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Abstract Agricultural activities, including stock-farming, planting industry, and fish aquaculture,

can affect the physicochemical and biological characters of freshwater lakes. However, the effects of

pollution producing by agricultural activities on microbial ecosystem of lakes remain unclear.

Hence, in this work, we selected Honghu Lake as a typical lake that is influenced by agriculture

activities. We collected water and sediment samples from 18 sites, which span a wide range of areas

from impacted and less-impacted areas. We performed a geospatial analysis on the composition of

microbial communities associated with physicochemical properties and antibiotic pollution of sam-

ples. The co-occurrence networks of water and sediment were also built and analyzed. Our results

showed that the microbial communities of impacted and less-impacted samples of water were lar-

gely driven by the concentrations of TN, TP, NO3
�-N, and NO2

�-N, while those of sediment were

affected by the concentrations of Sed-OM and Sed-TN. Antibiotics have also played important roles

in shaping these microbial communities: the concentrations of oxytetracycline and tetracycline

clearly reflected the variance in taxonomic diversity and predicted functional diversity between

impacted and less-impacted sites in water and sediment samples, respectively. Furthermore, for

samples from both water and sediment, large differences of network topology structures between

impacted and less-impacted were also observed. Our results provide compelling evidence that the

microbial community can be used as a sentinel of eutrophication and antibiotics pollution risk asso-

ciated with agricultural activity; and that proper monitoring of this environment is vital to maintain

a sustainable environment in Honghu Lake.
Introduction

Water ecosystems, especially inland lakes, have suffered from

eutrophication associated with increased agricultural activity
comprising fish aquaculture as well as crop and livestock farm-
ing on surrounding lands [1–3]. Improperly managed agricul-

tural activities, such as excessive and/or improper use of
fertilizers and/or pesticides, can cause eutrophication, which
can negatively impact biodiversity [4]. Previous studies have

reported that the effect of this pollution on macro-
organismal communities [4,5] and in comparison, microbial
ecology remains relatively understudied.

Agricultural pollution alters the physicochemical properties
of water ecosystems [6] and changes the composition of micro-
bial community. In particular, nitrogen and phosphorus con-
tent, water temperature, and pH can fundamentally influence

the microbiome [7–9]. However, few studies have quantified
the impact of organic pollutants such as herbicides and antibi-
otics. Determining the ecosystems resilience to such distur-

bance can aid conservation and help in the development of
remediation strategies. There is an urgent need to develop sus-
tainable approaches that establish a balanced relationship

between the environment and agricultural production.
Antibiotics are widely utilized in livestock and fish aquacul-

ture to promote animal growth and for the prophylactic or
curative treatment of infectious disease [10], yet surface runoff

of the introduction of treated sewage can introduce antibiotic
pollution into local water bodies. Antibiotics inhibit microbial
activity and can therefore influence biogeochemical processes

in these ecosystems [11] and potentially select for antibiotic
resistance mechanisms in environmental bacteria [12]. In addi-
tion, animal sewage can introduce animal-associated antibiotic

resistant bacteria into these environments [13], and as such it is
necessary to have better quantification of the fitness and recov-
ery rates of these resistant microbes upon release into the

environment [14].
Honghu Lake is a large and a shallow eutrophic lake, which
is located between the irrigation channel of the Four-lake main
canal and the Yangzi River. Its area is about 350 km2 with an

average depth of �1.5 m (Figure 1). In the last five decades,
Honghu Lake has been extensively altered by flood regulation,
irrigation, fish aquaculture, shipping, and water supply

demands [15,16]. Today, more than 40% of the lake area is
used for large-scale aquaculture [17]. The intensive use of Hon-
ghu lake resources and the emission of sewage and other pol-

lutants including fertilizers, pesticides, and antibiotics into the
lake have led to a severe degradation of its water quality and
an increase in the frequency of eutrophication events. In

2004, the Honghu Lake Wetland Protection and Restoration
Demonstration Project [17] was implemented to ameliorate
the negative effects of severe water pollution, and one third
of the lake area has been gradually protected under this provi-

sion. Consequently, Honghu Lake represents a valuable, natu-
ral field site for investigating both the efficacy of the
restoration program and the long-term effects of agricultural

activities, such as the excessive application of antibiotics on
water microbial communities.

This study aimed to understand the geospatial influence of

pollution on the water and sediment-associated microbial com-
munities in Honghu Lake. We performed 16S rRNA amplicon
sequencing to characterize the microbial ecology, which was
correlated with physicochemistry and antibiotic concentrations

in these environments. This research was guided by the follow-
ing scientific questions: (i) How does microbial diversity differ
between water and sediment? (ii) How does microbial diversity

differ between less-impacted and impacted samples in water and
sediment, respectively? (iii) Which physicochemical properties
and antibiotics are correlated with changes in microbial com-

munity structure? (iv) How are the co-occurrence relationships
between microbiota influenced by the intensity of agricultural
pollution (impacted and less-impacted)? Importantly, this base-

line study aims to generate microbial biomarkers of pollution,



Figure 1 Geographic distribution of all sampling sites in Honghu Lake

A. Definition of various sampling strategies. B. Locations of sampling sites and the distribution of the sampling medium collected at each

site. The shaded segment areas with horizontal lines and vertical lines represent the less-impacted sites and impacted sites in Honghu Lake,

respectively. Sites are named according to location of the sampling. L, lake; P, pond; R, river.
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and to identify the ecological trends that could be used to pro-

vide a sentinel of pollution events in this lake environment.
Results

Physicochemical and antibiotic characterization

Physicochemical characteristics and antibiotic concentrations
were determined for all water and sediment samples (Figure 1,
File S1, Tables S1, S2, and S3). Significant differences in pH (t-

test, P = 0.0037), oxidation–reduction potential (ORP, t-test,
P = 0.00068), total nitrogen (TN, t-test, P = 0.035), and
ammonium nitrogen (NH4

+-N, t-test, P = 0.045) were

observed between water samples from impacted and less-
impacted (control) sites (Table S1). Samples from impacted

sites were significantly more acidic and had greater concentra-
tions of ORP, TN, and NH4

+-N when compared to
less-impacted sites (Table S1). Similarly, sediment samples main-

tained significantly different sediment organic matter (Sed-OM,
t-test, P= 0.002), sediment labile phosphorus (Sed-LP, t-test,
P= 0.0335), sediment total nitrogen (Sed-TN, t-test,
P= 0.0013), and sediment total phosphorus (Sed-TP, t-test,

P= 0.021) levels between impacted and less-impacted sites
(Table S2). Less-impacted sediment had greater concentrations
of Sed-OM, Sed-LP, and Sed-TN when compared to the

impacted sites (Table S2), which may largely be due to the
decomposition of plant material over the preceding winter
months. Between impacted and less-impacted sites, the

antibiotics ofloxacin (OFL, t-test, P = 0.0079) and
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sulfamethoxazole (SMZ, t-test, P = 0.043) had significantly
different concentrations in water samples, while sulfamerazine
(SMR, t-test, P = 0.021) was significantly different in sedi-

ment samples (Table S3); in both cases concentrations were
greater in impacted sites.

Microbial diversity and community structure

A total of 28 water and sediment samples generated 4,441,405
paired-end 16S rRNA reads, which clustered into 7785 OTUs
(File S1, Table S4). Microbial alpha diversity was significantly
greater in sediment samples [Chao1 (t-test, P = 0.0045,

Table S4) and phylogenetic diversity (PD) whole tree (t-test,
P = 0.003, Table S4)]. The microbial alpha diversity in sedi-
ment samples was significantly different between impacted

and less-impacted sites (t-test, P = 0.0445, Table S4). How-
ever, we observed that the alpha diversities in water samples
have no significant differences.

A total of 53 microbial phyla were identified across all sam-
ples (Figure 2A), and were differentiated between water and
sediment samples (Figure 2B), and between impacted and
less-impacted sites (PERMANOVA, Bray–Curtis distance,

P < 0.01). In water samples, Proteobacteria (t-test,
P < 0.05), Cyanobacteria (t-test, P < 0.05), and Gemmati-
monadetes (t-test, P < 0.05) were significantly different
Figure 2 Taxonomic composition and relative abundances of microbia

A. Taxonomic composition of each sample at the phylum level. ‘Other

named according to the sampling sites (see Figure 1B) with postfixes W

differences between water and sediment samples at the phylum level. C

level between impacted and less-impacted groups. D. Bar plot highligh

impacted and less-impacted groups. Student’s t-test is performed to

different sampling media (water vs. sediment) or locations (impacted a
between impacted and less-impacted sites (Figure 2C). While
in sediment samples, Actinobacteria (t-test, P < 0.01), Firmi-
cutes (t-test, P < 0.05), Bacteroidetes (t-test, P < 0.05), Nitro-

spirae (t-test, P < 0.05), and OP8 (t-test, P < 0.05) were
significantly different between impacted and less-impacted sites
(Figure 2D).

Core-OTUs were defined as a set of OTUs that were iden-
tified in all samples analyzed, and pan-OTUs were defined as a
set of OTUs that were identified in at least one sample. Core-

and pan-OTUs were determined for all water and sediment
samples (Table S5, Figure 3). A total of 132 core-OTUs and
7418 pan-OTUs were identified in less-impacted sites, while
impacted sites maintained 201 core-OTUs and 7706 pan-

OTUs (Figures S1 and S2). The core-OTUs from both the
impacted and less-impacted sites were dominated by Pro-
teobacteria, specifically Janthinobacterium (Tables S6 and

S7), while Acidobacteria were enriched at the impacted sites
(2.79%± 1.30%, Table S6).

Microbial beta diversity was further assessed by

Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) clustering using the unweighted UniFrac distance
matrix. We observed clustering by sampling medium

(Figure 4A and Figure S3) and by level of agricultural activity
within water and sediment samples (Figure 4B). Importantly,
greater differences in beta diversity were observed between
l taxa in water and sediment samples

’ represents all phyla not included in the top 13 phyla. Samples are

and S for water and sediment, respectively. B. Bar plot highlighting

. Bar plot highlighting differences in water samples at the phylum

ting differences in sediment samples at the phylum level between

determine significant differences between samples collected from

nd less-impacted). *P < 0.05; **P < 0.01.



Figure 3 Core-OTUs and pan-OTUs of water and sediment samples from Honghu Lake

Flower plots showing the number of sample-specific OTUs (in the petals) and core-OTUs (in the center) for all samples (A), all water

samples (B), and all sediment samples (C). OTU accumulation curves for pan-OTUs (top) and core-OTUs (bottom) for all samples (D), all

water samples (E), and all sediment samples (F), respectively, from Honghu Lake. Samples are named according to the sampling sites (see

Figure 1B) with postfixes W and S for water and sediment, respectively.
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impacted and less-impacted sites in sediment samples as com-
pared to water samples (Figure 4B and C).

Comparison of functional properties between less-impacted and

impacted groups

We observed clustering of water and sediment microbial com-
munities based on the relative abundance of their predicted
functional profiles (Figure S4) (PERMANOVA, Bray–Curtis

distance, P < 0.0001). In water samples, functional groups
including amino acid related enzymes, peptidases, oxidative
phosphorylation, purine metabolism, pyrimidine metabolism,

DNA repair and recombination proteins, and arginine and
proline metabolism were enriched (Figure S5). Likewise, we
observed an enrichment of functional groups including ribo-
some biogenesis, secretion system, two-component system,

ABC transporters, and pyruvate metabolism in sediment sam-
ples (Figure S5). When investigating agricultural pollution
risks, we observed significant differences in the relative abun-

dances of the predicted functional profiles between impacted
and less-impacted groups of water samples (PERMANOVA,
Bray–Curtis distance, P < 0.05). For these samples, the

relative abundances of DNA repair and recombination pro-
teins (t-test, P < 0.05), purine metabolism (t-test, P < 0.05),
secretion systems (t-test, P < 0.05), oxidative phosphorylation

(t-test, P < 0.05), pyrimidine metabolism (t-test, P < 0.05),
amino acid related enzymes (t-test, P < 0.05), and arginine
and proline metabolism (t-test, P < 0.05) were significantly
different between impacted and less-impacted sites (Figure S5).

In contrast, we observed no significant differences in sediment
functional profiles between impacted and less-impacted sites.
Correlating physicochemical properties with microbial diversity

Physicochemical properties including NH4
+-N, TN, ORP, TP,

turbidity (Tur), potassium permanganate index (oxygen con-

sumption, CODMn), and chlorophyll-a (Chl-a, Table S8) were
significant explanatory factors that determined the observed
clustering pattern of the water microbial communities at

impacted sites (Figure 5A, Figure S6A), while pH and dis-
solved oxygen (DO) determined the water microbial commu-
nity structure at less-impacted sites (Figure 5A, Figure S6A).
For sediment samples, Sed-LP, Sed-TN, and Sed-OM

(Table S9) were identified as significant explanatory factors
shaping the observed clustering pattern at less-impacted sites
and Sed-TP for impacted sites (Figure 5B, Figure S6B). Based

on distance correlations and the statistical significance of Man-
tel’s r-statistic, water physicochemical properties including
TN, ORP, nitrate nitrogen (NO3

�-N), and nitrite nitrogen

(NO2
�-N), were strongly correlated with taxonomic and func-

tional composition (Figure 6A). For sediment samples, Sed-
OM and Sed-TN were strongly correlated with taxonomic
composition (Figure 6B).

The antibiotic oxytetracycline (OTC) was the primarily
explanatory factor for water microbial diversity variance at
impacted sites (Figure 5C, Figure S6A). While in sediment

samples, SMR was the primary factor responsible for the
observed clustering of samples, including R1S, R2S, P1S,
P3S, and P4S, from impacted sites (Figure 5D, Figure S6B).

Mantel’s correlation assessments were also performed between
antibiotic data and compositional data for water and sediment
samples (Figure 6C, D, and Figure S7). The OTC antibiotic

class was strongly correlated with water taxonomic and



Figure 4 PCoA plots and UPGMA-based clustering of water and sediment microbial communities

Unweighted UniFrac dissimilarity matrix scores for all samples were visualized in a PCoA plot to demonstrate the dissimilarity of the

microbial community structure between samples by sampling medium, water vs. sediment (A) and by sampling location, impacted and less-

impacted (B). C. UPGMA-based clustering tree of microbial communities using an unweighted UniFrac distance matrix. The green and

pink fonts represent less-impacted and impacted groups, respectively. The blue and red bars mark water and sediment samples, respectively.

Samples are named according to the sampling sites (see Figure 1B) with postfixes W and S for water and sediment, respectively.
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functional composition (Figure 6C), while tetracycline (TC)
was strongly correlated with sediment taxonomic and func-

tional composition (Figure 6D). The OFL antibiotic class
was strongly correlated with taxonomic and functional compo-
sition in sediment samples collected from less-impacted (con-

trol) sites (Figure S8B). Additionally, CODMn and
ciprofloxacin (CIP) were strongly correlated with taxonomic
and functional composition in water samples collected from
impacted sites (Figure S8C).

Moreover, we observed strong correlations between several
OTUs, physicochemical properties, and antibiotic concentra-
tions (Table S10, Figures S9–12). In water samples, Bacillus

flexus (denovo 71031, Table S10) was strongly correlated with
TN (r= 0.8675, fdr-P = 7.89E�5, Figure S9C), NH4

+-N
(r= 0.8958, fdr-P = 7.89E�5, Figure S9D), orthophosphate

(PO4
3--P, r = 0.832, fdr-P = 2.58E�4, Figure S9E), and OTC

(r= 0.8381, fdr-P = 3.62E�4, Figure S10B).

Biomarker discovery

In water samples, the LEfSe analysis identified 13 biomark-
ers for impacted sites and 12 for less-impacted sites. The
most differentially abundant bacteria from impacted sites

belonged to the phylum Proteobacteria, class Betaproteobac-
teria and class Gammaproteobacteria (Figure 7A and B).
These included members of the orders Methylophilales,
Nitrosomonadales, and Rhodocyclales (Figure 7A and B).

Methylophilales are known for their ability to metabolize
methane under aerobic and microaerobic conditions [18]
and Nitrosomonadales are significantly enriched in soils

containing high concentrations of N fertilizer [19]. Water
samples from less-impacted sites were overrepresented
by Oscillatoriophycideae and Synechococcophycideae in
Cyanobacteria; and Saprospiraceae in Bacteroidetes

(Figure 7A and B).
In sediment samples, the LEfSe analysis reported 14

biomarkers enriched in impacted sites and 5 enriched in less-

impacted sites (Figure 7C and D). Biomarkers in samples from
impacted sites mainly comprised members of the phylum Acti-
nobacteria, family Pseudomonadaceae, order Burkholderiales,

and class Flavobacteriia. For sediment samples from less-
impacted sites, bacteria that were differentially abundant
include members of Paenisporosarcina genus and candidate

family planococcaceae, phylum Firmicutes, order Bacillales,
and class Bacilli (Figure 7C and D).

Co-occurrence network analysis

Co-occurrence network analysis was performed to visualize
and characterize co-occurrence patterns among members of



Figure 5 Canonical correspondence analysis plots of physicochemical properties and antibiotic data driving water and sediment microbial

community structure

Physicochemical properties of water samples (A) and sediment samples (B), as well as antibiotic data for water samples (C) and sediment

samples (D) from Honghu Lake. We utilized the ‘envfit’ function with 999 permutations to reveal significant correlations between

physicochemical properties, antibiotics, and microbial communities. *P < 0.05; **P < 0.01; ***P < 0.001. DO, dissolved oxygen; ORP,

oxidation–reduction potential; Tur, turbidity; Chl-a, chlorophyll-a; TP, total phosphorus; TN, total nitrogen; CODMn, oxygen

consumption; OM, organic matter; LP, labile phosphorus; OTC, oxytetracycline; TC, tetracycline; SMR, sulfamerazine.
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water and sediment microbial communities. The water and
sediment network comprised 427 nodes and 189 edges
(Figure 8A) and 443 nodes and 2877 edges (Figure 8B), respec-
tively. The density of the water and sediment network was

0.002 and 0.023, respectively. These results suggest that the
sediment microbial network was more connected than the
water network. Both networks exhibited a scale-free degree

distribution pattern, whereby most OTUs had low degree val-
ues and fewer hub nodes had high degree values (Figure S13).
We detected modules in water and sediment networks using
the WalkTrap community detection algorithm. The modular-
ity of the water and sediment network was 0.878 and 0.559,
respectively. A total of 50 clusters with the largest membership

of 22 was observed for the water network (Figure 8C). Like-
wise, for the sediment network we observed a total of 38 clus-
ters with the largest membership of 111 (Figure 8D). In the

sediment network, most OTUs in module 6 (111 nodes) were
members of Anaerolineae of the phylum Chloroflexi and



Figure 6 Environmental drivers of microbial community composition in water and sediment samples

Pairwise comparison of physicochemical properties with taxonomic and functional composition data in water (A) and sediment (B)

samples. Pairwise comparisons of antibiotic concentration data with taxonomic and functional composition data in water (C) and

sediment (D) samples. The actual PCC values are indicated in color gradient (with green for lower PCC values and red for higher PCC

values), while the absolute PCC values are indicated using circle with bigger size representing higher absolute PCC values between the two

factors. The edge width represents Mantel’s R statistic value for distance correlation and the edge color denotes the statistical significance

(P values) based on 9999 permutations. PCC, Pearson’s correlation coefficient; nlF Cond, temperature compensated conductivity; Sal,

salinity; DO, dissolved oxygen; ORP, oxidation–reduction potential; Tur, turbidity; Chl-a, chlorophyll-a; fDOM, fluorescent dissolved

organic matter; TP, total phosphorus; TN, total nitrogen; CODMn, oxygen consumption; OM, organic matter; LP, labile phosphorus; TC,

tetracycline; OTC, oxytetracycline; CTC, chlortetracycline; SDZ, sulfadiazine; SMR, sulfamerazine; SMD, sulfadimidine; OFL, ofloxacin;

CIP, ciprofloxacin; SMZ, sulfamethoxazole.
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Beta-, Delta-, and Gammaproteobacteria. Additionally, most

OTUs in module 7 (81 nodes) of the sediment network were
members of the Planococcaceae, a family within the order
Bacillales. When compared to the sediment network, we

observed fewer and smaller hubs in the water network. In this
network, most OTUs in module 2 (22 nodes) and module 9 (12
nodes) were members of the genus Synechococcus within the
order Synechococcales and ACK-M1 within the order Actino-

mycetales, respectively.
We also examined the effect of prolonged agricultural activ-

ities on the patterns of co-occurrence network from water and

sediment microbial communities, respectively. For this, each
node in the water and sediment network was colored as a func-
tion of its relative abundance across samples from impacted

and less-impacted (control) sites (Figure 8E and F). In both
networks, we observed higher connectedness among OTUs
associated with less-impacted samples as compared to those

associated with samples from impacted sites. We confirmed
this observation in impacted and less-impacted sediment sam-
ples by selecting OTUs that related to these sediment samples
and all its edges from the overall sediment co-occurrence net-

work to generate the sub-networks (Figure S14). We observed
higher connectedness in microbes associated with less-
impacted samples (measured as node degree, 3.746) as com-

pared to those associated with samples from impacted sites
(1.397).



Figure 7 Biomarker analysis of water and sediment microbial communities from impacted and less-impacted sites

A.Differentially abundant taxa of water samples. B. Cladogram showing the phylogenetic structure of the microbiota from water samples.

C. Differentially abundant taxa of sediment samples. D. Cladogram showing the phylogenetic structure of the microbiota from sediment

samples.
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Discussions

The extensive application of chemical compounds such as fer-
tilizers, herbicides, and antibiotics, can profoundly influence
the cycling and accumulation of nutrients in the sediment

and water column of Honghu Lake [20]. These agricultural
practices can negatively impact not only the physicochemical
properties, but also the biodiversity of microbial communities
associated with the lake ecosystem [6]. These changes in micro-

bial community composition can in turn affect nutrient cycling
and organic matter decomposition, thus impacting overall
agricultural productivity.

In our study, we analyzed water and sediment samples from
Honghu Lake, assessing its microbiome, physicochemical
properties, and antibiotic concentrations. We found that

despite low human activity, high concentrations of Sed-LP,
Sed-TN, and Sed-OM were observed at less-impacted (control)

sites, probably due to the abundance of submerged plants. We
speculate that the decay of these plants during winter substan-
tially increases organic matter, total nitrogen [21], and total

phosphorus [22] in sediment samples. Hence, as expected from
previous research, we found that both water and sediment
microbial community structure was correlated with TP and

TN concentration [23,24]. Moreover, in water samples, we
observed that Bacillus flexus was strongly correlated with
TN, NH4

+-N, PO4
3--P, and oxytetracycline. More important,

previous work on Bacillus flexus have shown that members

of this species can degrade organic [25] and inorganic [26]
nitrogen, thus making it a possible candidate for bioremedia-
tion in alkaline wastewater [27]. Some strains of B. flexus also

demonstrate strong phosphorus solubilization activity [28],
and others demonstrated resistance to OTC [29].



Figure 8 Co-occurrence network interactions of Honghu Lake microbes in water and sediment samples

Network nodes represent OTUs with the size of each node proportional to the node degree. Edges represent positive, strong (Spearman’s

q > 0.8), and significant (P < 0.001) interactions between OTUs. Networks of water (A) and sediment (B) samples displaying co-

occurrence patterns of OTUs grouped at the phylum level. Modules were identified using the WalkTrap community detection algorithm in

water (C) and sediment (D) samples. Networks of water (E) and sediment (F) samples investigating the effect of long-term agricultural

activities on microbial community wherein each node is colored as a function of its relative abundance at impacted and less-impacted sites.
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As to biomarkers in sediment samples from impacted sites,
these included members of the Hydrogenophaga genus,
belonging to Burkholderiales (Class Betaproteobacteria),

which have been previously associated with agricultural activ-
ities [30]. Moreover, members of the genus Pseudomonas,
belonging to family Pseudomonadaceae, can play an impor-

tant role in agricultural ecosystems, particularly those associ-
ated with plant growth-promotion and disease suppression
were mentioned [31].

Co-occurrence network analysis showed that Anaerolineae
forms a large component of microbial communities associated
with sludge wastewater treatment plants wherein they may play
important roles in organic degradation [32]. The phylum Pro-

teobacteria are known to easily metabolize soluble organic sub-
strates [33]. Among these classes, Deltaproteobacteria, a
dominant group often observed in various sediment samples,

play an important role in degrading organic compounds to car-
bon dioxide [34].Members ofSynechococcus are a cosmopolitan
cyanobacterium often associated with toxic algal blooms and

microcystin production [35,36]. Likewise, members of ACK-
M1, in a recent study, exhibited chemotaxis toward ammonium
in a water ecosystem, thus influencing nutrient cycling processes

and microbial competitive interactions within this ecosystem
[37]. The presence of these microbial taxa is indicative of the
long-term effect of eutrophication in water environments.

Conclusion

We analyzed the impacted sites and less-impacted sites of

water and sediment samples from Honghu Lake and surround-
ing river and pond sites. The microbiome was analyzed in the
context of variable physicochemical properties and antibiotic

concentrations. There were significant differences between
impacted and less-impacted (control) groups in both water
and sediment samples. These differences were observed in
physicochemical properties, antibiotic concentration levels,

and taxonomical structure. Physicochemical properties includ-
ing TN, TP, NO3

�-N, and NO2
�-N were the main factors driv-

ing compositional differences in water samples. Likewise, in

sediment samples, Sed-OM and Sed-TN were the main factors
driving differences in taxonomical composition. The antibi-
otics, oxytetracycline and tetracycline were identified as the

main drivers of taxonomical and functional structure in water
and sediment samples, respectively. As for differences between
impacted and less-impacted samples, we identified 25 biomark-

ers within water microbial communities and 19 within sedi-
ment microbial communities. Finally, the co-occurrence
network analysis revealed differences in co-occurrence patterns
by sampling medium (water vs. sediment microbial communi-

ties) and by level of agricultural activity (impacted vs. less-
impacted microbial communities). These results suggest that
continued analyses of the composition and structure of water

and sediment microbial communities in such anthropologi-
callyimpacted lake environments may provide valuable bio-
marker data to track pollution. The Honghu Lake Wetland

Protection and Restoration Demonstration Project provided
preliminary data that highlights the importance of monitoring
biodiversity in water micro-ecosystems. Our present work
allows further investigation into the impact of agricultural

practices on water ecosystems and more importantly, into
our ability to remediate these important ecosystems.
Materials and methods

Sample sites and sampling processes

To investigate the differences in microbial community struc-
ture resulting from a wide range of anthropogenic activities,

a total of 14 water samples and 14 sediment samples were col-
lected from Honghu Lake and surrounding rivers and ponds
during 10–11 November 2015. Among these sites, site L1 is
the entrance of inflowing river, and sites L3, L8, L9, and

L10 are relatively adjacent to aquaculture district. Meanwhile,
to evaluate the main source of the antibiotics of Honghu Lake,
sites R1, R2, R3, and R4, which are located in four major con-

necting rivers of Honghu Lake and sites P1 to P4, four typical
aquaculture ponds, which can swap water with Honghu Lake,
were collected [38]. In keeping with the Government Protec-

tion Zone definition [17] and in taking into account the differ-
ent sources of pollution at each site [38] (treated sewage, crop,
livestock, and fish aquaculture), all sampling sites were catego-

rized into two groups—namely, the impacted and the less-
impacted (control) groups [17]. Sampling sites labeled L1,
L2, P1, P2, P3, P4, R1, R2, R3, and R4 were classified as
impacted, while sites labeled L3, L4, L5, L6, L7, L8, L9, and

L10 were classified as less-impacted (Figure 1).
For water sampling, 2 L of water with a depth of 0.3–0.5 m

were collected at each sampling site using a cylinder sampler.

Approximately 1.5 L of sample was used for physicochemical
characterization and antibiotic analysis. The remaining
500 mL of sample was size-fractionated using a 20 lm tulle

and a 0.22 lm diameter pore size filter membrane (Tianjin Jin-
teng Experiment Equipment Co., Ltd). Microbial biomass was
collected on 0.22 lm diameter pore size filter membranes.

These membrane samples were stored onsite in a portable
cooler with ice bags, then transported to the laboratory and
stored at �80 �C until DNA extraction. For sediment sam-
pling, �200 g of sediment (0–10 cm) was collected at each site

and stored in a portable cooler with ice bags until its
transportation to the laboratory for subsequent downstream
analyses. Approximately 50 g of sediment was used for physic-

ochemical characterization and antibiotic analysis, while the
remainder was dried in an Ultra-low Freeze Dryer (Christ,
German) until no further weight changes were observed. The

dried sediment (0.5 g) was used for DNA extraction.
Physicochemical characterization and antibiotic analysis

Physicochemical characterization

Physicochemical data were measured for all water and sedi-
ment samples (Tables S1 and S2). Physicochemical properties

including water temperature (T), pH, temperature compen-
sated conductivity (nlF Cond), DO, salinity (Sal), ORP, Tur,
Chl-a, and fluorescent dissolved organic matter (fDOM) were

measured for all water samples in situ by EXO2 (YSI). Addi-
tional physicochemical properties including TP, TN, NH4

+-
N, CODMn, PO4

3--P, NO2
�-N, and NO3

�-N were assayed as

described in previous work [39]. For sediment samples, ORP
(Sed-ORP) and pH (Sed-pH) were determined using a pH/
ORP portable meter (YSI). Sed-OM was determined in a
muffle furnace at 550 �C [39]. Sed-LP, Sed-TP, NH4

+-N

(Sed-NH4
+-N), and Sed-TN were measured by the NH4Cl
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extraction method, the KCl extraction method, the perchloric
acid and sulfuric acid digestion method, and the Kjeldahl
method, respectively [40].

Antibiotic analysis

Based on a report of antibiotic usage in China [41], a total of
13 antibiotics were selected for detection in water and sediment

samples (Table S3). These antibiotics were classified into three
groups namely: (i) sulfonamides (SAs), including sulfadiazine
(SDZ), SMR, sulfamate (SFM), sulfadimidine (SMD), sulfa-

monomethoxine (SMM), and SMZ; (ii) fluoroquinolones
(FQs), including fleroxacin (FLE), OFL, CIP, and difloxacin
(DIF); and (iii) the tetracycline group (TCs), including TC,

OTC, and chlortetracycline (CTC). We determined the concen-
tration of these antibiotics in water and sediment samples
using a 2695 Waters Alliance system (Milford, MA). A

detailed protocol of the antibiotic extraction process was
described in File S1. Of the 13 antibiotics that were quantified,
nine antibiotics including TC, OTC, CTC, SDZ, SMR, SMD,
OFL, CIP, and SMZ were selected for further analysis in this

study.

DNA extraction and 16S rRNA gene sequencing

DNA was extracted from water filter membranes and dried
sediment using a modified hexadecyltrimethylammonium bro-
mide (CTAB) method [42–44]. All extracted metagenomic

DNA was dissolved in TE buffer and stored at �20 �C until
further use.

Metagenomic DNA were quantified by using a Qubit� 2.0

Fluorometer (Invitrogen, Carlsbad, CA) and the quality of
DNA was assessed on 0.8% agarose gels. Approximately 5–
50 ng of DNA was used as template for amplifying the V4–
V5 hypervariable region of the 16S rRNA gene of microbiota

for each sample. Sequences for the paired primers are
‘‘GTGYCAGCMGCCGCGGTAA” and ‘‘CTTGTGCGGK
CCCCCGYCAATTC”, respectively [24]. The sequencing

library was constructed using a MetaVxTM Library Preparation
kit (GENEWIZ, Inc., South Plainfield, and NJ). The ends of
the 16S rDNA amplicons were added with indexed adapters

by limited cycle PCR. Sequencing libraries were verified using
the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA) and quantified by Qubit� 2.0 and quantitative PCR
(Applied Biosystems, Carlsbad, CA). All amplicons were

sequenced on the Illumina MiSeq platform (paired-end,
2 * 300 bp). All sequencing data for the 14 water samples
and the 14 sediment samples were deposited into NCBI’s

Sequence Read Archive (SRA) database under the Bioproject
number PRJNA352457.

Quality control, OTU clustering, and taxonomy assignment

All 16S rRNA gene amplicons were processed according to the
ensuing criteria and sequences below the set quality threshold

were excluded from subsequent analyses. Firstly, paired-end
reads were spliced using the ‘make.contigs’ command in
mothur [45] (version 1.25.0) with default settings. We con-
ducted the quality control to remove the low-quality reads,

which contained ambiguous base calls (N), or longer than
500 bp, and those shorter than 300 bp. Putative chimeras were
identified using the SILVA database [46] (Release 123) and
removed using the ‘chimera.uchime’ and ‘remove.seqs’ com-
mands in mothur. All high-quality sequences were aligned
using PyNAST and dereplicated with UCLUST [47] in QIIME

(Quantitative Insights Into Microbial Ecology, v1.9.1) [48].
Finally, the Greengenes database (version 13_8) [49] was used
as the reference database for classifying de novo operational

taxonomic units (OTUs) that were clustered with the 97%
nucleotide identity. We set 0.001% as the threshold to filter
the low-abundance OTUs and keep abundant OTUs for

analysis [50].

Microbial diversity assessment

Microbial alpha- and beta-diversity values were determined
using the QIIME [48] pipeline. For alpha-diversity, rarefaction
curves were drawn based on the following metrics: Observed
OTUs, Chao1, PD whole tree metric, and the Shannon even-

ness metric [51]. For beta-diversity analysis, the final OTU
table was rarefied to contain 61,088 reads per sample. Bray–
Curtis, weighted and unweighted UniFrac distance metrics

[52] were used to measure community similarity among sam-
ples. Microbial community clustering was arrayed by Principle
Coordinates Analysis (PCoA) and visualized using Emperor

[53] in QIIME. The hierarchical clustering method, UPGMA,
was applied to cluster all water and sediment samples, and the
clustering tree was visualized in FigTree (version 1.4.2, http://
tree.bio.ed.ac.uk/software/figtree/). Permutational multivari-

ate analysis of variance (PERMANOVA) [54] was performed
on the Bray–Curtis distance matrix to compare differences in
community structure.

Functional profiling

PICRUSt (version 1.0.0-dev) [55] was used to make functional

predictions based on the 16S rDNA dataset from each sample.
For this, OTU-picking was performed on all quality-filtered
sequence data using the ‘pick_closed_reference_otus.py’ com-

mand in QIIME. OTUs were clustered at the 97% nucleotide
identity threshold using the Greengenes database. The OTU
table was normalized using the ‘normalize_by_copy_number.
py’ command. The normalized OTU table was used for func-

tional prediction with the ‘predict_metagenomes.py’ script,
and functional trait abundances were determined for each sam-
ple using the KEGG database (version 66.1, May 1, 2013) [56].

Finally, the predicted functional content was collapsed to level
three of the KEGG hierarchy using the ‘categorize_by_func
tion.py’ script.

Analysis of the relationships between physicochemical properties,

antibiotics, and microbial communities

Canonical correspondence analysis (CCA) was chosen and
used to identify an environmental basis for community ordina-
tion, revealing relationships between microbial communities
and environmental factors [57]. For this, the CCA function

in R package, vegan was utilized. We utilized the ‘envfit’ func-
tion [58,59] with 999 permutations to reveal significant correla-
tions between physicochemical properties, antibiotics, and

microbial communities. To further investigate correlations
between environmental factors (including physicochemical
properties and antibiotics) and OTUs, we applied a

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/


88 Genomics Proteomics Bioinformatics 17 (2019) 76–90
low-abundance filter to remove OTUs whose relative abun-
dance did not exceed 0.01% in any sample (as previously
reported by [60]). Similarly, for physicochemical data and

antibiotics data, the values of each variable were transformed
to z-scores [61], based on which the Pearson Correlation Coef-
ficient between each environmental factor and each OTU was

calculated. To select for significant interactions between an
environmental factor and an OTU, the threshold of the
r-value and the False Discovery Rate (FDR)-corrected P value

of the Pearson Correlation Coefficient was set at 0.8 and 0.05,
respectively.

Analysis of environmental drivers of microbial community

composition

We noted environmental drivers of microbial community com-
position on the basis of (i) compositional data, which include

taxonomical composition (relative taxonomic abundances)
and functional composition at KEGG module level three; (ii)
physicochemical data; and (iii) antibiotics data. To pre-

process compositional data, we applied a low-abundance filter
to remove OTUs whose relative abundance did not exceed
0.01% in any sample and then log transformed the relative

abundances. Likewise, for physicochemical and antibiotics
data, the values of each variable were transformed to
z-scores. Based on the Euclidean distances, we computed
Mantel’s correlations between the physicochemical data and

compositional data and then the antibiotics data and composi-
tional data (9999 permutations). We obtained the results in R
(version 3.3.1) and visualized it in the Adobe Illustrator (ver-

sion 16.0.0). Taxonomical composition and functional compo-
sition data were correlated to each antibiotic and
physicochemical property by Mantel’s tests. The distance cor-

relations and the statistical significance of Mantel’s r statistic
corresponded to edge width and edge color, respectively [60].

Biomarker analysis

Based on their location, all water and sediment samples can be
divided into two groups—impacted and less-impacted (con-
trol) groups. It is well known that the taxonomical composi-

tion of a microbial community can be impacted by local
environmental variables. As a result, some bacteria might be
enriched by distinctive environmental states. Linear discrimi-

nate analysis (LDA) effect size (LEfSe) [62] was used to select
biomarkers in impacted and less-impacted (control) groups in
water and sediment samples. Briefly, the taxa abundance table

was imported into the LEfSe pipeline, and the parameters were
set as follows: the alpha value for the factorial Kruskal–Wallis
test [63] among classes and the P value for the pairwise Wil-

coxon test between subclasses were both chosen to be 0.05.
As to water and sediment samples, we set 3.0 and 3.5 as the
threshold for the logarithmic LDA score for discriminative
features, respectively.

Co-occurrence network analysis

To reduce sparsity, we selected water and sediment OTUs that

were present in at least 50% of all water and sediment samples,
respectively. We then generated separate networks for water
and sediment microbial communities. The co-occurrence net-
work was constructed using the CAVNet package (https://
bitbucket.org/JackGilbertLab/cavnet) in R (as previously
described by [64]). Briefly, water and sediment networks were

inferred using the Spearman correlation matrix with the
WGCNA package [65]. In this network, co-occurring OTUs
are represented by nodes and connected by edges. The network

deconvolution method was utilized to distinguish direct corre-
lation dependencies [66]. All P values were corrected for mul-
tiple testing using the Benjamini–Hochberg FDR-controlling

procedure [67]. The cutoff of the FDR-corrected P value was
set at 0.01. Random matrix theory-based methods were uti-
lized to determine the cutoff of Spearman’s correlation coeffi-
cients for water (0.84) and sediment (0.81) networks. All

network properties were calculated using the igraph package
in R [68]. We also utilized igraph to visualize and generate
water and sediment networks. The WalkTrap community

detection algorithm was used to identify modules in water
and sediment networks [69]. To study the effect of prolonged
agricultural practices, we colored each node within the water

and sediment network as function of its relative abundance
at impacted and less-impacted (control) sites using the ‘plot_
network_by_continuous_variable’ function in CAVNet.
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