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abstract

PURPOSE Early detection of ovarian cancer, the deadliest gynecologic cancer, is crucial for reducing mortality.
Current noninvasive risk assessment measures include protein biomarkers in combination with other clinical
factors, which vary in their accuracy. Machine learning can be applied to optimizing the combination of these
features, leading to more accurate assessment of malignancy. However, the low prevalence of the disease can
make rigorous validation of these tests challenging and can result in unbalanced performance.

METHODSMIA3G is a deep feedforward neural network for ovarian cancer risk assessment, using seven protein
biomarkers along with age and menopausal status as input features. The algorithm was developed on a
heterogenous data set of 1,067 serum specimens from women with adnexal masses (prevalence = 31.8%). It
was subsequently validated on a cohort almost twice that size (N = 2,000).

RESULTS In the analytical validation data set (prevalence = 4.9%), MIA3G demonstrated a sensitivity of 89.8%
and a specificity of 84.02%. The positive predictive value was 22.45%, and the negative predictive value was
99.38%. When stratified by cancer type and stage, MIA3G achieved sensitivities of 94.94% for epithelial ovarian
cancer, 76.92% for early-stage cancer, and 98.04% for late-stage cancer.

CONCLUSION The balanced performance of MIA3G leads to a high sensitivity and high specificity, a combination
that may be clinically useful for providers in evaluating the appropriate management strategy for their patients.
Limitations of this work include the largely retrospective nature of the data set and the unequal, albeit random,
assignment of histologic subtypes between the training and validation data sets. Future directions may include
the addition of new biomarkers or other modalities to strengthen the performance of the algorithm.
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INTRODUCTION

Adnexal masses are a common gynecologic condition.
With approximately 10%ofwomenundergoing surgery for
an adnexal mass during their lifetime, the research efforts
to date have focused on tools designed to identify which of
these masses are cancerous.1,2 Ovarian cancer is the
deadliest gynecologic cancer, and therefore, prompt and
correct identification of malignancies is crucial. However,
the incidence of ovarian cancer is still relatively low.3

Approximately 85% of masses in premenopausal
women will be benign, so testing that can accurately
differentiatemalignantmasses from those that require less
extensive intervention and treatment is of clinical value.1

Identification of a pelvicmassmay occur during physical
examination but more likely via imaging, typically with
transvaginal ultrasonography. Biopsy is usually avoided
to reduce the risk of disrupting the cyst wall and allowing
any potential malignant cells to disseminate.4 When a
mass shows clear indications of malignancy, the patient

benefits from appropriate referral to a gynecologic on-
cologist for surgery, staging, and any further treatment.5

Beyond imaging, additional methods of assessing ad-
nexal masses include the use of biomarker-based blood
tests, such as cancer antigen 125 (CA125) and human
epididymis protein 4 (HE4). Relying on these traditional
methods to stratify the oncologic risk of adnexal masses
has several challenges. First, a small set of biomarkers
may not be able to ascertain the physiology of certain
ovarian cancers because different histologic subtypes
are known to present with different biomarker
patterns.6-8 Second, the process of using a set threshold
for each biomarker can become cumbersome when
multiple markers are added to the analysis. Third, this
process may be further complicated by the age and
menopausal status of the patient, which can affect the
baseline or so-called normal level of these proteins.

Machine learning–based classification models can
address these limitations, which is why their use in
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early cancer detection and risk stratification is increasing.9

These models are capable of incorporating a long list of
protein biomarkers along with clinical/health features as
inputs to generate a unified score for risk assessment.
However, building these models can be challenging be-
cause of the low incidence of ovarian cancer. Having a
small set of positive samples for training can result in a
skewed model with a high specificity but a low sensitivity.
Developing a balanced classification model with high
sensitivity and specificity is crucial, especially given the
mortality implications of false negatives (FNs) and the
burden on the health care system and the patient of false
positives (FPs).

This study describes the development and validation
process used to establish test performance metrics for
MIA3G, a new machine learning algorithm to assess
ovarian cancer risk in patients with an adnexal mass.
Powered by a robust data set inclusive of a large number of
malignancies for training and testing, this algorithm has
demonstrated balanced performance in a large analytical
validation set.

METHODS

Algorithm Description

The MIA3G assay is an algorithm developed with a pro-
prietary application of machine learning methods whose
purpose is to stratify women with an ovarian mass into two
categories—low and elevated risk of malignancy. The al-
gorithm uses supervised learning with known histopa-
thology diagnoses (malignant and nonmalignant) as the
labels for algorithm training. MIA3G is a classification deep
feedforward neural network that uses the following features
as inputs: age, menopausal status, and seven protein
biomarker values for each patient. The neural network has
multiple hidden layers each with their own weighted nodes
and activation functions. The neural network is regularized
using node dropout to reduce overfitting where a

percentage of the nodes are randomly omitted from each
hidden layer during training.10 The final layer of the neural
network has two nodes and uses the softmax function to
assign a binary classification: low or elevated risk of ma-
lignancy. Additional details of methods used to reduce
overfitting and oversampling are provided section S1.1. of
Appendix 1.

Protein Biomarkers and Input Features

Seven biomarkers are used in the MIA3G algorithm:
CA125, HE4, beta-2 microglobulin, apolipoprotein A-1,
transferrin, transthyretin, and follicle-stimulating hormone.
CA125 and HE4 were chosen for their overexpression in
many types of ovarian cancers.11,12 The remaining bio-
markers have demonstrated ability to detect malignancy in
patients with low serum CA125 and/or HE4, such as early-
stage malignancies, as well as reducing FPs in benign
cases for which serum CA125 and/or HE4 were elevated for
other reasons.13-16 These features have been examined for
their correlation with each other and their contribution
(Appendix Fig A1). Biomarker assays are performed using
the Roche cobas 6000 analyzer, according to the manu-
facturer’s instructions for use (Roche Corporation, Pleas-
anton, CA). In addition to these biomarkers, the patient’s
age and menopausal status are used as categorical input
features. Menopause is defined as the absence of menses
for ≥ 12 months.

Studies and Sample Sets

To create a highly generalizable classification algorithm, it is
essential to train it on a diverse set of specimens with a wide
reference range of biomarkers and other features. To this
end, a heterogenous set of specimens was first created by
combining samples from several prospective and retro-
spective studies, all of which underwent Institutional Re-
view Board approval and in accordance with appropriate
regulatory and ethical guidelines (Table 1).

CONTEXT

Key Objective
Our objective was to examine the potential of a noninvasive machine learning tool to accurately assess the risk of ovarian

malignancy in patients with pelvic masses.
Knowledge Generated
The deep neural network was trained on a large heterogenous data set obtained from patients who had presented with adnexal

masses and used seven serum proteins, age, and menopausal status as inputs. In the analytical validity data set, which
simulated real-world prevalence for ovarian malignancy (4.9%), the algorithm demonstrated a sensitivity of 89.8%, a
specificity of 84.0%, a positive predictive value of 22.5%, and a negative predictive value of 99.5%.

Relevance
Ovarian cancer is the deadliest gynecologic cancer, andmost cases are diagnosed at a late stage, which has low survival rates.

Current noninvasive risk assessment measures vary in their accuracy, so the balanced sensitivity and specificity of this
algorithm will be a clinically useful combination for providers evaluating appropriate care strategies for patients presenting
with a pelvic mass.
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Broadly, the inclusion criteria for these studies were as
follows:

• Patient age ≥ 18 years
• Informed consent provided by the patient to participate

in research
• Patient agreeable to phlebotomy
• Patient had a documented pelvic mass that was planned

for surgical intervention within 3 months of imaging. The
pelvic mass was confirmed by imaging (computed to-
mography, ultrasonography, or magnetic resonance
imaging) before enrollment.

Exclusion criteria included a diagnosis of malignancy in the
previous 5 years (except nonmelanoma skin cancers).
Exclusion criteria also included pelvic surgery within six
weeks before enrollment in the study.

This heterogenous set comprised a total of 3,067 samples
(Fig 1). The composite set was randomly broken into two
nonoverlapping sets such that

• One thousand sixty-seven samples were used for de-
velopment of the algorithm and formed the training and
testing set.

• The remaining 2,000 samples were used for analytical
validation.

• Each set roughly received samples from every study
proportionate to the size of the study.

• The validation set had a prevalence rate of approximately
5% (98 malignant and 1,902 benign samples).

Although the sample size and prevalence of malignancy
were fixed, the sample assignment to each set was com-
pletely random, performed using a random number gen-
erator to remove any potential bias. The above binning of
samples into development and validation sets ensures that
not only is the assignment of samples fair and random, but
it also allows the algorithm to be trained/tested and then
validated on sets that have an optimal level of similarities
(and differences). Table 2 details the clinicopathologic
makeup of each set including age, pathology, histologic
subtypes, and stages.

Data and Ethics

All data were obtained from Institutional Review Board–
approved trials, from adult patients who provided informed
consent to participate in research. Data obtained in this
analysis are proprietary to Aspira Women’s Health Inc.

Training and Testing

The MIA3G algorithm was developed on 1,067 specimens
composed of proportionate samples from every study

TABLE 1. Sample Set Composition
Study IRB/Protocol No. No.

OVAWatch Prospective
Clinical Study17

RP 08-2020, RP 05-2019, RP
04-2019

35

Aspira Specimen (Serum)
Bank

RP 01-2016/Pro00027159 290

OVA1 Postmarket Study18 OVA1-PS1-CO4 1,385

OVA500 Study19 OVA2-002-CO3 511

University of Washington
Study20

OVA1-7788 218

OVA1 Study21 OVA1-001-CO1 574

BioBank22 SHARE v5.2 10.May.2021,
IRB#: 2017-198

54

Total 3,067

Abbreviation: IRB, Institutional Review Board.

Samples (N = 3,067)

Training and 
testing set
(n = 1,067)

Training set—80%
Total samples (n = 853)
  M                    (n = 283)
  B                     (n = 570)

Build the classification
model on

the training set

Testing set—20%
Total samples   (n = 214)
  M                      (n = 56)
  B                     (n = 158)

Test the model on
the testing set

Analytical validation set
Total samples (n = 2,000)
  M                        (n = 98)
  B                     (n = 1,902)

Blind the sample 
IDs and their 

histology results

Run the model on the blinded
analytical validation set

Calculate performance
metrics

FIG 1. Workflow of the
development and valida-
tion of the algorithm. B,
benign samples; M, ma-
lignant samples.
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(Fig 1), with 339 malignant and 728 benign samples
resulting in a prevalence of 31%. This set was randomly
divided into a training set (n = 853) and a nonoverlapping
testing set (n = 214), representing 80% and 20% of the
available samples, respectively. The algorithm was built on
the training set and tested on the testing set to obtain an initial
assessment of its performance. The performance metrics for
the test data set are provided in Appendix Table A1.

The numbers of malignant and benign specimens were
further balanced for algorithm training using an adaptation of
the synthetic minority oversampling technique (SMOTE) that
balances the minority and majority classes by creating

synthetic observations near the decision boundary (called
Borderline-SMOTE).23 The resulting data set has an equiv-
alent number of malignant and benign specimens, where
the synthetic observations are close to the decision
boundary. In the case of MIA3G, the synthetic observations
improve the algorithm’s ability to discern between malignant
and benign specimens. To improve malignancy detection, a
modestly higher weight was attached to the positive class
during algorithm training in MIA3G. Weighing the malignant
samples during training improved on the gains from bal-
ancing using the Borderline-SMOTE in positive detection,
while having a negligible impact on benign discernment.

TABLE 2. Clinicopathologic Breakdown of Training, Test, and Validation Data Sets

Menopausal Status

Training Set Test Set Validation Set

All
(n = 853)

Pre
(n = 410)

Post
(n = 443)

All
(n = 214)

Pre
(n = 105)

Post
(n = 109)

All
(n = 2,000)

Pre
(n = 1,193)

Post
(n = 807)

Age, years, mean 51.3 40.3 61.4 50.8 40.5 60.8 47.5 39.5 59.4

Pathology diagnosis, No. (%)

Benign ovarian conditions 548 (64.2) 319 (77.8) 229 (51.7) 152 (71.0) 86 (81.9) 66 (60.6) 1,836 (91.8) 1,136 (95.2) 700 (86.7)

Low malignant potential
(borderline)

25 (2.9) 9 (2.2) 16 (3.6) 6 (2.8) 1 (1.0) 5 (4.6) 66 (3.3) 31 (2.6) 35 (4.3)

Epithelial primary ovarian cancer 200 (23.4) 49 (12.0) 151 (34.1) 45 (21.0) 12 (11.4) 33 (30.3) 79 (4.0) 18 (1.5) 61 (7.6)

Nonepithelial primary ovarian
cancer

41 (4.8) 19 (4.6) 22 (5.0) 5 (2.3) 3 (2.9) 2 (1.8) 6 (0.3) 4 (0.3) 2 (0.2)

Non-primary malignancies 39 (4.6) 14 (3.4) 25 (5.6) 6 (2.8) 3 (2.9) 3 (2.8) 13 (0.7 4 (0.3) 9 (1.1)

Stage (primary ovarian
malignancies), No. (%)

Stage I 90 (37.3) 30 (44.1) 60 (34.7) 15 (30.0) 6 (40.0) 9 (25.7) 16 (18.8) 7 (31.8) 9 (14.3)

Stage II 33 (13.7) 10 (14.7) 23 (13.3) 5 (10.0) 1 (6.7) 4 (11.4) 10 (11.8) 4 (18.2) 6 (9.5)

Stage III 83 (34.4) 16 (23.5) 67 (38.7) 24 (48.0) 7 (46.7) 17 (48.6) 46 (54.1) 8 (36.4) 38 (60.3)

Stage IV 17 (7.1) 4 (5.9) 13 (7.5) 4 (8.0) 0 (0.0) 4 (11.4) 5 (5.9) 0 (0.0) 5 (7.9)

Not staged 18 (7.5) 8 (11.8) 10 (5.8) 2 (4.0) 1 (6.7) 1 (2.9) 8 (9.4) 3 (13.6) 5 (7.9)

Histologic subtype (primary ovarian
malignancies), No. (%)

EOC

Serous 105 (43.6) 21 (30.9) 84 (48.6) 25 (50.0) 6 (40.0) 19 (54.3) 46 (54.1) 7 (31.8) 39 (61.9)

Endometrioid 31 (12.9) 10 (14.7) 21 (12.1) 5 (10.0) 4 (26.7) 1 (2.9) 10 (11.8) 3 (13.6) 7 (11.1)

Mucinous 21 (8.7) 9 (13.2) 12 (6.9) 7 (14.0) 1 (6.7) 6 (17.1) 6 (7.1) 2 (9.1) 4 (6.3)

Clear cell 18 (7.5) 4 (5.9) 14 (8.1) 3 (6.0) 1 (6.7) 2 (5.7) 11 (12.9) 4 (18.2) 7 (11.1)

Mixed 12 (5.0) 2 (2.9) 10 (5.8) 4 (8.0) 0 (0.0) 4 (11.4) 2 (2.4) 1 (4.5) 1 (1.6)

Poorly differentiated 6 (2.5) 1 (1.5) 5 (2.9) 1 (2.0) 0 (0.0) 1 (2.9) 3 (3.5) 1 (4.5) 2 (3.2)

Transitional cell 3 (1.2) 1 (1.5) 2 (1.2) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Others 4 (1.7) 1 (1.5) 3 (1.7) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.2) 0 (0.0) 1 (1.6)

Non-EOC

Sex cord stromal 20 (8.3) 10 (14.7) 10 (5.8) 1 (2.0) 1 (6.7) 0 (0.0) 5 (5.9) 3 (13.6) 2 (3.2)

Germ cell 11 (4.6) 8 (11.8) 3 (1.7) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.2) 1 (4.5) 0 (0.0)

Sarcoma/carcinosarcoma 9 (3.7) 0 (0.0) 9 (5.2) 4 (8.0) 2 (13.3) 2 (5.7) 0 (0.0) 0 (0.0) 0 (0.0)

Others 1 (0.4) 1 (1.5) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Abbreviation: EOC, epithelial ovarian cancer.
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Several algorithms and software libraries were used to
explore which technique would return the best risk clas-
sification for ovarian cancer. The caret library in R was used
to screen 190 classification algorithms on the data.24 Most
algorithms in the caret library did not successfully classify
ovarian cancer with a high level of sensitivity. Deep feed-
forward neural networks demonstrated a high and bal-
anced sensitivity, negative predictive value (NPV), and
specificity, leading to the selection of this algorithm for the
development of MIA3G. Network hyperparameters evalu-
ated during algorithm training and testing included the
following: network architectures, activation functions, loss
functions, node dropout for algorithm regularization, and
learning rates. The final MIA3G algorithm is a network with
these hyperparameters optimized to stratify malignancy

risk. This algorithm was locked and used for subsequent
analytical validation.

Analytical Performance Validation

Analytical validation was performed on 2,000 samples with
98 malignant and 1,902 benign specimens, resulting in a
prevalence of 4.9%. Once the algorithmwas developed and
locked in a cloud-based Health Insurance Portability and
Accountability Act–compliant infrastructure, it was then run
on the analytical validation samples in a blinded manner so
that the person running the algorithm was blinded to the
sample identities and their pathology results. Two honest
brokers (HB1 and HB2) were used to deidentify the
samples, run the algorithm blinded, compare the classifi-
cation of samples with the histology results, and then issue

HB1 generates deidentifying codes
for validation rounds and labels the

specimens with these codes

Code numbers/ID
keys generated

HB2 compares
MIA3G results

with histology results

HB2 prepares and submits
 independent report to
the Medical Director

Resolution work
performed on any
discrepant results

HB1 provides the keys to HB2
who uses them to unblind

samples
Bioinformaticist runs

MIA3G on the deidentified
samples and gives results to

HB2

FIG 2. Workflow of the
analytical validation exer-
cise. HB, honest broker.

TABLE 3. Performance of MIA3G in the Validation Data Set
Group Malignant Benign TP TN FP FN Sens (%) Spec (%) PPV (%) NPV (%)

All 98 1,902 88 1,598 304 10 89.80 84.02 22.45 99.38

Premenopausal 26 1,167 21 1,072 95 5 80.77 91.86 18.10 99.54

Postmenopausal 72 735 67 526 209 5 93.06 71.56 24.28 99.06

EOC 79 — 75 — — 4 94.94 — — —

Non-EOC 6 — 1 — — 5 16.67 — — —

Stage I 16 — 11 — — 5 68.75 — — —

Stage II 10 — 9 — — 1 90.00 — — —

Stage III 46 — 45 — — 1 97.83 — — —

Stage IV 5 — 5 — — 0 100.00 — — —

Early stage (I and II) 26 — 20 — — 6 76.92 — — —

Late stage (III and IV) 51 — 50 — — 1 98.04 — — —

Not staged 8 — 6 — — 2 75.00 — — —

Nonprimary 13 — 12 — — 1 92.31 — — —

LMP — 66 — 33 33 — — 50.00 — —

Other benigns — 1,836 — 1,565 271 — — 85.24 — —

NOTE. The number of cases or metrics not applicable for that category are displayed by —.
Abbreviations: EOC, epithelial ovarian cancer; FN, false negative; FP, false positive; LMP, low malignant potential/borderline tumor; NPV,

negative predictive value; PPV, positive predictive value; Sens, sensitivity; Spec, specificity; TN, true negative; TP, true positive.

Validation of a Deep Neural Network for Ovarian Cancer Detection

JCO Clinical Cancer Informatics 5



an independent report containing performance metrics on
the basis of their findings (Fig 2).

RESULTS

Performance metrics along with counts of true positives,
true negatives, FPs, and FNs from analytical validation are
provided in Table 3. Receiver operating characteristic and
precision-recall curves are also plotted (Fig 3). Overall, a
sensitivity of 89.8% and a specificity of 84.02% were
achieved, with an area under the curve value of 0.938.
MIA3G demonstrated an NPV of 99.38%. The positive
predictive value was lower at 22.45% because of the low
prevalence of disease (approximately 5%) in this data set.
Metrics have also been provided for specimens stratified by
menopausal status, cancer stage, cancer type, and ma-
lignancy potential. MIA3G was able to detect 20 of 26 early-
stage cancers (76.92% sensitivity) and misclassified only
one late-stage malignancy (98.04% sensitivity). The algo-
rithm also correctly classified nine of the 10 metastatic
ovarian cancer cases (90% sensitivity) and 75 of 79 in-
stances of epithelial ovarian cancer, the most common type
of ovarian cancer (94.94% sensitivity).

DISCUSSION

A thorough and rigorous development process combined
with comprehensive analytical validation is the cornerstone
of any clinical laboratory–developed test. It is the founda-
tion for setting quality standards and illustrates the per-
formance and reliability of the underlying machinery.
MIA3G has undergone a rigorous and blinded analytical

validation process that meets the highest regulatory stan-
dards in evaluating all aspects of the test.

After assessing several classification algorithms, MIA3G
was trained on neural networks with the most balanced
performance and then tested on a heterogeneous cohort.
The model was optimized to reduce overfitting, and an
oversampling technique was used to achieve a balanced
performance, which was higher than all other methods that
were explored (Appendix Table A2). The training and
testing stage used. 1,050 specimens with. 30% positive
specimens indicative of a high-risk ovarian cancer pop-
ulation. This development was followed by a detailed val-
idation process on 2,000 specimens that show
performance in a low prevalence population (approximately
5%), making the algorithm highly generalizable. MIA3G has
also been meticulously validated for its repeatability and
reproducibility (Appendix Table A3).

The potential clinical utility of MIA3G in the evaluation of
adnexal masses comes from its balanced performance,
which is facilitated by three development features: a large
malignant set used in training and testing (n = 339), the
SMOTE technique applied to further boost the positive set,
and a higher weight attached to the positive class. These
features lead to an algorithm with a high sensitivity, a vital
feature that shows the high mortality of ovarian cancer,
while retaining a high specificity. The high specificity drives
a high NPV in a population with a lower disease prevalence
where clinical management options may include conser-
vative management and at the same time minimizes the
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FIG 3. ROC and precision-recall curves for the algorithm. Area under the receiver operating characteristic curve: 0.938, area under the precision-recall
curve: 0.700. n, negative. P, positive; ROC, receiver operating characteristic.
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potentially lethal implications of FNs in the context of
cancer detection.

Limitations of this study include the nature of the devel-
opment data set. Although MIA3G was developed and
validated on a highly diverse cohort obtained by merging
several studies, most of these studies were retrospective in
design with data collected from patients who were con-
firmed to have an adnexal mass and scheduled for surgery
at the time of diagnosis. To address this, prospective trials
are currently underway to validate the algorithm’s perfor-
mance in patients with a variety of clinical presentations.

In addition, because of the random assignment of samples
to the training and validation data sets, there was no way to
match the distribution of cancer types between sets
(Table 2). For example, by happenstance, five of the tumors
in the validation set were stromal tumors and one was a
germ cell tumor, subtypes known to have a different bio-
marker presentation compared with the more common
epithelial types. In the test set, however, MIA3G demon-
strated 100% sensitivity in nonepithelial malignancies, as
sarcomas and carcinosarcomas comprised 4 of 5 non-
epithelial malignancies in that set (Appendix Table A1).
These cancer types present more similar to epithelial ovarian
cancer in terms of biomarker distribution. Nonepithelial

subtypes are rare presentations of ovarian cancer, com-
prising approximately 10% of all ovarian malignancies,25 so
their particularly low incidence presents a challenge with
regard to generating sufficient data for training and validating
machine learning algorithms. Future directions include
evaluating how to train an algorithm on multiple subtypes
that express different biomarker patterns and achieve
consistent test performance across these subtypes.

The application of a deep neural network algorithm to bio-
marker testing opens significant areas for future study.
Understanding where the algorithm fails provides an op-
portunity for deeper exploration into alternate biologic ex-
planations for FP and FN results. For example, there is a
possibility that some combination of biomarkers may be
identifying cancers outside of the ovaries and therefore
correctly suggesting malignancy, albeit not of ovarian origin.
As a step for improvement, expanding the number and types
of features that feed into the algorithm may help further
enhance the sensitivity and specificity of the test. Preliminary
efforts are underway to evaluate the addition of novel bio-
markers and other modalities such as microRNA, cell tumor
DNA, and other genomic identifiers that may strengthen the
algorithms’ ability to both detect and rule out malignancy and
advance the diagnostic ability of noninvasive testing.
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APPENDIX

APPENDIX 1.

Supplementary 1: Methods

S1.1. Limiting overfitting and oversampling. Overfitting during
model building was mitigated using randomized node dropout. Node
dropout randomly drops units with their connections from the neural
network during training. This prevents units from coadapting too much,
and excess weight is given to specific nodes. This significantly reduces
overfitting and gives major improvements over other regularization
methods (Hinton G, et al: J Machine Learn Res 15:1929-1958, 2014).

We also adopted the BLS synthetic minority oversampling technique
(SMOTE) for this purpose. Experiments conducted by Han et al have
shown that the BLS-SMOTE approach achieves a better true-positive
rate and F-value than SMOTE and random oversampling methods
when working with imbalanced data. For every minority example, its k
nearest neighbors from the same class are identified, then some
examples are randomly selected from them according to the over-
sampling rate (Han H, et al, in Huang DS, et al [eds]: Volume Part I.
Berlin, Heidelberg, Springer-Verlag, 2005, pp 878-887). After that,
new synthetic examples are generated along the line between the
minority example and its selected nearest neighbors. Unlike the
existing oversampling methods, BLS-SMOTE oversamples the bor-
derline minority examples, which in many cases, in our cohort, are
early-stage cancers.

S1.2. Feature selection

S1.2.1. Feature correlation. We examined all the features for any
strong correlation in the context of our cohort by performing a cor-
relation analysis between the features (Appendix Fig A1).

Quite understandably, age andmenopausal status are highest correlated
features that the algorithm uses followed by follicle-stimulating hormone
(FSH) protein biomarker, which is correlated with age and menopausal
status. Removing menopausal status led to a modest decrease in al-
gorithm performance metrics (n = 10 different data random assess-
ments, a mean decrease of 5.8% in sensitivity in the test data, specificity
remained equivalent). Although age and menopausal status are cor-
related, it was deemedworth including both for the retention of sensitivity
in algorithm performance shown in the test data set.

Similarly, removing FSH led to roughly equivalent sensitivity; however,
there was a 3.5% decrease in specificity. Again, it was deemed worth
including FSH for the retention of algorithm performance shown in the
test data set. There were no other correlations in the data that were
either ≥ 0.5 or ≤ –0.5.

S1.2.2. Feature contribution. We also assessed variable impor-
tance for each of the input features of the algorithm (Appendix Fig A2).

Permutation-based variable importance analysis was used. As the
permutations are stochastic, some variability can be anticipated in the
resulting importance depending on data seeding. The plot below is the
representation of themean 25 data random assignment seeds. Human
epididymis protein 4, cancer antigen 125, menopausal status, and
apolipoprotein A-1 age were the four most important features. These
data along with the information from the correlation exploration suggest
that all biomarkers and input variables are contributing in a meaningful
manner to a variable extent.

Supplementary 2: Results

S2.1. Other machine learning methods. We also evaluated
many other algorithms for their performance on the same data set.
Appendix Table A1 lists the performance of other machine learning
algorithms included in this analysis. Neural networks show the highest
sensitivity and negative predictive value (the two metrics that we
optimized so as to minimize false negatives, a decision on the basis of
the high mortality of ovarian cancer, particularly when discovered at a
late stage).

Supplementary 3: Precision

The MIA3G algorithm and individual analyte concentration mea-
surements were rigorously evaluated for precision, that is, repeatability
and reproducibility according to Clinical and Laboratory Standards
Institute standard EP05-A2 (Tholen DW, et al: Clinical and Laboratory
Standards Institute, 2014, pp 1-39). The precision study for MIA3G
was designed to establish its performance across and within runs,
days, and operators. The exercise was configured to be run by two
individual laboratory operators to assess the contribution of between-
operator variability in MIA3G. Each sample was run in triplicate, at two
separate times per day with a minimum of 2 hours apart to evaluate
variability of MIA3G within and across runs (ie, intrareproducibility). In
addition, this process was repeated across 4 days to evaluate within
and across day deviations (ie, interreproducibility).

Repeatability and reproducibility of MIA3G probability risk score
were quantified in terms of %CV (percentage of coefficient of
variation). CV captures the extent of variability of data in relation to
the mean of the population tested. It is the ratio of the standard
deviation to the mean and is used for comparing the degree of
variation from one data series with another, even if the means are
drastically different from one another. A value of 10% CV or lower is
a widely accepted degree of variability. Within experiment, %CV
captures repeatability, and across experiment, %CV demonstrates
reproducibility (aka precision). MIA3G%CV is provided in Appendix
Table A2 for three metrics: runs, days, and operator. A low %CV
(high repeatability and reproducibility) was demonstrated, with all
values being below or around 10% CV. Individual biomarkers also
confirmed low variability at all three levels measured (data not
shown).
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TABLE A2. Performance of Other Methods in ComparisonWith Neural
Networks, Which Demonstrated Highest Sensitivity and NPV
Model Sens Spec PPV NPV

C5.0 82.65 91.06 32.27 99.03

Naive Bayesian classifier 72.45 88.49 24.48 98.42

Boosted logistic regression 86.73 81.13 19.14 99.16

SVM with linear kernel 83.67 82.54 19.81 98.99

Boosted smoothing spline 79.59 86.54 23.35 98.80

Generalized linear model 83.67 83.39 20.60 99.00

Self-organizing maps 77.17 80.54 16.10 98.65

Heteroscedastic
discriminatory analysis

59.18 98.26 63.74 97.90

Neural network 89.80 84.02 22.45 99.38

Abbreviations: NPV, negative predictive value; PPV, positive
predictive value; Sens, sensitivity; Spec, specificity; SVM, support
vector machine.

TABLE A3. %CV Measurement of the MIA3G for Runs, Days, and
Operators by Sample (pooled serum)
Metric Sample

Serum pool ID 25 26 27

MIA3G risk score

%CV within runs 10.6 6.20 6.60

%CV across runs 0.0 0.00 0.90

%CV within days 10.7 6.30 6.80

%CV across days 0.0 3.00 3.60

%CV within operators 10.6 6.20 6.70

%CV across operators 0.0 0.00 0.00

%CV overall error 10.4 6.11 6.59

Abbreviation: %CV, coefficient of variation.

TABLE A1. Performance of MIA3G in the Test Data Set

Group Malig Benign TP TN FP FN
Sens
(%)

Spec
(%) PPV (%) NPV (%)

All 56 158 51 139 19 5 91.07 87.97 72.86 96.53

Premenopausal 18 87 16 83 4 2 88.89 95.40 80.00 97.65

Postmenopausal 38 71 35 56 15 3 92.11 78.87 70.00 94.92

EOC 45 — 42 — — 3 93.33 — — —

Non-EOC 5 — 5 — — 0 100.00 — — —

Stage I 15 — 12 — — 3 80.00 — — —

Stage II 5 — 5 — — 0 100.00 — — —

Stage III 24 — 24 — — 0 100.00 — — —

Stage IV 4 — 4 — — 0 100.00 — — —

Early stage (I and II) 20 — 17 — — 3 85.00 — — —

Late stage (III and IV) 28 — 28 — — 0 100.00 — — —

Not staged 2 — 2 — — 0 100.00 — — —

Not primary to the ovary 6 — 4 — — 2 66.67 — — —

LMP — 6 — 3 3 — — 50.00 — —

Other benigns — 152 — 136 16 — — 89.47 — —

NOTE. The number of cases or metrics not applicable for that category are displayed by —.
Abbreviations: EOC, epithelial ovarian cancer; FN, false negative; FP, false positive; LMP, low malignant potential/borderline tumor; NPV,

negative predictive value; PPV, positive predictive value; Sens, sensitivity; Spec, specificity; TN, true negative; TP, true positive.
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FIG A1. (A) Correlation matrix of the features used in the MIA3G algorithm. (B) Variable importance analysis of the features used in the MIA3G
algorithm. ApoA1, apolipoprotein A1; B2M, beta-2 microglobulin; CA125, cancer antigen 125; FSH, follicle-stimulating hormone; HE4, human
epididymis protein 4; Meno, menopausal status; TRF, transferrin; TT, transthyretin.
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