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Abstract

Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of
infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a
single link: that between a disease outcome and its proximal determinant(s). Transmitted causes ("causes of
causes”) tend not to be systematically analysed.
The infectious disease epidemiology modelling tradition models the human population in its environment, typically with
the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological
levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such
as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties.
The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical
evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although
this depends on the degree of consistency of the causal relationships between different populations - and can
therefore be used to integrate multiple datasets.
Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an
important technique in epidemiology in the context of mendelian randomisation, but under-used in the
exploitation of “natural experiments"; the explicit use of change models, which have advantages with respect to
inferring causation; and in the detection and elucidation of feedback.

Keywords: Epidemiological methodology, Causation, DAGs, Diagrammatic methods, Infectious disease epidemiol-
ogy models, Web of causation, Instrumental variables, Change models, Feedback

Introductory quotes
“Could one of the problems of modern epidemiology
... be that we have drifted back to a posteriori meth-
ods - fitting black box equations to data, rather than
working out predictions from mathematical model-
ing of underlying processes?” Norman E Breslow,
2003 [1].
“... narrowness of thinking ... pervades much of mod-
ern science and leads to inaccurate assessments and
prescriptions in many fields. The narrowness itself
stems from a perennial challenge with which every
scientist must grapple: many phenomena we’d like
to understand are highly complex and have multiple,
interacting causes.” Paul Epstein, 2011 [2].

The role of causation in epidemiology
Causation is very important in epidemiology. Epidemiol-
ogists are traditionally cautious in using causal concepts:

the basic method of epidemiology is to observe and
quantify associations, whereas causal relationships can-
not be directly observed. Causal inference is then a dis-
tinct step which is not unproblematic, but which cannot
be ignored because the two main purposes of epidemio-
logical evidence are to provide understanding and the
basis for intervention, and for both of these it is neces-
sary to know about the causal status of the observed
associations.
Pearl has pointed out that association and causation

have entirely separate languages, with terms such as
regression, likelihood and “controlling for” belonging to
the probabilistic group, as they refer to the observed
joint distribution and to ways of manipulating it statisti-
cally; whereas terms such as effect, confounding and
intervention refer to a causal relationship (Figure 1)[3,4].
In dealing with, for example, confounding, causal
understanding of the relationship between the variables
is indispensable, to avoid adjusting for a covariate that is
on the causal pathway. Pearl criticises the typical prac-
tice that explicit causal thinking does not occur in the
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design of the study or the set-up of the analysis, but
only afterwards, in interpreting the findings. Thus,
assessment of causal inference is left until the Discus-
sion section of a paper, where it is “smuggled in”, rather
than being part of the Methods section [3,4]. It is more
appropriate to develop and use causal language in a rig-
orous fashion: to be explicit, as well as cautious, in the
use of causal concepts.
More abstractly, a causal relationship is one that has a

mechanism that by its operation makes a difference
[5,6]. The scientific process of discovery of causal rela-
tionships can proceed using either of these features. Epi-
demiology employs difference-making, i.e. how much
effect one variable has on another; the other approach,
which has a complementary role, is uncovering the
mechanism, i.e. explaining how it exerts that effect [5,6].
Causal relationships operate over time, so that differ-

ence-making is distinct from non-causal differences that
exist between categories of background variables, such
as sex differences in disease risk. For example, the
higher rate of breast cancer in women than men can be
traced to metabolic differences between the two sexes
(e.g. high endogenous estrogens in females), which do
play a causal role over time. The observed sex difference
is due to differences between processes in the two sexes
that are themselves causal.

Causal diagrams
Diagrams consisting of variables connected by arrows or
lines are widely used in epidemiology, either formally as
in the Directed Acyclic Graph (DAG) literature, or
informally as influence diagrams, to depict relationships
that are relatively complicated and so are considered to
deserve illustrating in this way. In this paper we con-
sider the use of diagrams that denote causation, not
merely association: one variable alters the probability,
timing, magnitude and/or severity of the next variable;
or alternatively they represent the “flow” of, for example,
individuals from the status of susceptible to infected and
thence to recovered (or dead).

In particular, we review the types of diagram that go
beyond the depiction of a single link, e.g. a disease and
its proximal causal factor, to focus on a larger causal
system that is important to health. A “system” in this
context is made up of multiple causal relationships,
each one of which can be considered as a “link"; and
each of the links is considered potentially important,
as it could influence how the system as a whole
behaves. Because it can be difficult to envisage such
multiple links intuitively, and in more complicated
cases errors are likely, diagrams are very valuable in
showing the inter-relationships. Some of these uses are
already well established, especially in infectious disease
epidemiology, but we believe that this perspective
could be further developed in epidemiology more gen-
erally - what could be called “systems epidemiology”,
by analogy with the recent development of systems
biology (see below). Such causal systems could include
biochemical pathways, e.g. in relation to biomarkers, or
the social/environmental context in which people live
that could affect their disease risk.

Directed Acyclic Graphs (DAGs)
The use of DAGs has gained increasing recognition
within epidemiology in recent years, following the work
of Pearl, Robins, Greenland and others [3][4][7][8][9]
[10][11][12][13][14][15][16]. DAGs are simple to use,
and in addition it has been shown that if certain simple
rules are followed, they provide a rigorous guide to such
issues as confounding and selection effects. In general,
the procedures associated with DAGs correspond to tra-
ditional statistical methods, including informal “rules of
thumb” such as not adjusting for a covariate that is on
the causal pathway, but they are less error-prone in
complicated situations.
DAGs are composed of variables connected by arrows

(sometimes called directed “edges”), but it is not always
clear when these are intended to denote a causal rela-
tionship or only a probabilistic one. Figure 2 shows four
DAGs that represent ways in which the variables X, Y
and Z can be related. In the first three of these, the
probabilistic interpretation is identical: all can be
described as “X is independent of Y given Z” - but they
have totally different causal interpretations, as suggested
by the direction of the arrows [17]. Only in the fourth
DAG, (d), is the probabilistic interpretation different,
because the two arrows pointing at Z indicate that the
path is blocked or “screened off” [14]. In addition, some
DAG practitioners use inductive procedures involving
algorithms to try and derive causal structure directly
from the data, rather than empirically testing a hypothe-
sised structure that is constructed a priori [18]; the mer-
its of this approach are controversial [17], a discussion
that is beyond the scope of this paper.

associational concept:
can be defined as a joint 

distribution of observed 
variables 

• correlation 
• regression 
• risk ratio 
• dependence 
• likelihood 
• conditionalization
• “controlling for” 

causal concept:
• influence 
• effect 
• confounding 
• explanation 
• intervention 
• randomization 
• instrumental variables 
• attribution 
• “holding constant” 

Figure 1 Pearl: causal & statistical languages.
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Furthermore, the DAG tradition has its limitations:
once one goes beyond the technical issues of inferring
the causal status of a particular observed association,
other considerations come into play. These require the
use of other diagram-associated methods, including the
modelling of infectious disease outbreaks with differen-
tial equations, fitting statistical models to causal net-
works, and analysing systems characterised by feedback.
The wider properties of such systems are scientifically
and practically important, yet are insufficiently appre-
ciated in most of epidemiology.

Systems epidemiology and the use of diagrams
In this paper, we discuss different types of causal system
that are relevant to epidemiology: models of infectious
disease transmission, in which the human population is
located within a broader system with which it interacts;
models that integrate the emission and dispersion of
pollutants with their impacts on health; and the rela-
tionship of social factors to specific risk factors and to
selection effects. We describe how diagrams can be
employed to improve the analysis of such systems, and
in the course of doing so we note that generic proper-
ties of the systems can be observed that are independent
of the specific content, even though the diagrams them-
selves have been constructed solely from empirical evi-
dence - no structure has been imposed on them.
We draw on a number of traditions that have analysed

systems and/or that have used causal diagrams. The
most important of these are:
• path diagram analysis, which was devised by the

geneticist Sewall Wright but which has mainly been
employed in quantitative social science analysis, and
• the similar but more general method of structural

equation modelling, which also systematically analyses
measurement error [19] - including the use of latent
variables that represent theoretical constructs, estimated
from several measured variables;
• econometrics, in which the structure of a system is

represented by an equation for each link, albeit without
the systematic use of causal diagrams [20];

• diagrams of metabolic pathways in biochemistry;
• the tradition of infectious disease epidemiology mod-

elling [21], which is based on demographic and ecologi-
cal models involving the relationship between different
species;
• a group of traditions in systems modelling, including

cybernetics, dynamical systems modelling, and system
dynamics [22], as well as open systems theory [23].

Modelling the larger system
Models and diagrams in infectious disease epidemiology
In 1897, Ronald Ross established that malaria is spread
by the Anopheles mosquito, and subsequently received
the second Nobel prize for medicine. He then defined a
mathematical model describing the time dependent
dynamics of infection and recovery in human and mos-
quito populations. The major terms in the differential
equations describing this human-mosquito-parasite ecol-
ogy were (unless otherwise stated, these terms are num-
bers per unit time): the number of newly infected
humans arising due to bites from infected mosquitoes,
the number of new mosquito infections due to biting
infected humans, and the rate of recovery of both
humans and mosquitoes from infection [24].The explicit
expression of these differential equations as an a priori
model - i.e. a model in which the sole causative agent of
disease was assumed from outset to be the protozoan
parasite, which was acquired by mosquito biting - led to
the startling conclusion that there existed a critical
value for the number of mosquitoes per person that
needed to be present in order to allow the parasite to
persist locally. Ross estimated this critical number of
mosquitoes per person to be 40 - implying that Ano-
pheles did not need to be eradicated for the disease to
die out [1].
Ross reached this conclusion by modelling the whole

system: the human population within its environment. It
was built on evidence at the individual level, but with
some of the (implied) interventions at group or environ-
mental level. His method was not expressed as a dia-
gram, but it represents a sequential causal relationship,

 
 
(a) X ← Z  → Y   Z is a cause both of X and of Y  
 
(b) X → Z  → Y   Z is an intermediary on the path from X to Y  
 
(c) X ← Z  ← Y   Z is an intermediary on the path from Y to X  
 
(d) X → Z  ← Y   Z is a result both of X and of Y – in this case the path is screened off  
 

Figure 2 DAGs representing the relationship of the variables X, Y and Z.
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the key outcome being whether the number of infected
people in one period is higher or lower than that in the
previous one. The method was feasible because he
focused on the single cause, malaria transmission by
mosquito which had already been established, and
omitted other relevant factors, e.g. that nutritional status
might affect susceptibility.
This pioneering work initiated methodological devel-

opments in infectious disease epidemiology, again mod-
elling a system consisting of a human population within

its environment [21]. These include compartmental
models such as the SIR (Susceptible-Infected-Recovered)
model (Figure 3), where the population is sub-divided
into states corresponding to observed (or assumed)
steps in the disease process. The transitions from one
state to the next, represented by differential equations,
reflect the causal effects - although causality is not
made explicit - with transition probabilities being deter-
mined by quantities such as the contact rate, the infec-
tion transmission probability and the recovery rate.

 
 
The basic reproduction number R0 is given by:  
 

 
 
 
This model generates the course of the epidemic:  
 

 
 
where the red, blue and green lines denotes respectively people who are susceptible 
(S), infectious (I) and recovered (R) over time t.  
 

Figure 3 A flow diagram of the SIR model.
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Models of this type can be more complex, for example
if vector transmission is involved, but the principle
remains the same. The equivalent of Ross’s critical mos-
quito density is the basic reproduction number R0: if is
greater than unity, this indicates that the number of
new cases in one period is higher than that in the pre-
vious one, and therefore that the outbreak can propa-
gate itself; if it is less than unity then the epidemic will
fade out. Most such models are deterministic in that
they do not consider stochastic causation, but probabil-
istic elements are increasingly being incorporated [25].
Compartmental models rely on the existence of a sin-

gle characteristic that can be used to partition the whole
population. In the SIR case, the partitioning characteris-
tic is the status of each person with respect to suscept-
ibility and infectiousness. The model is thus mono-
causal, neglecting other factors such as nutritional status
and the existence of other infections that may influence
the recovery rate; models can be modified to take these
into account, e.g. stratifying the population into high
and low risk groups [26].

Single-chain models outside infectious disease
epidemiology
This approach is no longer used only for modelling
infectious diseases. For example, it has been applied to
cervical cancer, involving carcinogenic HPV transmis-
sion dynamics and the natural history of the disease. It
involved comparing scenarios of vaccination against
HPV-16, either of 12-year-old girls alone or of both
sexes, and of the no-vaccination scenario [27]. Thus, the
distinction of infectious and non-infectious disease is
somewhat artificial, given that the same modelling
methodology can be used in situations where the infec-
tious agent is but one factor contributing to the devel-
opment of the disease.
More generally, compartmental models can be viewed

as a sub-type of diagrammatic models: flow diagrams in
which the population is subdivided into ordered states.
They are also of interest in chronic disease epidemiol-
ogy, where they can be used to represent the evolution
of health status among known steps of disease progres-
sion. These stages can either be observed or hidden (e.g.
if the prevalence of the asymptomatic affection cannot
be measured) [28,29]. On top of providing a quantifica-
tion of the impact of risk factors/exposures on the dis-
ease risk, these approaches also give an insight into the
dynamic of disease progression at the individual level,
and at the population level, into the dynamic of the
epidemic.
Compartmental models aim at reconstructing the indi-

vidual or population natural history of the disease pro-
gression amongst disease states, based on - potentially
longitudinal - exposure or complex mixtures of

exposures. Hence, by nature, they incorporate a tem-
poral component in their causal inference, and in accor-
dance with the recently formalised exposome concept
[30,31], they allow the disease risk to be driven not only
by exposure level itself but also by its evolution in time
and by potential temporal patterns in the exposure
history.
A similar use of diagrams has long been standard

practice in another branch of biology: biochemical path-
ways. These are flow diagrams in which at each stage,
the molecule is modified by an enzyme belonging to
that step in the pathway. In practice they are often
drawn as cartoons that include also a spatial element,
indicating the location of the different chemical pro-
cesses within the cell.
An example is the metabolism of ethanol (alcohol) via

acetaldehyde to acetic acid, which is then metabolised
further, yielding carbon dioxide, water and energy (Fig-
ure 4). A fundamental concept in biochemical pathways
is the rate-limiting step: if conversion of ethanol to acet-
aldehyde proceeds faster than that of acetaldehyde to
acetic acid, but not in the reverse situation, then acetal-
dehyde accumulates. This depends on the relative speed
of the two enzymes, alcohol dehydrogenase IB (class I),
beta polypeptide (ADH1B) and aldehyde dehydrogenase
2 (ALDH2). It so happens that the second of these can
be present in different forms, resulting in either faster
or slower activity than ADH1B, and that this varies with
ethnic group. Since acetaldehyde gives rise to unpleasant
symptoms (as well as toxicity), this polymorphism
explains why some ethnic groups tend to indulge in
drinking large quantities of ethanol, whereas others do
not.
The situation here is directly analogous to the SIR

model, where the tendency of an outbreak to increase
or decrease depends on the balance between inflow and
outflow. In that situation this balance depends on the
force of infection as measured by R0,: if greater than
unity, the outflow is the rate-limiting step and infected
individuals will tend to accumulate in the population,
like acetaldehyde, and vice versa for values lower than
unity. Although both these diagrams have been con-
structed in radically different contexts, their structure as
well as the type of results they provide are comparable,
thus highlighting the potential general use of these mod-
els. While their formulation is general, the way transi-
tions from one compartment to another are defined is
highly specific of the modelled phenomenon. This type
of approach relies on the modelling of the whole system
rather than focusing on a single link within the system
of interest.
A somewhat similar approach can be used in non-

infectious disease epidemiology, for example in environ-
mental and occupational epidemiology, which has
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increasingly moved towards a study of the whole chain
from the existence of a pollutant in the environment,
through human exposure, to health outcome (Figure 5)
[32]. Here we are concerned with a diagram that is con-
structed from concepts such as “emissions”, “concentra-
tion” and “exposures” that correspond to substantive
knowledge about how the world works, and which are
organised in a form suitable for statistical analysis.
Building this type of model requires multidisciplinary
collaborative work, e.g. involving hygienists and

epidemiologists. Typically the upstream causal processes
involve a particular location, so that exposure is ecologi-
cal, i.e. at group level, whereas for epidemiological ana-
lysis the individual level is best, to avoid ecological bias
that could result when inference is made from one level
to another. This combination of levels is routinely
employed in infectious disease epidemiology modelling,
and this also integrates disparate types of information, e.
g. biological, psychosocial and socioeconomic, as well as
medical interventions (e.g. immunisation). More gener-
ally, the perspective of modelling the whole system fits
with the perception that more attention should be paid
to “causes of causes” [33], not only to proximal causes.

Multiple causation: diagrams with multiple and branching
chains
The models considered so far have been concerned with
only one causal pathway. However, epidemiology of
non-infectious diseases usually deals with a situation of
multiple causation, in which all (or most) links are ana-
lysed as stochastic - there are no necessary or sufficient
causes, and Koch’s postulates do not apply. Under such
conditions, diagrammatic models are no longer confined
to a single chain.
It is simple to draw a diagram that contains branches,

but this introduces new issues that go beyond the scope
of the present paper. In principle, causal diagrams and

ethanol 
CH3CH2OH 

acetaldehyde  
CH3CHO 

acetic acid 
CH3COOH 

ADH1B

ALDH2

 
If ALDH2 removes acetaldehyde more slowly than it accumulates thanks to ADH1B, 
then the acetaldehyde will accumulate. This occurs in some people, and some ethnic 
groups, but not others, and they tend not to drink alcohol in large quantities. In them, 
the rate-limiting step is ALDH2, whereas in others it is ADH1B.  
 

Figure 4 A flow diagram illustrating a rate-limiting step.

Health outcome(s)

Emissions

Concentration

Exposures

Dose 

osu

ose

out

Figure 5 The full-chain approach in environmental and
occupational epidemiology.
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DAGs can readily cope with multiple causation, but
further methodological work is needed on effect modifi-
cation [34-36].
In social epidemiology, a classic question is, how

much of the observed social gradient is mediated by
known risk factors? It is possible to investigate this
question on the simple assumption that no effect modi-
fication or other complicating factor is present, in which
case a diagram is probably not necessary. However, such
an assumption may not be justified. For example, an
econometric analysis of the Whitehall II Study has
shown that if allowance is made for selection effects, the
findings change. Whilst childhood socioeconomic cir-
cumstances are still found to impact on adult health, it
emerges that the association of current civil service
grade with health status reflects the tendency for heal-
thier people to be promoted. And employment grade is
also predicted by childhood socioeconomic position,
which thus influences adult health both directly and via
job success - for example, promotion is more likely for
taller people, and height is an indicator of childhood
wellbeing [37].
Moreover, a diagram with multiple and branching

chains can readily be expanded to encompass a larger
system, so enabling integrated analysis of the inter-
related factors. In this case the upstream causes can
include the wider determinants of ill-health as well as
more concrete mediating factors - the “web of causa-
tion” for a particular health issue, a concept that has a
long history [38,39] (see Figure 6 for an example).
By making the pathways explicit in a web of causation,

a diagram deepens understanding and provides a frame-
work for statistical analysis. In addition, it serves as a
valuable practical guide: it not only provides multiple
entry points for intervention, but also has the capacity
to demonstrate and quantify the inter-relationship of
different factors - including unpredicted and possibly
undesirable side-effects. Strangely, although influence
diagrams have been used informally to clarify hypoth-
eses on the particular pathways that may be operating,
it is rare to find causal diagrams being used as the basis
for the statistical analysis of a system [40], as has been
proposed in the context of setting out the evidence base
for Health Impact Assessment [40] or Strategic Health
Assessment [41,42].
However, work along these lines is beginning to

appear. Sacerdote and colleagues have used a causal dia-
gram to organise the multitude of factors that are
thought to influence the incidence of type II diabetes
(Figure 7) [43]. And Rehfuess and colleagues have taken
a similar approach to tease out the relative contributions
of environmental and social factors that influence child-
hood death from acute lower respiratory infections in
sub-Saharan Africa [44].

Modelling multiple and branching chains is more
complicated than in the example of a whole-chain
approach to exposure assessment as in Figure 5, because
it involves the assumption that the chains are indepen-
dent; in addition, intervention may involve multiple
actions affecting more than one pathway, e.g. combining
the use of “carrot” and “stick”. Such diagrams are best
organised by economic or policy sector; but the criterion
for including variables and pathways in the diagram is
that they are relevant to health - the content of the dia-
gram is “driven by the bottom line” [40]. An additional
layer can also be included below that for health out-
comes, if so desired, on the economic costs of each of
the adverse health outcomes. The analysis of a diagram
of this type, and indeed confirmation of its structure,
requires bringing together information from a number
of different sources; and some aspects (such as “commu-
nity severance” in Figure 6) may not be readily quantifi-
able. Multi-disciplinary research projects to integrate the
relevant areas are currently underway [45].

Properties and functions of causal diagrams
Causal diagrams are distinct from “mental maps”,
because they set out to describe relationships in the real
world. The appropriate structure for a particular appli-
cation is always driven by the content, so that the dia-
gram is constructed by knowledge of the actual and
possible pathways. For most people this is an intuitive
and rather simple process, and informal diagrams have
been used in non-academic situations, for example in
stakeholder consultation in the context of Health Impact
Assessment. In fact their flexibility and ease of use could
lead to misuse, and one purpose of this paper is to make
the case for the explicit further development of rigorous
diagrammatic methods and associated statistical analysis.
A diagram can be used as the basis for a single study

using a single dataset, but is not limited to this. As it
conceptually maps out the research topic, it can have
the function of synthesising the evidence from several
distinct studies, including integration of multiple data-
sets that cover different parts of the causal web, and
representation of qualitative as well as quantitative links.
Thus, the diagram can be updated with new evidence as
it accumulates.
A corollary is that a diagram can even be constructed

when the evidence for some of the links is only tenta-
tive. The most important part is the structure, which is
derived from substantive knowledge of a subject, as this
is more difficult to modify later than the existence and
strengths of individual component links. It may happen
that more than one structure is possible, if different
investigators have different conceptions of a system’s
causal relationships. This of course happens whether or
not a diagram is used, and the advantage of using one is
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that it makes the different options explicit. They can
then be discussed, and if appropriate, rival conceptions
can be tested against the data. It is important that such
a diagram is clearly indicated as being only conjectural;

as evidence accumulates, the diagram can then evolve
from having conjectural to well-supported status. Even
at the conjectural stage, a diagram can have several
important functions:

Transport-related health problems

Respiratory 
morbidity & 

mortality 

Cardiovascular 
morbidity & 

mortality 

Impaired 
mental 
health 

Fatal and 
non-fatal 
injuries 

Osteo-
porosis

etc 

Air 
pollution

Physical 
activity Access

Community 
severance  Noise 

Collisions: 
number, 
severity 

Traffic 
speed 

Traffic 
volume 

Distribution 
of vehicle 
emissions

Safe 
walking & 

cycling 

 
 
In this diagram, blue arrows correspond to increasing functions, and red arrows to decreasing functions; 
the black arrow from Traffic volume to Access indicates that its sign is uncertain. Thus, conditions (e.g. 
infrastructure) associated with Safe walking and cycling increases both Physical activity and Access; the 
latter improves mental health (depicted as reducing Impaired mental health), and the former protects 
against Cardiovascular morbidity and mortality, Osteoporosis and Impaired mental health.  
 
For a particular chain of causation from a specific policy intervention to a health outcome, the overall 
impact is positive (health gain) if there is an odd number of red arrows, and negative (harmful) if there is 
an even number; the presence of a mixed (black) arrow makes the overall effect of the chain 
indeterminate.  
 
If colour is not available, plus and minus signs can be used to indicate the sign of the causal relationship. 
An alternative that is widely used in systems biology is to use an arrow for a positive relationship, and  
for a negative one.  
 
As a convention, health outcomes are shown as being negative (harmful). This can be criticised as 
embodying a medical model of health and ignoring positive health, but that is not the intention. There are 
two reasons for adopting this convention. First, it helps with reading the charts if the outcome always 
carries the same type of implication. Second, while it would have been possible to introduce a positive 
convention instead, in practice most recorded health outcomes are problems – deaths, disease, injuries – 
and arguably these are also more likely to influence policy makers than the more general considerations 
of wellbeing and positive health, however important we may consider these to be.  
 
No attempt has been made here to quantify the relationships shown, or to indicate their status. The 
thickness of the arrows can be used to show the strength of the causal association. The nature of the line 
(e.g. continuous, dashed or dotted) can show the degree of confidence in the judgement that the causal 
link exists (i.e. that it is different from zero, so that the null hypothesis is rejected, which is approximately 
equivalent to a P-value in statistics). This could be used to indicate the conjectural nature of evidence in 
the early stages of diagram development.  
 

Figure 6 An example of the web of causation.
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• to make assumptions and hypotheses explicit for
discussion;
• to place hypotheses in the public domain prior to

testing - a conjecture that is open to refutation;
• to plan data collection;
• to structure the statistical analysis of the hypothe-

sised pathways;

• to identify evidence gaps and thereby to generate a
research agenda.
Publishing the hypothesis of each study in advance of

carrying out the research would remove the temptation
for epidemiologists to adjust it once they have seen the
data, which is an inevitable hazard of the rich datasets
that are now available, and threatens to erode the

Two drafts of this diagram are shown, to illustrate the importance of diagram design, which should aim at 
clarity. The second draft places the variables in a clear hierarchy. This makes it easy to see which (three) 
variables are causal but not caused, the (one) variable that is caused but not causal, and the position of 
the other variables. In particular, it reveals at a glance that the system is acyclic, whereas with the first 
draft it requires more detailed attention to check that this is the case. It may also be easier to see which 
variables are potential confounders for which other variables.  

First draft:  
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BMI: body mass index  
RII: Relative Index of Inequality  

An arrow from one variable to another means possible association. Bold arrows mean known consistent 
causal associations.  

Figure 7 A causal diagram used as the basis for statistical analysis.
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distinction between hypothesis-testing and hypothesis-
generating studies. This could conveniently be done in
the form of a causal diagram, or more than one if dis-
agreement is present between the researchers.
Depending on the degree of stability across different

contexts, the application of a given model to different
populations may require its modification. For instance,
if the causal parameter for each component link varies
between populations, and if its variation is systematic,
the source of such variations can be included in the cau-
sal diagram, yielding a “hierarchical” structure.
It may be thought that biological relationships are

more stable than social ones, but this is not necessarily
true: for example in the system depicted as Figure 8, the
relationships of socioeconomic status with the distribu-
tion of age at the time of reproduction and with mater-
nal smoking have been found to be highly stable, at
least within western Europe in recent decades, at least
as much as the biological pathways shown [46].

Empirical aspects
Once a structure (or, rival structures) has/have been
constructed, it/they can be used as the framework for
statistical analysis of the component links. If in doubt, a
postulated link should be included, as it can always be
deleted in the light of evidence suggesting its magnitude
is zero, whereas discovery of a link that was omitted in
error is more difficult - although this can be achieved
by algorithms incorporated in software e.g. in the con-
text of DAGs used in genetics. The same applies to vari-
ables: they should be included, with all the pathways
thought to be possibly relevant, unless and until analysis
shows them to be unimportant. (This corresponds to

how candidates for confounding variables are conven-
tionally handled.) Thus the most conservative diagram
contains all possible variables and pathways. The statisti-
cal analysis then results in deletion of some links, and
quantification of those that remain.
In the deletion of links, it is clearly inappropriate to

use a simple criterion such as striking out those that do
not reach statistical significance. This is because a rela-
tionship could fail to reach significance merely due to
small sample size. A better method is to use model
comparison/selection methods such as those based on
likelihood ratio (e.g. Akaike Information Criterion
(AIC), or its Bayesian alternative the Deviance Informa-
tion Criterion (DIC)). However, this process is fallible,
especially in the presence of measurement error. An
alternative is the use of structural equation modelling,
in which latent variables can be introduced to deal with
measurement error. The addition of a hierarchical layer
modelling the relationship between observations and
“true” values of a parameter could be considered, thus
defining a hidden Markov Model [47].
In some situations, a causal diagram can become large

and complicated, and the quantification of its constitu-
ent links may rely on more than one dataset. The dia-
gram then needs to be broken up into smaller
components, with the risk of potentially introducing
confounding or other distortions. However, this can be
overcome if it is possible to use the conditional indepen-
dence properties specified by the structure of the dia-
gram: if two variables are connected to each other only
via a third variable in one of the three ways depicted in
Figure 2(a) - (c), then the first two are conditionally
independent given the third one (see Figure 9)[48]. In
statistical analysis they will be associated, unless the
analysis adjusts for this third variable. These properties
have been well understood within the graphical models
literature for some time, and it is surprising that they
have not already been widely exploited.
One of the distinctive features of a diagrammatic

approach is that a causal pathway can be modelled
using any parametric form, therefore separating the two
key questions “does a link exist?”, and “if so, what is its
functional form?”. This has an advantage over the speci-
fication of the system in terms of equations, where the
elision of these two questions may be harder to avoid.
For example, it is rather straightforward to draw a dia-
gram such as that shown in Figures 6 or 7 from existing
knowledge, but many of the causal relationships may be
difficult to specify with any confidence. Another impli-
cation is that the use of causal diagramming clarifies the
distinction between effect modification and statistical
interaction; the latter may arise merely because e.g. line-
arity has been assumed in a situation where it does not
correspond to the real functional form. Effect

maternal 
age 

fertility

socioeconomic 
status

maternal 
smoking

choice

biological 
effect

biological 
effect

sociological 
effect

?*

* focus of the current investigation

Figure 8 Socioeconomic status and biological fertility.
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modification, on the other hand, corresponds to the
situation where the relationship between two variables is
altered by a third variable [34-36].
On the other hand, it is necessary to be cautious - dia-

grams may make the situation look simpler than it really
is. An example of this is transmissibility: it may appear
that if X ® Y and Y ® Z, then it is necessarily true
that X ® Y ® Z. Logically it seems undeniable, but in
real life this is not always the case. For example, in

toxicology it is typically found that the dose-response
relationship has a threshold: below a certain dose of the
substance it has no impact on the organism. If this is
represented by Y ® Z, and the pathway X ® Y does
not result in the accumulation of Y to the threshold
level, then X ® Y ® Z will not be true. This has funda-
mental implications even for basic data handling. For
example, in studying the possible effects of disinfection
by-products on the outcome of pregnancy, it was found

• Z = genotype of parents   
• X, Y = genotypes of 2 children
• If we know the genotype of the 

parents, then the children’s genotypes 
are conditionally independent

Z

X Y

X and Y are conditionally independent given Z if, knowing Z, 
discovering Y tells you nothing more about X

P(X | Y, Z) = P(X | Z)

 
The principle illustrated above holds true whether the causal direction is that Z causes both X and Y, as 
shown, or X → Y → Z, or Z → Y → X. It does not hold if Z is caused by both X and Y, i.e. both arrows 
point to Z, a situation known as a “collider” (see figure 2).  
 
 

Conditional independence provides mathematical basis for 
splitting up large system into smaller components

D

EB

CA

F

CA

C

B

D

E

D

E

F

 
Diagrams adapted from reference 48.  
 

Figure 9 Conditional independence.
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that swimming led to infrequent but very high exposure
levels [49]. If the exposure was coded as e.g. a weekly
average, this was implicitly assuming that the actual
exposure-response relationship is linear, which is not
necessarily the case. The implication is that the assess-
ment of one link cannot legitimately be considered sepa-
rately from the characteristics of the neighbouring ones.
This is easily missed if the inter-connections between
links are not given their due weight.

Extensions of the method
Instrumental variables
One of the most intractable problems with epidemiol-
ogy, other than in the (rather rare and special) situations
where randomisation can be used, is that it is difficult to
reliably infer causation from observational studies,
because the upstream causal pathways are complicated
and may introduce confounding or selection. One
approach is to try and map out these pathways and ana-
lyse them in their own right. An alternative, which also
involves analysing a system that is conveniently por-
trayed by means of a diagram, is to use the instrumental
variable approach [50]. The basic idea is to find some-
thing that is outside the system being studied, and that
influences the putative causal variable (actually “influ-
ences” here is misleading - the relationship does not
have to be causal, only associational).
The principle is that one or more additional variables

- “instruments"- are introduced, associated with the
putative causal variables, but not directly with the out-
come variable or any potential confounders. Further
assumptions are that effect modification and alternative
pathways are absent. All these assumptions need to be
checked, and a convincing case made that they are satis-
fied; it is impossible for this to be conclusively estab-
lished, a similar situation to the familiar case of
unmeasured confounding. This approach is the equiva-
lent in observational studies of analysis by intention to
treat in randomised controlled trials.
A frequently-used method of statistical analysis has

two stages: first, the instrument is used in a regression
to obtain an estimated value of the putative causal vari-
able, and then this estimated value is plugged into a sec-
ond regression equation that contains the variables of
substantive interest. The estimated value is an uncon-
founded measure if the above assumptions are met.
In epidemiology, the main way that this has been

introduced is mendelian “randomisation” (Figure 10)
[51]. The idea derives from the fact that at meiosis (the
cell division that produces eggs and sperm) there is a
50% chance which version of each gene gets through to
the next generation. Whilst this is not strictly a form of
randomisation, it is highly plausible that the gene is not
directly associated with all the variables, e.g. social and

behavioural factors, that are inter-related with the puta-
tive causal variable in a complicated way that is difficult
to disentangle. Thus, the type of ALDH2 that a person
inherits is strongly associated (causally) with the extent
to which they enjoy heavy alcohol consumption, as
already stated above, but is unlikely to be associated
with the psychosocial factors that may be causes or
effects (or both) of the level of alcohol consumption.
The polymorphism for this gene can therefore be used
as an instrument: it is a cause of the level of drinking
that can be assumed to be independent of the various
psychosocial and economic factors that would likely
introduce confounding [52].
This approach has been applied to the use of biomar-

kers: a biochemical measurement such as plasma C-
reactive protein (CRP) can be a useful predictor of dis-
ease even when it is not on the causal pathway. But for
intervention it is essential to know whether or not it is
on the causal pathway; if it is merely epiphenomenal,
then intervening to reduce it will have no effect. Figure
11 shows two possible scenarios, one in which CRP is
epiphenomenal and one where it is on the causal path-
way - a “mediator”. Using a mendelian randomisation
approach focusing on a combination of genetic variants
that influence the level of CRP (as examples of X), sta-
tistical analysis showed associations of CRP with cancer
(Ca) as well as with X. This is compatible with either
diagram. However, no association was apparent between
the combination of genetic variants and cancer, which
strongly suggests (a) as the correct diagram - the con-
vergence of two arrow-heads at CRP “screens off” such
an association, whereas in (b) this association would be
expected (unless CRP is conditioned upon). The conclu-
sion is that CRP is merely an epiphenomenon [53]. A
similar situation applies in the case of atrial fibrillation
[54].
Such approaches can also be used in observational

studies that do not involve genetics, as has long been
routine in econometrics. A nice example is a study of
the effect of family size on the mother’s work status: to
distinguish a direct causal effect from confounding (e.g.
her preference for career as against childbearing) and
from reverse causation (e.g. promotion leading to a deci-
sion not to have a further child, or not yet), the authors
used the sex of the first two children as a natural
experiment [55]. If they were of the same sex, the par-
ents are more likely to want another child, for reasons
unconnected with the labour market, so this plays the
same role as deliberate assignment would if it were pos-
sible. Using this type of analysis in the context of a nat-
ural experiment could produce valuable evidence with a
better grasp on the issue of causality than is often the
case in observational epidemiology, but as far as we are
aware this has not yet been attempted. An example
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might be the introduction of an alcohol tax that influ-
enced consumption in an analogous way to the ALDH2
polymorphism - if the assumption is sustainable that
there is no effect modification with other variables in
the system.

Change models
It is usual to construct diagrams in terms of the levels of
the relevant variables, but an alternative is to instead use
their changes. The mathematics of a change (or “first
difference”) model are different from one in terms of
levels, a distinction that is very familiar in econometrics.
One advantage is, any elements that remain invariant do
not feature in a change model, so it can be a great deal
simpler and thus more tractable. This invariance condi-
tion can be violated, for example in the presence of
effect modification, or when the variable itself has a
time-varying effect, such as the differing effect of mater-
nal education on a child’s IQ at different ages.
A second benefit is that interpretation is clearer: for

example, it is relatively straightforward to think about
the health impacts of a factory closure, whereas a dis-
cussion of the effects of (un)employment on health is
more complicated, e.g. due to (self-)selection effects.
Evidence derived from a change perspective may also

carry more weight causally: for example, a controlled
before-after study of a coal ban in Dublin showed the
change in pollutant levels and in subsequent mortality
there, but not in the rest of Ireland that was unaffected
by the ban [56]. This is more convincing than when
causation is inferred from cross-sectional studies [57].
In Bradford Hill’s classic paper on inferring causation,
he considered “experiment” - whether when “some pre-
ventive action is taken does it in fact prevent [the dis-
ease]?” - as “the strongest support for the causation
hypothesis” [58]. However, caution is required: for
example in the factory closure example, the health defi-
cit that results is not necessarily the same as the health
benefit that would occur in the reverse situation, i.e. if
the same number of jobs were created (a possibility that
is frequently put forward by proponents of capital pro-
jects, and which therefore is a recurring issue in Health
Impact Assessment).
An additional benefit of using a change model is that

it fits naturally with a focus on intervention (Figure 12).
Here the change in the upstream variables relates
directly to a policy action. This issue is discussed more
fully elsewhere [41,59]. It also relates to the previously-
mentioned recommendation that natural experiments
should be exploited more systematically, because such

Gene as an instrumental variable for 
alcohol-related behaviour

ALDH2
phenotype

hypertension

C 

alcohol 
consumption 

instrumental 
variable 

putative cause 

outcome

C 

 
 
On the left-hand side, the specific diagram for the relationship between alcohol consumption and 
hypertension is shown; C denotes all potential confounding variables. Because the gene ALDH2 is not 
associated with hypertension or any of the confounders, except via its effect on alcohol consumption, it 
can be used as an instrumental variable (see text). This lack of association is shown by an absence of 
any arrow connecting ALDH2 phenotype with either C or hypertension.  
 
The right-hand diagram shows the same thing, but in general terms.  
 

Figure 10 Instrumental variables.
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opportunities typically arise from policy interventions or
other such changes.

Feedback and cyclical models
Feedback may sometimes be important. A simple exam-
ple is in the case of an “accident black spot": if the road
design is improved so as to reduce the risk, drivers may
respond by increasing their speed, thereby undoing
some of the benefit - “risk compensation” [60] - an
example of compensating (negative) feedback (Figure
13).
Reinforcing (positive) feedback may also occur, for

example, people who are physically inactive may tend to
become obese and have other physical changes that
further discourage them from exercising, and conversely,
more active people have physiological changes that
encourage them to take more exercise (this feedback
mechanism seems plausible although there is no clear
evidence for it). Reinforcing feedback also frequently
occurs in models of population growth, and therefore in
infectious disease modelling which is derived from
demography and ecology. For example, this occurs when
parasites sexually reproduce (such as worms that cause
chronic tropical diseases): as the parasite population size

increases, assuming that the sex ratio remains fixed, so
does the likelihood that males and females will discover
and mate with one another and therefore population
growth occurs faster [21].
More generally, as humans tend to respond systemati-

cally to their situation, if the response (e.g. policy or
other intervention) is included in the model, then feed-
back may have to be taken into account. This is true
also of conditions (or social issues with health conse-
quences) that involve a large behavioural element, such
as obesity, mental health and homicide [61].
In general, analysing systems with feedback requires a

different approach, with diagrams that contain cycles. In
infectious disease epidemiology, this is explicit because
feedback loops are the rule and acyclic diagrams the
exception. Infectious disease epidemiology models are,
in general, system dynamical in this sense, and off-the-
shelf software such as Vensim [62] is often used to con-
struct models. An excellent account of the issues and
methods, in the context of business studies, can be
found in Sterman [22]. An important feature of systems
containing feedback is that they tend to have the prop-
erty of generating their own endogenous causation pro-
cesses [63,64], a simple biological example being

I

CRP 

Ca 

X I

CRP 

Ca

X 

(a) (b)

 
 
I denotes inflammation, CRP denotes plasma C-reactive protein, Ca denotes cancer, and X 
denotes some unknown factor(s) that can influence CRP, including genetic causes.  
 
In diagram (a), CRP is epiphenomenal, in that it is not on the causal pathway from I to Ca: in 
statistical analysis CRP is associated with Ca, but not if I is adjusted for. CRP could still be an 
indicator of Ca risk, but intervening on CRP would have no impact on Ca risk; the only variable 
in the diagram that would be a target for intervention to alter Ca risk would be I.  
 
In diagram (b) CRP is on the causal pathway: adjustment for I would have no impact on the 
association between CRP and Ca risk, but the association between I and Ca risk would 
disappear with adjustment for CRP. CRP is now a target for intervention along with its causal 
factor(s) X.  
 

Figure 11 C-reactive protein as a biomarker.
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homeostasis, a compensating feedback system that keeps
a variable such as potassium or cortisol concentration,
or temperature, at an appropriate level.
From the viewpoint of intervention, it is important to

recognise when feedback is occurring, particularly
because the usual methods of thinking, epidemiological
and other, tend not to see it. Thus, compensating feed-
back frequently occurs, like the risk compensation
example, and frustrates policy interventions. And rein-
forcing feedback - often dismissed pessimistically as a
“vicious circle” - can be an opportunity: in the context
of absolute poverty, health influences the economic
wellbeing of a household, and the latter in turn is a

“fundamental determinant” of health [65]. The implica-
tion is that an intervention in one area, e.g. that pre-
vents malaria, or that improves agricultural productivity,
can have impacts beyond the immediate target, that are
transmitted around the cyclical diagram (Figure 14)[65].

Conclusion
Explicitly causal methods of diagramming and modelling
have been greatly developed in the past two decades.
However, use of such methods in epidemiology has
been mainly confined to the analysis of a single link:
that between a disease outcome and its proximal deter-
minant(s). Apart from in the context of infectious dis-
eases, they have been under-exploited in their potential
to model the larger system in which health is generated
or undermined.
This approach would accord with wider developments

in biology. The Human Genome Project has revealed
that the number of protein-coding genes is far fewer
than was previously thought, and that they are influ-
enced by upstream genes in that large proportion of
DNA that was previously referred to as “junk” [66].
“Causes of causes” are therefore relevant outside the
realm of epidemiology. In addition, more complicated
networks, consisting of multiple and interacting causal
chains, sometimes with regulatory feedback, are the
focus of the increasingly important interdisciplinary field
of systems biology [67].
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This diagram is similar to figure 6, except that in the lower part it is the change in each variable 
that is assessed (indicated in the diagram by the use of “Δ”), and the top layer is a set of policies 
rather than a set of issues. 

Figure 12 A change model of the web of causation.
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Figure 13 A dangerous bend: risk compensation.

Joffe et al. Emerging Themes in Epidemiology 2012, 9:1
http://www.ete-online.com/content/9/1/1

Page 15 of 18



Diagrams and models are constructed to fit each
situation, from a combination of substantive knowledge
and statistical evidence - but can then take on properties
that result from their abstract structures. By construct-
ing diagrams of a larger system, inter-relationships of
different factors can readily be visualised, and then ana-
lysed statistically. As well as its scientific function, this
has practical advantages in terms of designing
interventions.
Such methods are applicable to all branches of epide-

miology, including infectious diseases epidemiology,
chronic disease epidemiology, environmental and occu-
pational epidemiology, and social epidemiology - and
especially to their inter-relationship, e.g. simultaneous
consideration of social and environmental influences.
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