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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer 
mortality worldwide. Although advances in systemic chemotherapy for PDAC have 
improved survival outcomes for patients with the disease, chemoresistance is a major 
treatment issue for unselected PDAC patient populations. The existence of heteroge-
neity caused by a mixture of tumor cells and stromal cells produces chemoresistance 
and limits the targeted therapy of PDAC. Advances in precision medicine for PDACs 
according to the genetics and molecular biology of this disease may represent the 
next alternative approach to overcome the heterogeneity of different patients and 
improve survival outcomes for this poor prognostic disease. The genetic alteration 
of PDAC is characterized by four genes that are frequently mutated (KRAS, TP53, 
CDKN2A, and SMAD4). Furthermore, several genetic and molecular profiling studies 
have revealed that up to 25% of PDACs harbor actionable alterations. In particular, 
DNA repair dysfunction, including cases with BRCA mutations, is a causal element 
of sensitivity to platinum-based anti-cancer agents and poly-ADP ribose polymerase 
(PARP) inhibitors. A deep understanding of the molecular and cellular crosstalk in the 
tumor microenvironment helps to establish scientifically rational treatment strategies 
for cancers that show specific molecular profiles. Here, we review recent advances in 
genetic analysis of PDACs and describe future perspectives in precision medicine ac-
cording to molecular subtypes or actionable gene mutations for patients with PDAC. 
We believe the breakthroughs will soon emerge to fight this deadly disease.
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1  | INTRODUC TION

Pancreatic ductal adenocarcinoma (PDAC) remains the most le-
thal type of cancer.1 Both GnP (gemcitabine plus nab-paclitaxel) 
and FOLFIRINOX (5-fluorouracil, folinic acid, irinotecan, and 

oxaliplatin) regimens have improved survival outcomes of patients 
with metastatic PDAC.2,3 For resected PDAC, median overall sur-
vival (OS) has also increased from 22.1 to 35 months during the past 
10 years, largely due to improvements in adjuvant therapies.4–9 On 
the other hand, the high recurrence rate even in patients who have 
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undergone curative resection and chemoresistance for the cur-
rent systemic chemotherapies (GnP and FOLFIRINOX) are major 
issues in the treatment of unselected PDAC patient populations. 
Although molecular markers are often employed to effectively se-
lect patients for anti-cancer agents, only imaging modalities are 
applied to stage the disease and judge suitability for operative re-
section. Unfortunately, our knowledge of the genetic and biolog-
ical backgrounds of this deadly disease has not yet been linked to 
a leap in patient survival. Knowledge obtained from the Human 
Genome Project, and subsequently The Cancer Genome Atlas, 
has yielded the landscape of precision medicine. The concept is 
that cancer patients can be sub-classified according to actionable 
driver mutations, which can be targeted by molecular-specific 
agents. Development of next-generation sequencing (NGS) has 
drastically progressed genomic sequencing technology and 
cleared actionable driver mutations for individual cancer patients. 
Advances in precision medicine for PDACs according to genetics 
and molecular biology may be the next alternative approach to im-
prove survival outcomes for this poor prognostic disease. PDACs 
have been divided into several molecular subtypes by recent ad-
vances in genetic analysis,10–17 which is a precursor of precision 
medicine. Some molecular profiling studies have exhibited that up 
to 25% (range 12%-25%) of PDACs retained actionable molecular 
alterations.10–17 Furthermore, the development of multigene panel 
assay has resulted in a fundamental change in the treatment of 
PDAC. Indeed, matching to appropriate molecular-specific treat-
ments improves the OS of PDAC patients compared to that of 
those without actionable mutations or those who do not accept 
the molecular-specific therapy.18 A better grasp of the genetics 
and molecular biology of PDAC accelerates the development of 
precision medicine.

Here, we review recent advances in genetic analysis of  
PDACs and describe future perspectives in precision medicine 
according to molecular subtypes or gene mutations for patients 
with PDAC.

2  | THE GENOMIC L ANDSC APE OF 
PANCRE ATIC C ANCER AND “BIG FOUR” 
MUTATION GENES

In 2008, the exome analysis of PDACs was completed.19 The cod-
ing regions of >20 000 genes were sequenced, and an average of 
63 genomic alterations per patient genome was discovered. These 
alterations consisted of 12 core signaling pathways and were detect-
able in the majority (from 67% to 100%) of PDACs. Among them, 
dysregulations in KRAS signaling, G1/S phase cell cycle transition, 
TGF-β signaling, integrin signaling, cell invasion, homophilic cell in-
teraction, and small guanine triphosphate (GTPase)-dependent sign-
aling were prominent.19

The genetic landscape of PDACs is featured by four frequently 
mutated genes: KRAS, TP53, CDKN2A (p16), and SMAD4.20 The four 
predominant gene mutations appear to occur sequentially as PanIN 
progresses (Figure 1). KRAS mutations can be found even in normal 
pancreases and in PanIN1. In PDAC, the incidence of oncogenic 
KRAS mutation ranges from 88% to 100%.12,16,17,19,21,22 Although 
the initial step for PDAC development remains to be elucidated, the 
oncogenic KRAS mutation is a key event, as evidenced by its pres-
ence in PanIN lesions23,24 and the development of PanIN lesions in 
oncogenic KRAS-driven GEMMs.25,26 The oncogenic KRAS mutation 
provokes the constitutively activated RAS protein and results in 
the dysregulated activation of proliferation and survival pathways. 
In the clinical setting, cases with KRAS mutations displayed worse 
prognostic outcome with a median survival time of 17 months com-
pared to 30  months for those without mutations.27 In analysis of 
KRAS mutation type, codon G12D mutant was the most frequent 
(48%), followed by G12V (31%) and G12R (21%).22 Intriguingly, 4% of 
PDACs exhibit multiple KRAS mutations, and these different KRAS 
mutations appeared in distinct cancer cells in a single tumor.22 While 
G12D or G12V mutations are the most prevalent KRAS mutations in 
patients with PDAC, codon G13 and Q61 mutations have also been 
noted.12,17,19,28 The point mutations in codon 12, 13, or 16 result in 

F I G U R E  1   Progression of pancreatic 
ductal adenocarcinoma development 
from pancreatic intraepithelial lesions 
(PanINs) and genetic alterations. The 
lower-grade lesions (PanIN1 and PanIN2) 
frequently retain genetic alterations 
in KRAS and CDKN2A genes, while the 
higher-grade lesions (PanIN3) exhibit the 
additional mutations in TP53 and SMAD4 
genes. Progression of PanINs correlates 
with sequentially accumulating genetic 
mutations
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reduced GTP hydrolysis. In contrast, cases with KRAS mutations at 
codon 61 revealed a favorable prognosis, as they display weaker ERK 
activation.17 Thus, different KRAS mutations induce diverse signal-
ing activities with distinct biological impacts.29,30 Small-molecule in-
hibitors targeting KRASG12C, a mutation exhibited in ~1.5% of PDAC 
cases, display encouraging anti-cancer effects against solid tumors 
including PDAC in vitro and in vivo.31 CDKN2A is inactivated by mu-
tation of alleles, homozygous deletion, or promoter hypermethyla-
tion in 75%–95% of PDAC cases.20,32 Inactivation of the CDKN2A 
gene induces the loss of p16 protein, which is a negative regulator of 
the G1/S transition of the cell cycle, and then promotes proliferative 
activity. TP53 encodes the p53 tumor suppressor protein, which is 
responsible for retaining genetic and cellular stability. TP53 protein 
regulates the cell cycle at the G1/S interface and plays a crucial role 
in provoking programmed cell death in reaction to DNA damage. 
TP53 is the most frequently mutated gene in cancer.33 TP53 inacti-
vation allows the cell with DNA damage to evade important check-
points to trigger apoptosis. It is mutated (mainly by point mutations) 
in 75%–85% of PDAC cases.20,34 SMAD4 encodes Smad4 protein, 
which is a transcription factor in TGF-β signaling pathway.35 SMAD4 
is inactivated in 43%–50% of PDAC cases.11,20 It works with TGF-β1 
as a tumor suppressor to regulate cell cycle arrest and apoptosis.36 
The loss of SMAD4 gene induces aberrant TGF-β signaling. PDAC pa-
tients with biallelic deletion of SMAD4 had more frequent metasta-
sis compared to those with wild-type SMAD4.37 Lower-grade lesions 
(PanIN1 and PanIN2) frequently retain genetic alterations in KRAS 
and CDKN2A genes, while the higher-grade lesions (PanIN3) exhibit 
the additional mutations in TP53 and SMAD4 genes.

Yachida et al38 showed data that the number of mutations among 
the major four driver genes was substantially associated with OS and 
disease-free survival (DFS). Among 79 PDAC patients, one (1%) had 
a single gene alteration, 14 (18%) had two gene alterations, 35 (44%) 
had three gene alterations, and 29 (37%) had an alteration in all four 
genes. The increased number of altered genes was significantly as-
sociated with worse DFS and OS at autopsy.38 Additionally, Hayashi 
et al39 reported that PDAC patients with fewer mutations displayed 
a better prognostic outcome in 71 patients who underwent a radical 
operation followed by adjuvant chemotherapy. The existence of zero 
to two mutated genes was a predictor of a better OS.39 Furthermore, 
genetic alterations of three genes (except KRAS), and thereby protein 

overexpression in PDAC tissues, are associated with malignant activ-
ity of PDAC.40 In particular, loss of SMAD4 immunolabeling was an 
independent poor prognostic factor for OS and DFS in patients with 
resectable PDAC.40 Intriguingly, all of the six patients who achiev-
ing 5-year survival displayed intact SMAD4 expression. Thus, the 
genetic status of the so-called “big four” mutation genes or their 
immunolabeling status is a prognostic biomarker in PDAC patients. 
Unfortunately, there is still no available drug that can directly target 
the major four gene mutations in PDACs.

3  | MOLECUL AR SUBT YPE 
CL A SSIFIC ATION

Recent advances in biotechnology enable us to execute comprehen-
sive genomic, transcriptomic, proteomic, and metabolomic analyses 
rapidly and cheaply. Such comprehensive gene expression studies 
have recognized subtypes of PDAC with biological and prognostic 
relevance (Figure 2, Table 1).

Collisson et al13 introduced classification of PDACs into three 
subtypes: classical, quasi-mesenchymal (QM), and exocrine-like. 
The survival outcome of PDAC cases following surgical resection 
and standard medical treatment was remarkably better in the clas-
sical subtype than that in cases with the QM subtype; cases with 
the exocrine-like subtype showed an intermediate survival outcome 
between the two other subtypes.13 Searching the clinical relevance 
of this classification using PDAC cell lines, the classical and QM sub-
types offered differential reactions to gemcitabine and erlotinib.

Moffitt et al15 evolved molecular profiling from primary tumors 
to metastatic and normal lesions. They categorized PDAC tumors 
into two subtypes (classical and basal-like). PDAC cases with the 
basal-like subtype displayed a worse survival outcome (one-year 
survival rate of 44%) compared with 70% for PDAC patients with 
classical subtype.15 Tumor stroma was also categorized into nor-
mal and activated. PDAC cases with the activated stromal subtype 
showed a worse prognosis (a median survival time of 15 months and 
a one-year survival rate of 60%) compared to cases with the normal 
stromal subtype (a median survival time of 24  months and a one-
year survival rate of 82%).15 PDAC patients with the classical and the 
normal stromal subtypes displayed a favorable prognostic outcome, 

F I G U R E  2   Molecular classification 
and prognostic relevance in pancreatic 
ductal adenocarcinoma. ADEX, aberrantly 
differentiated endocrine exocrine
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TA B L E  1   Subtype classification of pancreatic ductal adenocarcinomas and their prognostic impacts

Classification MST (M, months) Molecular or clinical features

Collisson et al13

Tumor classification into three subtypes

Classical (n = 14, 52%) Better (786 d in mean) GATA6↑, sensitive to erlotinib (in vitro)

Exocrine-like (n = 5, 18%) Moderate (564 d in mean)

Quasi-mesenchymal (n = 8, 30%) Worse (304 din mean) Sensitive to gemcitabine (in vitro)

Moffitt et al15

Tumor-specific subtypes into two types

Classical (n = 89) 19M (70% 1 y survival) GATA6↑

Basal-like (n = 36) 11M (44% 1 y survival) Better response to adjuvant therapy

Stroma-specific subtypes into two types

Normal (n = 30) 24M (82% 1 y survival) ACTA2↑, VIM↑, DES↑ (stellate cells)

Activated (n = 78) 15M (60% 1 y survival) ITGAM↑, CCL13↑, CCL18↑ (macrophages)

Classical and normal 0.39 (lowest hazard ratio of death) (0.21–0.73 in 95%CI)

Basal and activated 2.28 (highest hazard ratio of death) (1.34–3.87 in 95%CI)

Bailey et al11

Tumor classification into four subtypes

Immunogenic (classical) 30.0M immune suppression

Pancreatic progenitor (classical) 25.6M pancreatic development (FOXA 2/3↑, PDX1↑, MNX1↑)

ADEX (exocrine like) 23.7M KRAS activation, exocrine (NR5A2↑ and RBPJL↑) endocrine 
differentiation (NEUROD1↑ and NKX2-2↑)

Squamous (QM or Basal) 13.3M TP53 mutation, KDM6A mutation, TP63ΔN transcriptional 
network↑, hypermethylation of pancreatic endodermal cell 
fate-determining genes (for example, PDX1, MNX1, GATA6, 
HNF1B)

Puleo et al41

Tumor classification into five subtypes

Pure classical (n = 70) 43.1M Low stromal signal, well differentiated tumor

KRAS mutation (G12R), high hENT1 expression

Immune classical (n = 25) 37.4M Significant stromal signature, structural vascularized and 
immune stroma,

High hENT1 expression

Desmoplastic (n = 67) 24.3M Low cell component and a marked stromal transcriptomic 
signal

Stroma activated (n = 54) 20.2M Activated stromal component explained by high a-SMA, 
SPARC, and FAP,

CDKN2A mutation, TP53 mutation

Pure basal-like (n = 25) 10.3M Low stromal signal, poorly differentiated tumor,

KRAS mutation (G12D), KRAS (G12V), nuclear GLI1 
expression,

CDKN2A mutation, TP53 mutation

Validation of subtype classification for PDACs

Classification MST (M, months) Molecular or clinical features

Aung et al20

According to Moffitt's “tumor” subtypes

Classical (76%) 10.4M GATA6↑, HNF4A ↑, sensitive to cisplatin

Partial response to chemotherapy in 34%

(Continues)
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while those with basal-like and the activated stromal subtypes re-
vealed a very poor prognostic outcome.15

Bailey et al executed comprehensive genomic analysis of 456 
PDAC cases and determined 32 frequently mutated genes that as-
semble into 10 pathways such as KRAS, TGF-β, G1/S transition, 
DNA repair, WNT, NOTCH, SWISNF, ROBO/SLIT signaling, chro-
matin modification, and RNA processing.11 They classified PDAC 
tumors into four subtypes in accordance with these gene muta-
tions: squamous, pancreatic progenitor, immunogenic, and aber-
rantly differentiated endocrine exocrine (ADEX). The squamous 
subtype is closely associated with TP53 and KDM6A mutations; 
high TP63 expression is a typical feature of the squamous sub-
type.11 The progenitor subtype is specifically characterized by 
transcriptional networks including transcription factors FOXA2, 
FOXA3, HES1, HNF1A, HNF1B, HNF4A, HNF4G, MNX1, and 
PDX1; these tumors are also featured by TGFBR2-inactivating 
mutation and by apomucin expressions such as MUC1, MUC2, 
and MUC6.11 The immunogenic subtype shares several features 
with the progenitor subtype yet differs in being characterized by 
the significant infiltration of immune cells.11 The ADEX subtype 
is featured by a transcriptional network such as genes involved 
in endocrine differentiation and transcription factors involved 
in acinar cell differentiation.11 Except for the immunogenic sub-
type, three of the four subtypes display similar features with the 

Collisson classification: thus, the progenitor subtype corresponds 
to the classical subtype, the ADEX to the exocrine-like, and the 
squamous to the QM subtype.13

Puleo et al41 validated the reported subtypes of PDAC using 
formalin-fixed and paraffin-embedded samples, and then clas-
sified them into five subtypes (pure classical, immune classical, 
desmoplastic, stroma activated, and pure basal-like) according to 
the features in both the cancer cells and the tumor microenviron-
ment. The pure basal-like subtype revealed the worst prognostic 
outcome with a median OS of 10.3  months, whereas the pure 
classical showed a good prognostic outcome with a median OS 
of 43.1 months. Furthermore, they suggested that the previously 
reported exocrine-like (ADEX) subtype was due to the contamina-
tion with pancreatic acinar cells.

Aung et al20 investigated the clinical relevance of Moffitt's 
tumor subtypes using whole-genome sequencing (WGS) and RNA 
sequencing in response to first-line chemotherapy in advanced 
PDACs (COSMOSS trial). They reported that the patients with 
the classical subtype displayed significantly better objective re-
sponses to first-line chemotherapy than those with the basal-like 
subtype, and those with the classical subtype treated with mod-
ified FOLFIRINOX exhibited the best progression-free survival 
(PFS). They concluded that the response to chemotherapy dif-
fered among patients with individual subtypes. Brinbaum et al42 

Validation of subtype classification for PDACs

Classification MST (M, months) Molecular or clinical features

Basal-like (24%) 6.3M Hypoxia↑, metastatic pathways↑
partial response to chemotherapy in 8%

Classical subtype treated with modified FOLFIRINOX Best PFS 8.5M (6.5M not reached in 95%CI)

Basal-like subtype treated with modified FOLFIRINOX Worst PFS 2.7M (2.1M not reached in 95% CI)

Brinbaum et al42 2-y overall survival

According to Collisson's “tumor” subtypes

Classical (n = 263) 45%

Exocrine-like (n = 216) 44%

Quasi-mesenchymal (n = 122) 25%

According to Moffitt's “tumor” subtypes

Classical (n = 365) 48%

Basal-like (n = 236) 28%

According to Moffitt's “stroma” subtypes

Normal (n = 241) 49%

Activated (n = 333) 34%

According to Bailey's subtypes

Immunogenic (n = 104) 56%

Pancreatic progenitor (n = 142) 48%

ADEX (n = 140) 46%

Squamous (n = 215) 23%

Note: Multivariate analysis by including the four classifiers together; Moffitt “stroma” and Bailey classifications show independent prognostic value.
Abbreviations: ADEX, aberrantly differentiated endocrine exocrine; MST, median survival time; PFS, progression-free survival.

TA B L E  1   (Continued)
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validated and compared the biological and clinical relevance of 
the above molecular classifications of PDAC according to the 
Collisson, Moffitt (tumor and stroma), and Bailey classifications. 
They investigated the prognostic significance of the Moffitt 
(stroma) classification and the Bailey classification using multivar-
iate analysis by including the four classifiers together, emphasiz-
ing the complementarity of classifiers based on cancer cells and 
stroma. Rashid et al43 developed a classifier for PDAC subtyping to 
predict subtype in individual patients, based on the three largest 
bulk gene expression datasets (TCGA PAAD, Aguirre Biopsies, and 
Moffitt GSE71729). They showed that basal-like subtype tumors 
are refractory to FOLFIRINOX-based regimens.43

These innovative systems of reclassifying tumors may guide ap-
propriate treatment decisions.

3.1 | DNA damage repair pathways

DNA damage is a frequent event and must be immediately repaired to 
ensure the precise transfer of genetic information during cellular divi-
sion. Malfunction of the DNA damage repair (DDR) pathway can lead 
to an accumulation of genomic defects and further impairment of the 
DNA repair capacity. DNA damage may result from base modifica-
tions, single-strand DNA breaks (SSBs), double-strand DNA breaks 
(DSBs), or intrastrand and interstrand DNA crosslinks. Of these, DSBs 
are the most cytotoxic damages. DNA is repaired by distinct path-
ways to retain genetic stability. Two principal pathways in DSB repair 
are homologous recombination (HR), which employs the sister chro-
matid as a repair template, and non-homologous end joining (NHEJ), 
in which a DNA segment is eliminated and both ends are adjoined 
without attention of homology.44 While NHEJ is a more error-prone 
form of DSB repair, HR is an accurate process. The MRN (Mre11, 
Rad50, and Nbs1 proteins) complex acts as the core during the initial 
DSB repair as an upstream element of HR and partially of NHEJ. The 
MRN complex fascinates BRCA1 to the DNA damage spot, forming 
the adjoining 3′ ends and recruiting PALB2 and BRCA2. This com-
plex of BRCA1, BRCA2, and PALB2 activates RAD51, which plays a 
crucial role for binding single-stranded DNA segments and mediates 
to invade into the homologous DNA sequences in the sister chro-
matid. Thus, BRCA1/2 and PALB2 play a critical role in efficient HR. 
BRCA1/2-deficient cells without HR ability store DBSs, which induces 
genomic instability and increases predisposition to play malignant 
behaviors.45 Although the risk of PDAC in carriers with a mutated 
BRCA1 gene is not fully elucidated, it is anticipated to be increased 
two to threefold over the general population.46,47 In contrast, BRCA2 
gene mutation was found in approximately 6% of the same cohort.48 
The risk of PDAC in carriers with a mutated BRCA2 gene is reported 
to be increased three to sixfold over the general population.49,50

It is presently anticipated that 17%-25% of PDACs entertain ger-
mline or somatic DDR gene mutations such as BRCA1/2, PALB2, and 
ataxia telangiectasia mutated (ATM).10,11,13–17 Dreyer et al estimated 
that 24% of PDACs exhibit a DDR deficiency due in 7% of patients 
to germline mutations of either BRCA1 or BRCA2 or PALB2, in 7% 

to somatic mutations of these genes, and in the remaining patients 
to rare mutations of genes such as ATM.51 Thus, approximately 10%-
20% of PDACs reveal DDR deficiency without BRCA1/2 mutations 
(BRCAness). DSBs detected by the MRN complex provoke the ser-
ine/threonine kinase ATM. ATM plays a pivotal role in sensing DSBs 
and triggering machinery to stop the cell cycle until the DNA damage 
is fixed. Several studies displayed up to 18% of ATM mutations in 
PDACs.12,16,19,23,52 In a mouse model of PDAC, ATM deficiency ac-
celerates genomic instability and metastatic ability.53

3.2 | Platinum sensitivity

Platinum agents crosslink purine bases on DNA, thereby disturbing 
transcription and stopping replication, which lead to DSBs and apop-
tosis.54 Consequently, mutations in HR genes display hypersensitiv-
ity to DNA crosslinking agents (Figure 3). Indeed, PDAC cells with 
BRCA2, FANCC, or FANCG gene mutations exhibit hypersensitivity 
to DNA crosslinking agents such as cisplatin or mitomycin C in vitro 
and in vivo.55 PDAC cases with impaired DNA repair pathways re-
vealed better response to platinum-based chemotherapy and radia-
tion therapy that induce DNA damage than those with normal DNA 
repair pathways.16,56 It is noteworthy that structural variations in 
platinum agents, as has been observed for cisplatin and oxaliplatin, 
can be differences in DDR recognition. These differences in recogni-
tion influence the cytotoxicity of individual platinum agents.57

Sporadic PDAC patients with BRCA1/2 mutation displayed 
worse survival after operation than those with wild-type BRCA.58 
On the other hand, platinum-based chemotherapy notably im-
proved survival outcome in patients with BRCA1/2 mutations.58 
Consequently, the survival differences relative to wild-type patients 
were eliminated.58 In other studies, patients with BRCA1/2 mutation 
displayed the enhanced response rates to platinum-based chemo-
therapy and improved survival outcome.16,59–61 In 25 stage IV PDAC 
patients, an additional cisplatin to the GnP regimen displayed com-
plete responses in 8% and partial responses in 62.5%, with an OS 
of 16.5 months and 20% of patients alive at 2 years.62 Interestingly, 
most patients who responded to this treatment were enriched for 
BRCA1 or BRCA2 mutation-related PDACs.62 Thus, DDR gene muta-
tions confer hypersensitivity to platinum-based chemotherapy.16 By 
the current uniform approach, there is a possibility that patients with 
DDR-mutated tumors (up to 25%) are not optimally treated using 
platinum agents. Identification of these patients early in the course 
of disease leads to improving their survival outcomes. In addition, it 
is possible that patients with DDR-mutated PDACs who have under-
gone resection would have a greater chance of being cured with an 
adjuvant platinum-based regimen.

3.3 | PARP inhibitors

SSBs are the most frequent DNA damage. If they are not repaired ef-
ficiently, they develop into DSBs.44,63 The base excision repair (BER) 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71729
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pathway is an important repair machinery for SSBs (Figure 3). Poly-
ADP ribose polymerase (PARP) is a vital element of the BER pathway 
and plays a crucial role in sensing and binding to single-strand DNA 
damage and results in the activation of catalytic proteins including 
topoisomerases, histones, and PARP itself for the repair of the DNA 
damage.44,64,65 For a cell lacking HR pathway such as BRCA1/2 or 
PALB2 mutations, disability to repair single-strand DNA damage 
can be lethal. Preclinical study has showed evidence that PARP in-
hibitors (PARPi) abrogate DNA repair in HR-defective cells includ-
ing PDACs.66 BRCA1/2 gene mutations have been reported to gift 
hypersensitivity to PARPi in preclinical models and early clinical tri-
als of PDAC.16,67 Clinical study has shown preliminary evidence that 
PARP inhibitors and platinum-based agents have notable anti-cancer 
effects in BRCA-mutant PDACs.51 Lowery et al68 reported three par-
tial responses and one prolonged stable disease among 15 BRCA-
mutated PDACs treated with PARPi-based therapy. Kaufman et al67 
reported one complete response and four partial responses among 
23 BRCA-mutated PDACs treated with olaparib (PARPi) monother-
apy. Shroff et al69 reported a 16% response (one complete response 
and two partial responses) to rucaparib (PARPi) monotherapy in 19 
BRCA-mutated PDACs with more than 1 prior systemic treatment. 

Of interest, patients with somatic BRCA mutations also displayed a 
sensitivity to rucaparib (PARPi). A recent phase III trial of olaparib 
(the POLO trial) displayed considerable improvement in PFS in ger-
mline BRCA-mutated metastatic PDAC patients who were sensitive 
to platinum agents in first-line therapy.70 In addition, a recent study 
reported that ATM-mutant PDAC cells were responsive to the olapa-
rib (PARPi) or the ATR inhibitor VE-822, and showed the that treat-
ment with either of these inhibitors induced intense accumulation 
of DSBs and diminished tumor cell viability in vitro and in vivo.71 
Thus, the subtype of PDAC patients with DDR deficiency is sensitive 
to platinum analogs and PARP inhibitors. Up to 40% of PDAC pa-
tients with germline DDR mutation do not have any significant fam-
ily history to imply a predisposing disease such as breast or ovarian 
cancer.72 The present NCCN guidelines note that germline testing is 
recommended for all patients with PDAC.

3.4 | DNA mismatch repair protein deficiency

Whole-genome sequencing and whole-exome sequencing of 
PDACs have revealed a mean mutation load of 1.8 and 1.1 

F I G U R E  3   Overview of DNA damage 
repair pathways. A single-strand break 
(SSB) is repaired by base excison repair 
(BER) via poly-ADP ribose polymerase 
(PARP). PARP is a vital element of 
the BER pathway and plays a crucial 
role in sensing and binding to single-
strand DNA damage and results in the 
activation of catalytic proteins including 
topoisomerases, histones, and PARP itself 
for the repair of the DNA damage. For 
a cell that has a defective homologous 
recombination (HR) pathway such as 
BRCA1/2 mutations (BRCAness), the loss 
of ability to repair single-strand DNA 
damage (PARP inhibition) could be lethal. 
Double-strand breaks (DSBs) are fixed 
by HR via BRCA1/2. BRCA1/2-deficient 
cells without HR ability store DBSs, 
resulting in genomic instability and an 
increased predisposition to play malignant 
behaviors. Platinum agents crosslink 
purine bases on DNA, thereby disturbing 
transcription and stopping replication, 
which lead to DSBs and the apoptosis. 
Cells with mutated HR genes (BRCAness) 
display hypersensitivity to crosslinking 
agents such as platinum agents
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mutation per megabase (Mb), respectively.73 Only 5% of PDACs 
exhibit the hypermutated phenotype.73 Rare tumors with >12 so-
matic mutations/Mb hold mismatch repair (MMR) deficiency, the 
cause of which has been associated with MSH2 gene promoter de-
letion or mutation or MLH1 gene promoter methylation.73 Tumors 
with a high tumor burden (4-12 mutations/Mb) often hold HR re-
pair deficiency.73 The identification of these hypermutated PDACs 
is important because patients with these tumors are applicable for 
immunotherapy.73 After testing 12 019 cancers, the prevalence of 
microsatellite instability was found to be around 5% in many solid 
tumors, while in PDAC it was only 2%.74 These MMR-deficient 
tumors carried high neo-antigen load and displayed consider-
ably improved responses to programmed cell death 1 blockade.74 
Immunotherapy is a rapidly progressing field in cancer treatment. 
Among the immunotherapy modalities, immune checkpoint inhibi-
tion has displayed considerable success in several solid tumors, but 
there is still no significant benefit in PDAC. Immune checkpoint 
inhibition has been shown to be hopeful in MMR-deficient colo-
rectal and other cancers.75,76 Le et al74 showed that solid tumors 
with MMR deficiency are response to immune checkpoint block-
ade with pembrolizumab. Objective response by radiographic as-
sessment was found in 53% of patients with MMR deficiency, and 
complete response was detectable in 21%.74 Pembrolizumab has 
subsequently been approved by the FDA for solid tumors with 
MMR deficiency, regardless of tissue of origin. Furthermore, the 
clinical benefit of pembrolizumab was confirmed in patients with 
microsatellite instability-high/MMR-deficient non-colorectal can-
cers including pancreatic cancer.77 Even in patients with advanced 
non-colorectal cancer who experienced failure with prior therapy, 
objective response rate to pembrolizumab and the median overall 
survival were 34.3% and 23.5 months, respectively.77

4  | CONCLUSIONS

Advances in precision medicine for PDACs according to the genet-
ics and molecular biology of this disease may represent the next 
alternative approach to overcome the heterogeneity of different 
patients and improve survival outcomes for this poor prognostic 
disease. Reclassifying tumors into subtypes according to the ge-
netic and molecular profiles of PDAC may guide novel treatment 
decisions with biological and prognostic relevance. In particular, 
DNA repair dysfunction is a determinant of sensitivity to platinum 
agents and PARPi. The COMPASS study using real-time WGS and 
RNA sequencing to identify molecular and genetic characteriza-
tion of PDAC and facilitate better treatment selection for PDACs 
is ongoing.20 A deep understanding of the molecular and cellu-
lar crosstalk in the tumor microenvironment helps to establish 
scientifically rational treatment strategies for cancers that show 
specific molecular profiles. A combination of targeted therapies 
guided by molecular and genetic characterization of PDAC will 
be the ultimate therapeutic approach. Here we summarize the 
molecular subtypes or actionable gene mutations for precision 

medicine in PDAC patients, where we believe breakthroughs will 
soon emerge to fight this deadly disease.
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