical attention,
i.e. diagnosis compliance rate. Note that the diagnosis
compliance rate is 100 per cent for a person who is cur-
rently following quarantine orders. As our model is
simulated in steps of 1 h, it will not be the case whereby
the person will visit the hospital (if he/she decides to
go) the moment symptoms appear. Instead, the trip
will only be made after a certain delay, or when the



traced

treatment
(prophylaxis)

complies?

complies?

issues quarantine

quarantine continues to work

yes (95%) no (5%)

yes (50%) no (50%)

Figure 3. Decision flowchart (contacts). The decision flow-
chart for handling traced contacts for a typical intervention
policy. For policies where certain steps are not being
implemented, e.g. quarantine, the compliance probability is
simply reduced to 0%.

How necessary is a fast testkit? J. Chin et al. 1037
hospital is open, whichever comes later. Currently, we
set the delay to 6 h.

At the hospital, a patient is diagnosed using one of
the four possible approaches, depending on the diagnos-
tic test we wished to assess. The time required varies
with the type of diagnostic tests being used. If the
patient is tested positive for pandemic influenza, treat-
ment will be offered. For the treatment, we assumed
that the drug used is the commonly stockpiled Oselta-
mivir (US National Library of Medicine and National
Institutes of Health 2009). A patient being tested posi-
tive (index case) will be given two doses a day for 5
days, consuming a total of 10 doses. A negatively
tested patient will be sent home where he/she will
decide whether or not to take absenteeism from work
or school. Unlike patients who are admitted due to criti-
cal illnesses, the class of positively tested patients may
not comply with the given treatment (i.e. refuse to
take medication even when it is prescribed to them).
In the current model, the treatment compliance rate is
set at 95 per cent. However, regardless of compliance,
drugs given are considered expended and will be
added to the total medication used. After the required
drugs have been prescribed, patients with mild symp-
toms will be issued quarantine orders, where they are
to stay at home for a pre-determined amount of time.
Again, the patient may or may not comply with the
quarantine order. Currently, we set the quarantine
compliance rate at 50 per cent.

A person with mild symptoms may refuse to go to
the hospital, or he/she could be tested negative for pan-
demic flu, or simply does not comply with quarantine
orders. Nonetheless, he/she is still unwell and may
decide to take absenteeism from work (for adults) or
school (for children). For our simulation, adults have
a 50 per cent chance of absenting themselves from
work, while children will always stay away from
school, until they recover.
2.4. Contact tracing

Contact tracing is a non-pharmaceutical social distan-
cing measure for limiting the spread of influenza by
identifying people who may have come into contact
with an infected person, and giving them prophylaxis
or issuing them with quarantine orders. It has been
shown theoretically that through contact tracing,
major outbreaks can be reduced significantly at a
small additional cost (Huerta & Tsimring 2002). We
divided the contacts of each patient into one of the fol-
lowing three categories: household, workplace and
friends. When contact tracing for a class has been acti-
vated, i.e. the index case is being tested positive for
pandemic influenza, all the contacts in that class will
be traced successfully. To emulate logistical delays in
tracing them, we set the time for successful traces to
be uniformly distributed between 5 and 7 h after
positive diagnosis of the index case.

Similar to the index cases, contacts are handled
according to a decision flowchart as shown in figure 3.
Upon being traced, the person will be offered prophy-
laxis—giving a person who is not obviously sick a
course of antiviral drugs, so as to prevent him/her
J. R. Soc. Interface (2010)
from being infected, or to reduce the severity of the ill-
ness when he/she does get infected. Again, there is a 95
per cent chance of the person consuming the medi-
cation. The prescription to be given is 1 dosage per
day, for 10 days.

An insufficient drug stockpile is a real world issue
faced by all countries. For instance, the United States
has only enough antiviral medicine for 25 per cent of
its population (US Department of Health & Human
Services 2005). In order to conserve limited drug
supplies, different countries have implemented policies
that prioritize intended drug recipients according to
their risk groups (US Department of Health & Human
Services 2005). In addition, prophylaxis is only adminis-
tered if deemed necessary. However, Longini et al.
(2004) demonstrated that targeted antiviral prophy-
laxis could be an effective measure for containing
influenza until the proper vaccines are developed.
Here, some of the intervention policies include prophy-
laxis being given to contacts. In addition, to prevent
drug wastage, we tracked the actual amount of drugs
being consumed by the contact. If the contact becomes
symptomatic later on and is subsequently diagnosed
with pandemic flu, he/she will only be issued enough
drugs to top-up his/her current supply to the required
dosage levels as per index cases. Taking into account
that not all patients will be upfront about the amount
of drugs they already have, we set the average declared
amount to be 50 per cent of the actual dosages
remaining.
2.5. Intervention policies and diagnostic testkits

The various intervention policies implemented in our
model consist of different combinations of handling
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index cases and their contacts. Specifically, we have the
following intervention policies:

— P1: base case (no controls),
— P2a: treatment of index cases only,
— P2b: treatment and quarantine index cases,
— P3a: as per P2b, trace household contacts only, with

10 days prophylaxis,
— P3b: as per P2b, trace household contacts only, with

2 days quarantine,
— P3c: as per P2b, trace household contacts only, with

both prophylaxis and quarantine,
— P4a: as per P2b, trace all contacts, with 10 days

prophylaxis,
— P4b: as per P2b, trace all contacts, with 2 days

quarantine, and
— P4c: as per P2b, trace all contacts, with both

prophylaxis and quarantine.

Note that the duration of quarantine is set at 2 days
as it is the length of time after exposure for symptoms to
appear. For strains where the incubation period is
longer, the quarantine duration may need to be
adjusted accordingly. With the exception of P1, each
intervention policy will be used with a particular testing
method for the diagnosis of individuals who show
influenza-like symptoms. The diagnostic approaches are:

— D1: assume all symptomatic cases are pandemic
influenza positive,

— D2: fast testkit,
—D3: slow testkit, but the patient will resume his/her

schedule during the testing period, and
— D4: slow testkit, with the patient staying in the

hospital while waiting.

For the base diagnosis approach (D1), we assumed
that all the people who display influenza-like symptoms
are pandemic positive (regardless of whether they are
really infected with pandemic virus) and are handled
according to the prevailing intervention policies.
Through this approach, there is no need for any testkits.

If fast testkits are to be used (D2), a patient will only
have to spend 1 h in the hospital for diagnosis and the
result (of whether he/she has contracted pandemic
influenza) to be released. Alternatively, slow testkits
can be used. However, with slow testkits, there is a wait-
ing time of 12 h. Depending on the diagnostic approach,
the patient can either resume his/her daily routine
(D3), or wait in the hospital (D4). Under D3, if the
test turns out positive the person will be recalled back
to the hospital where the appropriate treatment (for
policies P2–P4 only) is carried out. We assumed that
the recall success rate is 100 per cent. By default, all
tests (regardless of actual techniques) are set to be
100 per cent specific and 70 per cent sensitive.
3. RESULTS

For each intervention policy and diagnostic approach,
we ran the model 50 times, with each iteration simulat-
ing the spread of the influenza virus for 60 days. We
assumed that a global pandemic is underway, and the
J. R. Soc. Interface (2010)
city is already in the mitigation phase of its pandemic
response strategy, whereby the aim is to reduce the
total number of people affected and maximize care for
those infected. We examined the efficiency of the var-
ious testkits in mitigating the outbreak within the city
when positive cases have already appeared.

We measured the severity of the pandemic (and
hence the efficacy of the diagnostic method) using two
key indicators—total attack rate (ARTotal) and peak
attack rate (ARPeak). The total attack rate indicates
the total number of people who display influenza-like
symptoms due to the novel strain. It is not the same
as the total number of people infected as there is a frac-
tion of people who recover without showing any
symptoms. The peak attack rate measures the highest
number of people (at any one time point) showing
symptoms due to the pandemic virus infection. It is
an indication of the maximum burden on the healthcare
system, as well as a partial reflection of the economic
impact due to absenteeism among working adults.

Other auxiliary indicators measured are the costs
incurred due to the amount of testkits being used (Ct)
and the antiviral drugs being issued (Cd). This is in view
of the limited supply of drugs and additionally, in our
case, diagnostic testkits. Another resource that is often
overlooked is the holding capacity of the influenza hospi-
tal. While patients are waiting for diagnosis or their test
results, they are required to stay at the hospital (with
the exception of diagnostic approach D3). Hence the
peak waiting room occupancy (Cw)—the maximum
number of people waiting at any one time—is another
indicator that is measured. To gauge the economic
impact of the various intervention policies, we measure
the number of work hours lost (Ch) by all individuals
who underwent diagnosis, treatment or were traced.

We formulated a function to compute the aggregate
cost (CAggr) incurred by the various intervention pol-
icies and diagnostic methods. This function is
described by the following equation:

CAggr¼at
Ct

Ct;max
þad

Cd

Cd;max
þah

Ch

Ch;max
þaw

Cw

Cw;max
ð3:1Þ

such that

at þ ad þ ah þ aw ¼ 1: ð3:2Þ

CAggr is a value that ranges from 0 to 1. The term a is the
weight associated with the type of resource and it reflects
the importance of each component to the aggregate cost.
Note that there are no universal values for the weights,
and they vary across cities with different resource priority.
For instance, a model depicting a developed nation may be
assigned a higher value for ah due to its requirement to
remain economically competitive whereas for a country
without a proper healthcare system, one may assign higher
values for ad and at instead. Currently, we set at ¼ 0.15,
ad ¼ 0.45,ah ¼ 0.35 andaw ¼ 0.05 as we are investigating
the use of testkits in a small city of a developed nation, but
at the same time, we wish to minimize drug wastage.

3.1. Simulation with default parameters

We first simulated the spread of the pandemic influ-
enza under various intervention policies and
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diagnostic methods using the default parameters (see
the electronic supplementary material). For the test-
kits, we assumed a specificity of 100 per cent and
sensitivity of 70 per cent. From our simulations, the
basic reproduction number (R0) is computed to be
approximately 1.9, representing a moderately infec-
tious pandemic outbreak. The results are shown in
figures 4 and 5.
J. R. Soc. Interface (2010)
There is generally a similar trend in the comparison
of the total attack rates, the peak attack rates and the
amount of testkits being used across the different inter-
vention policies, regardless of the diagnostic approach.
An increase in the total attack rate corresponds to an
increase in the peak attack rate and amount of diagnos-
tic testkits being used. At the same time, to mitigate
pandemic influenza, i.e. reduce the total attack rate,
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more antiviral drugs need to be consumed, a policy that
may not be always feasible due to limited supplies.
When treating only the index cases (figure 4a, policies
P2a and P2b), the total attack rate shows a moderate
decrease, from an average of 4463.9 cases (base line)
to the lowest rate of 4016.2 cases (figure 4a, policy
P2b, diagnosis approach D1). We start to observe a
more significant decrease only when contact tracing
comes into effect. Even so, this decrease is only signifi-
cant when prophylaxis of the contacts is included in
the policies.

The work hours lost from the various diagnostic
approaches and intervention policies, interestingly,
does not follow the same general patterns observed in
the other indicators. In particular, increasing the cover-
age of contact tracing and assuming all cases to be
pandemic does not necessarily equate to more work
hours being lost (figure 5d, policies P4a and P4c, diag-
nosis D1). This is due to the decrease in total attack
rate, which offsets the work hours lost by the contacts.

Within each implemented intervention policy, the
impact of having a fast testkit on the total and peak
attack rates is only matched when a slower diagnosis
method is used and the patient stays at the hospital.
In some cases, requiring the patients to stay while wait-
ing for the test results may even be more effective in
containing the virus, as exemplified by policies P3b
and P4b shown in figure 4a. However, the peak waiting
time associated with such an approach may prohibit its
effective implementation. Of course, one can simply
assume that all patients who exhibit influenza-like
symptoms have contracted pandemic influenza and
issue them with the antiviral drugs. The downside of
this approach is then the increased drug usage, and
the proportion being wasted due to consumption by
those inflicted with ILIs (figure 5a). Nonetheless, it
may still be a viable option if the testkits constitute
another limited resource that has to be managed
properly.

Figure 6 shows the plot comparing the total attack
rate with the aggregate cost. From the plot, we see
that in the context of most intervention policies, diag-
nostic approach D1 is distributed closer to the desired
lower-left quadrant—which corresponds to an optimal
ratio of number of people infected compared with
resources consumed—especially when contact tracing
has been implemented. Even with the use of diagnostic
testkits, a slower one that requires the patient to stay,
coupled with an appropriate intervention policy, is com-
parable to using a fast testkit. The only consideration
for such an approach would then be the peak hospital
waiting room occupancy. However, given that the avail-
abilities of antiviral drugs and testkits are usually the
main limiting factors, a slow testkit with the patient
waiting in the hospital may still be preferred when a
fast and accurate kit is not yet ready.

In addition, using the current weights for the aggre-
gate cost function, data points derived from the same
intervention policies can be clustered and grouped
together (shown in figure 6 as dashed circles). This
suggests that, based on the current priorities given to
the cost components, intervention policies are the dom-
inating factors in mitigating an influenza pandemic. It
J. R. Soc. Interface (2010)
should be noted that, in particular, prophylaxis policies
guided by contact tracing have stronger effects on redu-
cing the total attack rate (lower right quadrant in
figure 6). Within each intervention policy, the different
diagnostic methods then fine-tune the allocation of
limited resources.

3.2. Sensitivity analysis

3.2.1. Basic reproduction number. The basic reproduc-
tion number R0 is an indicator that is often used to
measure the transmissibility of a pandemic outbreak.
Simply put, it is the average number of other individ-
uals each infected person will infect in a completely
susceptible population. Analyses of previous influenza
pandemics estimated R0 for large communities to lie
between 1.2 and 3 (Mills et al. 2004; White & Pagano
2008). For the recent H1N1 pandemic, some early
studies have suggested R0 to range between 1.4 and
1.6 (Fraser et al. 2009)—indicating relatively low
transmissibility—while others estimated it to be as
high as 3.1 in certain countries such as Mexico (Boglle
et al. 2009).

We obtained R0 by first turning off all intervention
policies prior to simulation. We then randomly infect
one susceptible person and simulate the model, noting
down the number of people he/she transmits the virus
to. This process is repeated 1000 times, and the average
number of transmissions is reported as the R0 value.
With the default parameters, we computed R0 in the
model to be approximately 1.9. To see the effectiveness
of the various diagnostic approaches and intervention
policies under different viral transmissibility, we vary
R0 from 1.6 (low transmissibility) to 2.3 (high transmis-
sibility) by manually adjusting the transmission
coefficients bh, bw and bc (equation (2.1)), while ensur-
ing that the transmission proportion between the
different location types remains relatively constant.
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Figure 7. Varying the R0 values. The graphs show how each indicator changes with increasing R0 values. Data points obtained
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Figure 7 shows the changes of various indicators
(ARTotal, ARPeak, Cd, Ct, Cw and Ch) for different diag-
nostic methods and intervention policies with varying
transmissibility. In general, there is a monotonic
increase across all indicators as R0 increases. Again,
within each graph, it is observed that values from the
same intervention policy tend to cluster together,
regardless of viral transmissibility (with the exception
of testkit usage for diagnostic approach D1,
figure 7d). Hence during the onset of an outbreak,
where the transmissibility is still unknown—which is
often the case—it may be more prudent to first
implement proper social distancing intervention pol-
icies, followed by the use of testkits to ensure that
drug wastage is minimized.
3.2.2. Compliance rate. In the model, the current com-
pliance rates for diagnosis, quarantine and absenteeism
are set at 50 per cent (figure 2). However, in the event
of a pandemic outbreak, there may be heightened
awareness among the population, such that individuals
displaying flu-like symptoms are now more likely to seek
medical attention and follow quarantine orders. To
investigate the effects of varying compliance, we simu-
late the model with varying levels of compliance rates
(from 30 to 70% for a medium transmissible pandemic
outbreak, i.e. R0 ¼ 1.9).

The graphs in figure 8 show the results of varying the
compliance rates. The general trend shows total attack
rate decreasing as more symptomatic individuals seek
some forms of diagnosis or antiviral medication. One
J. R. Soc. Interface (2010)
would expect that with more people visiting the hospi-
tal, the amount of drug and testkit usage will increase
as well. However, the contrary is observed for some
cases, particularly for policies P4a and P4c. Under
these policies, the total attack rate can drop by as
much as 28.4 per cent as the compliance rates increase
from 50 to 70 per cent (policy P4c, diagnosis approach
D2), and instead of seeing an increase in the medicine
consumption, we get a decrease by 2.3 per cent
(figure 8). Similar patterns are observed when other
diagnostic approaches are implemented in tandem
with P4a and P4c. We noted that the reversal of the
correlation between total attack rate and cost occurs
only in the presence of two conditions: (i) full contact
tracing and (ii) prophylaxis of the contacts. Addition-
ally, a high diagnosis compliance rate can be loosely
associated with a lower false negative rate for viral
detection. Hence, we expect measures that reduce the
false negative rate to have a more significant impact
on pandemic mitigation when implemented with the
abovementioned conditions. The critical issue that fol-
lows is then how limited resources such as antiviral
drugs and testkits can be used effectively with those
conditions.
3.2.3. Antiviral drug efficacy. The effectiveness of anti-
viral drugs may be a potential factor influencing the
impact of intervention policies and testkits on pandemic
outbreak mitigation. Drug efficacy is represented in the
model by the levels of reduction to infectiousness and
susceptibility, as well as the probability of symptoms
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Figure 9. Reduced drug efficacy. The black dots are the various
data points obtained by simulating the model using base drug
efficacy (base data points), while the white ones are derived
using reduced drug efficacy (reduced data points). The aggre-
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appearing for an infected person. We simulated the
scenario for lower drug efficacy by lowering the
amount of infectiousness reduction from 60 to 30 per
cent, and susceptibility reduction from 30 to 15
per cent for infected and uninfected individuals,
respectively. In addition, there is also a reduction of
symptomatic probability to 45 per cent.

To examine the effects of lower drug efficacy, we
look at the scatter plot of total attack rate against
aggregate cost for both sets of simulations—base
and reduced drug efficacy (figure 9). From the plot,
there is a general increase in both total attack rates
and costs with decreased drug effectiveness. Again,
the results can be clustered by the intervention pol-
icies. However, it is interesting to note that, similar
to varying the diagnosis compliance rate, points
from policies P4a and P4c collectively experience a
larger amount shift along both axes. Conversely, for
a more effective antiviral drug, the impact on redu-
cing both attack rates and costs through the
implementation of policies involving full contact tra-
cing and prophylaxis to the contacts will most
probably be more significant.
3.2.4. Testkit sensitivity. To test the robustness of the
observations for diagnostic approaches D2 to D4
within each intervention policy, the simulations are
J. R. Soc. Interface (2010)
repeated but with varying levels of testkit sensitivity
(50 and 100% sensitive). In general, increasing the
sensitivity of the testkits has the effect of decreasing
the total attack rate (figure 10). Surprisingly in
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some cases, a highly sensitive, but slow testkit,
coupled with proper diagnostic approaches, can
bring about a lower total attack rate as compared with
simply assuming that all patients are infected with
pandemic influenza (figure 10, diagnosis D4 with pol-
icies P2a, P2b, P3b and P4b). One possible
explanation is that confining the pandemic-positive
patients in the hospital tends to remove them from
infectious circulation while they are at their peak
infectiousness.

Despite the decrease in total attack rate, the
amount of drug usage increases with better sensi-
tivity, mainly due to more people being correctly
diagnosed and administered with antiviral drugs.
This increase is not observed for the amount of test-
kits being used (figures 11 and 12). One interesting
observation is that as the sensitivity of the testkits
improves, the amount of drug usage becomes almost
as much as if we were to assume that all patients
are positively infected with pandemic influenza
(figure 11). In some cases, the amount of drug
dosage even exceeds the base approach D1 (e.g.
figure 11, policy P4c, diagnosis D2), possibly due to
the higher total attack rate. Regardless of the testkit
sensitivity, variations to the amounts of drug and
testkit usage between diagnostic approaches D2 to
D4 are not as significant as compared with the vari-
ations due to the different intervention policies being
implemented.
3.3. Hospital segregation

Hospitals provide another dimension in shaping the
spread of an influenza pandemic and affecting the effi-
cacy of the various policies and diagnostic approaches.
Unlike other location types, individuals who show
influenza-like symptoms will deliberately go to the hos-
pital for diagnosis, providing an opportunity for
J. R. Soc. Interface (2010)
potential spread of the virus (Nuño et al. 2007). In
our current model setting, hospital transmission does
not play a major role as we have implemented a
simple hospital segregation policy through the desig-
nation of a flu hospital. However, without such
policies, some diagnostic methods may not work as
well as shown previously.

We briefly study the importance of implementing
proper hospital segregation policies by simulating our
model without a designated flu hospital. Each sympto-
matic person will randomly select a hospital to visit for
diagnosis and treatment. In addition, we increase the
number of ONILI cases by threefold to 135 individuals
daily in order to assess the results under a more severe
setting. These people will also go to any of the two hos-
pitals for treatment with a 50 per cent compliance
probability.

The total attack rate, drug usage, testkit usage and
amount of work hours lost are shown in figure 13.
From the results, we see an overall increase in the
total number of people infected and the consumption
of the different resources. However, an interesting obser-
vation is that the effectiveness for diagnostic approach
D4—where the patient stays in the hospital while wait-
ing for the test results—starts to degrade regardless of
intervention policy. One reason for this phenomenon
is that the force of infection experienced by an ONILI
patient is increased dramatically, not only because
they visit the same hospital as infected individuals,
but also due to the higher concentration of infectious
people in the hospitals as compared with other location
types. In fact, in the absence of a fast testkit, simu-
lations showed that it is better to collect the samples
from the patient and allow him/her to go off while
diagnosis is being performed using conventional
laboratory-based methods. Nonetheless, the better policy
will still be to prevent the mixing of genuine influenza
cases and those with ONILIs.
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4. DISCUSSION

From the simulation results presented in the previous
section, the impact of a fast testkit on mitigating pan-
demic influenza may not be as significant as the
various social distancing policies themselves. In particu-
lar, for most cases within our model set up, assuming
that the patient is positive for pandemic flu will result
in better allocation of limited resources (drug dosage
and amount of testkits) while minimizing the total
number of people being infected. Then why is a fast
testkit necessary? In the current model, the implemen-
tations of diagnostic methods and intervention policies
are homogeneous, i.e. assume pandemic positive, slow
and fast testkits are not being used in a way such that
their intended effects are maximized according to
J. R. Soc. Interface (2010)
whether the individual is an index case or a contact.
In general, we find that three of the most important fac-
tors that guide the use of diagnostic testkits are (i) the
resource consumption by false positives, (ii) the fre-
quency of false positives, and (iii) the propagation
potential of false negatives.

In this work, an individual suspected to be infected
may consume the following resources—antiviral drugs,
testkits, work hours lost (which represents an intrinsic
economic opportunity cost), and less importantly, the
peak waiting room occupancy. Allocating an individual
these resources when it is not really required (whether it
is due to assuming that he/she is pandemic positive or
the inadequate specificity of the testkits) is wastage
which any policy maker would try to minimize. This
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is especially true for antiviral drugs, which often rep-
resents a hard constraint. Depending on the frequency
and proportion of such false positives, proper diagnostic
approaches can then be implemented. For instance,
when the proportion of false positives is high, such as
the case of a high ILI rate, assuming that all patients
are pandemic positive would put a strain on the limited
drug supplies. Of course, such rates may not be possible
to obtain for a novel pandemic strain with no outbreak
history. Nonetheless, by not advocating a blanket
approach and instead, identifying areas where false
positives are most likely to occur, the proper use
of fast testkits can possibly achieve better mitigation
outcomes and minimizing wastage.

To further illustrate our point, when a local pan-
demic is already underway, as depicted by our model,
most patients who turn up at the hospitals for diagnosis
are likely to have been inflicted with pandemic influ-
enza. As such, it may be more prudent to assume
positive and administer antiviral drugs without diagno-
sis. However, a different approach may be adopted for
their contacts. From figure 5a, there is a significant
increase in the amount of drugs being used when the
tracing of all contacts is in place (except for policy
P4b). Policy P4a uses almost 5 times more drugs than
policy P2a despite reducing the total attack rate
by only slightly more than half. This suggests
that there is a huge amount of wastage due to the
contacts. Hence, instead of applying prophylaxis to
the contacts, using diagnostic testkits to identify
J. R. Soc. Interface (2010)
infected contacts and treating them with antiviral
drugs might then possibly yield a better attack rate-
to-drug usage ratio. The question then remains as to
whether a fast or slow testkit makes a difference to
the attack rate and drug usage. Assuming that the con-
tacts need not go to the hospital and instead a
respiratory specimen is collected and sent for analysis
while the contact is ordered to stay at home (a diagnos-
tic approach similar to D4), then a fast testkit may not
be required. However, if a trip to the hospital is needed
for diagnosis, the availability of a fast testkit may mini-
mize the time the contact spends not under quarantine,
preventing further spread of the influenza virus.

Another factor influencing the necessity of testkits,
which is closely related to their sensitivity, is the reper-
cussions of not treating a pandemic-positive individual.
In figure 4, the total attack and peak attack rates for
non-treatment are shown as base lines. For a moder-
ately infectious variant as simulated in our model, an
untreated case may not spread the virus in an exponen-
tial manner. As such, a testkit may be used to reduce
drug wastage, but a highly sensitive one may not be
required since the infectiousness of the individual is lim-
ited. However, for the more transmissible cases, such as
the ongoing H1N1 swine flu outbreak (at the time of
writing; Neumann et al. 2009; Novel Swine-Origin Influ-
enza A (H1N1) Virus Investigation Team 2009), it may
be unwise to leave a potentially infectious person
untreated. If a sensitive testkit is not yet available,
then assuming that a symptomatic individual has
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contracted the pandemic virus is probably more effi-
cient in bringing down the attack rates. Aside from
the transmissibility of the virus, geographical features
may also affect the propagation potential of a false
negative. In urban areas such as cities, where close con-
tact due to work and public transport is inevitable, a
single untreated case can rapidly lead to the formation
and spread of influenza clusters.

One other aspect which can be further investigated is
the role of public transport in transmitting the pandemic
virus. Public transport such as buses and subways not
only facilitates the displacement of carriers between
locations within the city, it also brings several individuals
into close proximity, increasing the likelihood of the virus
infecting several other people. A limitation of current
diagnostic measures in most countries is that a sympto-
matic person has to travel to a local hospital for
testing, which requires commuting, mostly on public
transport. As mentioned previously, it is possible for a
symptomatic individual to either send a respiratory
specimen to the hospital, or request for a fast testkit
for diagnosis at home, hence alleviating the need for
public transport. Both measures can potentially reduce
the risk of exposure to others significantly.

There are several other aspects to pandemic influ-
enza that determine the efficacy and necessity of a
fast testkit in minimizing drug wastage while mitigating
an outbreak. Parameters and policies such as compli-
ance rate of the general public, as well as activating
prophylaxis to priority groups (US Department of
Health & Human Services 2005) will influence how a
testkit can be effectively used. However, considering
these parameters and policies is beyond the current
scope of this work.

For future works, we may add more flexibility to the
policies being implemented, such as differential hand-
ling of index cases and contacts as briefly discussed.
One mitigation means that can also be further explored
is the role of vaccines and how they would shape the
spread of the pandemic outbreak. Additionally, more
complex social interaction patterns (Barrett et al.
2008) can be implemented to represent the spread of
the pandemic in a more realistic manner. Data mining
techniques (Baily-Kellogg et al. 2006) can then be
used on the simulation results to better assist policy
makers in assessing the implications and effectiveness
of their policies both spatially and temporally. Finally,
the aggregate cost function (equation (3.1)) may also
be modified to present a more systematic cost–utility
assessment of the various diagnostic approaches and
intervention policies, taking into account factors such
as quality-adjusted life-years (Sander et al. 2009).
5. CONCLUSION

Managing limited resources such as testkits and anti-
viral drugs while trying to contain the spread of
pandemic influenza is a major challenge faced by several
countries. In the event where a fast and accurate testkit
is not yet available, one has to rely on slower testkits,
coupling their use with effective social distancing
measures to minimize the wastage of antiviral drugs.
In this work, we have developed a stochastic
J. R. Soc. Interface (2010)
agent-based pandemic model to assess the necessity of
a fast testkit. From our simulation results, we showed
that intervention policies, and not testkits, are the key
means to successfully contain an outbreak, and that
casting a wider net for contact tracing is crucial for
minimizing the total attack rate. However, although
not yet included in our model, we can infer from the
results that most of the drug wastage is due to prophy-
laxis being administered to the contacts. Considering
the use of testkits on the contacts may be a better
resource allocation strategy. Within each intervention
policy, the use of slower testkits while holding the indi-
vidual at the hospital can be an equally effective means
of mitigating a pandemic outbreak as compared with a
fast testkit. However, this is provided that proper infec-
tion controls, such as a hospital segregation policy, are
in place. Otherwise, hospital transmission may limit the
usefulness of other efforts such as contact tracing and
quarantine orders.
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