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Abstract
Understanding the etiology of metastasis is very important in clinical perspective, since it is

estimated that metastasis accounts for 90% of cancer patient mortality. Metastasis results

from a sequence of multiple steps including invasion and migration. The early stages of

metastasis are tightly controlled in normal cells and can be drastically affected by malignant

mutations; therefore, they might constitute the principal determinants of the overall meta-

static rate even if the later stages take long to occur. To elucidate the role of individual muta-

tions or their combinations affecting the metastatic development, a logical model has been

constructed that recapitulates published experimental results of known gene perturbations

on local invasion and migration processes, and predict the effect of not yet experimentally

assessed mutations. The model has been validated using experimental data on transcrip-

tome dynamics following TGF-β-dependent induction of Epithelial to Mesenchymal Transi-

tion in lung cancer cell lines. A method to associate gene expression profiles with different

stable state solutions of the logical model has been developed for that purpose. In addition,

we have systematically predicted alleviating (masking) and synergistic pairwise genetic

interactions between the genes composing the model with respect to the probability of

acquiring the metastatic phenotype. We focused on several unexpected synergistic genetic

interactions leading to theoretically very high metastasis probability. Among them, the syn-

ergistic combination of Notch overexpression and p53 deletion shows one of the strongest

effects, which is in agreement with a recent published experiment in a mouse model of gut

cancer. The mathematical model can recapitulate experimental mutations in both cell line

and mouse models. Furthermore, the model predicts new gene perturbations that affect the

early steps of metastasis underlying potential intervention points for innovative therapeutic

strategies in oncology.
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Author Summary

We provide here a logical model that proposes gene/pathway candidates that could abro-
gate metastasis. The model explores the mechanisms and interplays between pathways
that are involved in the process, identifies the main players in these mechanisms and gives
some insight on how the pathways could be altered. The model reproduces phenotypes of
published experimental results such as the double mutant Notch+/+/p53-/-. We have also
developed two methods: (1) to predict genetic interactions and (2) to match transcrip-
tomics data to the attractors of a logical model and validate the model on cell line
experiments.

Introduction
Understanding the etiology of metastasis is very important in clinical perspective. Despite the
progress with treatment of the primary tumours, the chances of survival for a patient decrease
tremendously once metastases have developed [1]. It is estimated that metastasis accounts for
90% of cancer patient mortality [2]. It is now understood that the metastatic process follows a
sequence of multiple steps, each being characterised by a small probability of success: 1) infil-
tration of tumour cells into the adjacent tissue, 2) migration of tumour cells towards vessels, 3)
intravasation of tumour cells by breaching through the endothelial monolayer, 4) travelling in
the circulatory or in the lymphoid system, 5) extravasation when circulating tumour cells re-
enter a distant tissue, and 6) colonisation and proliferation in distant organs [3]. The early
stages of invasion and migration are tightly controlled in normal cells and can be drastically
affected by malignant mutations. It has been shown indeed that primary and secondary
tumours have a common gene signature [4] that mediates the initial stages of metastasis while
extravasation and colony formation by a (tumour) cell does not require malignant gene alter-
ations [5], supporting the idea that the later stages of metastasis are affected by the anatomical
architecture of the vascular system [6].

Here, we focus on the ability of cancer cells to infiltrate and migrate into the surrounding
tissue. The first step towards the formation of secondary tumours is acquiring the ability to
migrate. In order to gain motile capacity, epithelial cells need to change their morphology
through Epithelial to Mesenchymal Transition (EMT), a process which occurs during develop-
ment (EMT type 1), wound healing (EMT type 2) and under pathological conditions such as
cancer (EMT type 3) [7,8]. EMT type 3 is characterised by both loss of E-cadherin (cdh1) and
invasive properties at the invasive front of the tumour [9]. Gene expression of E-cadherin is
inhibited by the transcription factors Snai1/2, Zeb1/2 and Twist1, while gene expression of N-
cadherin (cdh2) is induced by the same transcription factors [8,10,11]. These transcription
factors activate other genes that initiate EMT [11–13] and are induced by several signalling
pathways including TGF-β, NF-κB, Wnt and Notch pathways [8,14,15]. On the contrary, the
transcription factor p53 has been shown to inhibit EMT via degradation of Snai2 [16]; how-
ever, a p53 loss of function (LoF) alone is not sufficient to induce EMT [17]. After the switch of
E-cadherin to N-cadherin expression, the cell-cell contacts are weakened [18,19] and cancer
cells can pass the basal membrane to infiltrate the surrounding tissue [20]. The process of local
invasion can be active since tumour cells can secrete Matrix Metalloproteinases (MMPs) that
dissolve the lamina propria [21]. MMPs are also able to digest other components of the extra-
cellular matrix (ECM) and thereby to release growth factors and cytokines that are attached to
the ECM [21,22] which in turn activate the tumour cell’s ability to propagate the dissolvement
of the lamina propria. Finally, after dissolving the lamina propria and invading the (local)
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stroma, cancer cells can migrate to distant sites by intravasation and extravasation of the vascu-
lar system [2]. To gain insight in the regulation of the metastatic process, several groups have
developed mathematical models of various aspects of it [23–29] (S1 Text).

Our aim is to understand the role of gene alterations in the development of metastasis. In
many (experimental or in silico) models, EMT is described as a very important step in acquir-
ing metastasis and even considered to be synonymous to appearance of metastasis [30–32].
Due to EMT role in metastasis, much research has been performed to elucidate its regulation.
The regulation of EMT is known to be complex and simple intuition is not sufficient to com-
prehend how genetic alterations (mutations and copy number variations) affect it. Logical
modelling can give qualitative insight on how they could affect EMT and subsequently
metastasis.

Previously, we have constructed a detailed map of molecular interactions involved in EMT
regulation which is freely available at [33], and based on its structural analysis, we hypothesized
a simple qualitative mechanism of EMT induction through upregulation of Notch and simulta-
neously deletion of p53. This prediction has been experimentally validated in a mouse model of
colon carcinoma [31].

In the present study, we significantly extend the biological context and provide a mathemat-
ical framework for the description of the necessary conditions for having metastasis, going
beyond the regulation of EMT only. We take into consideration the gained motility and ability
to invade as determinants of the metastatic process. For this purpose we largely extended and
re-designed the signalling network including more molecular players and phenotypes, and
translated the network into a formal mathematical model, allowing prediction of the metastasis
probability and the systematic analysis of mutant properties. Therefore, this work represents a
significant progress with respect to the previous results, allowing reconsideration of the qualita-
tive hypothesis suggested before using a formal mathematical modelling approach.

First, we introduce a logical model that recapitulates the molecular biology of the early steps
in metastasis. The construction of the influence network and the choice of the logical rules are
both based on knowledge derived from scientific articles. The final readouts of the model are
the phenotype variables CellCycleArrest, Apoptosis and the aggregated phenotypeMetastasis
that combines the phenotypes EMT, Invasion andMigration.

We have chosen those final read-outs, as we believe that a metastatic phenotype depends on
the occurrence of EMT, invasion and migration. In addition, apoptosis is of importance to the
system as during healthy conditions, the cells undergo apoptosis when the cells detach from
the basal membrane [34]. Suppressing apoptosis during migration is a required key feature.
Our interest in cell cycle arrest is due to results of the mouse model [31] that show decreased
proliferation. We try to model this feature in our logical model by looking at the regulation of
cell cycle arrest. We did not focus on other phenotypes (or cancer hallmarks) such as prolifera-
tion explicitly, senescence, or angiogenesis. These are often considered in cancer studies but
they were out of the scope of this work, which focused on depicting early invasion modes and
not specifically on how tumour growth is regulated. The model inputs have been selected to
represent external signals necessary for the metastasis initiation pathways. The Boolean model
that we show here describes a possible regulation of the metastatic potential of a single tumour
cell and not of multiple cells or a tissue.

We provide a simplified version of the model where some genes are grouped into modules
(or pathways) allowing an analysis based on pathways rather than individual genes. Both ver-
sions of the models are validated by reproducing the phenotypic read-outs of published experi-
mental mouse and cell line models.

We then analyse the two models and formulate several types of predictions: at the level of
individual genes, e.g. exploring the individual role of each EMT inducer in metastasis; and at
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the level of pathways, e.g. investigating the functional role of each pathway in triggering metas-
tasis. The logical models can suggest a systematic mechanistic explanation for the majority of
experimentally validated mutations on the local invasion and migration processes. Moreover,
we were able to establish a link between the solutions of the mathematical model and the gene
expression data from cell lines in which EMT was transiently induced. In addition, we have
applied this method to the analysis of transcriptomes of tumour biopsies.

Lastly, we investigate how genetic interactions between different gene mutations can affect
the probability of reaching a metastatic outcome. Our analysis predicts the effect of single
mutations and the genetic interactions between two single mutations with respect to several
cellular phenotypes. Our model proves an exceptionally efficient synergetic effect of increased
activity of Notch in combination with a decreased activity of p53 on metastasis in accordance
with our previous work [31].

Materials and Methods

The influence network
The construction of the influence network is based on scientific articles that describe the inter-
actions between nodes of the model. We first selected the main genes or proteins that may con-
tribute to activating EMT, regulating early invasion and triggering metastasis. We then
searched for experimentally proven physical interactions that would link all these players, and
simplified the detailed mechanisms into an influence network. For example, it has been shown
experimentally that AKT protein phosphorylates and stabilises MDM2, which in turn inhibits
p53 by forming a complex, leading to protein degradation of p53. We simplified the biochemi-
cal reactions by a negative influence from AKT to p53. The influence network is then translated
into a mathematical model using Boolean formalism (see below for details). We verified the
coherence of the network by comparing the outcome of the perturbed model to the observed
phenotypes of mutants found in the literature. The final model is the result of several iterations
that led to the accurate description of most of the published mutants related to the genes
included in our model. Once the model was able to reproduce most of the published mutant
experiments, we simulated mutants and conditions not yet assessed experimentally and pre-
dicted the outcome.

The Boolean formalism
From the influence network recapitulating known facts about the processes, we develop a math-
ematical model based on the Boolean formalism. To do so, we associate to a node of the influ-
ence network a corresponding Boolean variable. The variables can take two values: 0 for absent
or inactive (OFF), and 1 for present or active (ON). The variables change their value according
to a logical rule assigned to them. The state of a variable will thus depend on its logical rule,
which is based on logical statements, i.e., on a function of the node regulators linked with logi-
cal connectors AND (also denoted as &), OR (|) and NOT (!). A state of the model corresponds
to a vector of all variable states. All possible model states are connected into a transition graph
where the nodes are model states and the edges correspond to possible transitions from one
model state to another. The transition graph is based on asynchronous update, i.e., each vari-
able in the model state is updated one at a time as opposed to all together in the synchronous
update strategy. Attractors of the model refer to long-term asymptotic behaviours of the sys-
tem. Two types of attractors are identified: stable states, when the system has reached a model
state whose successor in the transition graph is itself; and cyclic attractors, when trajectories in
the transition graph lead to a group of model states that are cycling. In this model, no cyclic
attractors were found for the wild type case. However, we do not guarantee the non-existence
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of cyclic attractors in some of the perturbed cases, as perturbations of the model may create
new dynamics.

The logical rules
A logical rule is written for each variable of the model, corresponding to a node in the influence
network, in order to define how its status evolves (ON or OFF). In this rule, the variables of the
input nodes are linked by logical connectors according to what is known about their combined
activities. There are several cases to consider: (1) The simplest logical rule that can be assigned
is when a variable depends on the activity of a single input: for instance, the transcription factor
Twist induces the transcription of the cdh2 gene (see Table 1); (2) In the case of an input that
has a negative effect on the activity of its target, the Boolean operator “NOT” or “!” is used:
EMT is, for example, activated by CDH2 but inactivated by CDH1, thus for EMT to be activate,
CDH1 should be OFF and CDH2 should be ON. The complete logical rule for the activation of
EMT will be EMT = 1 (ON) if CDH2 &! CDH1 (see Table 1); (3) In some cases, a gene can be
activated by two independent genes reflecting two different conditions and thus inputs are

Table 1. Logical rules describing the activity of a node.

Node Rule

AKT1 CTNNB1 & (NICD | TGFbeta | GF | CDH2) & ! p53 & ! miR34 & ! CDH1

AKT2 TWIST1 & (TGFbeta | GF | CDH2) & !(miR203 | miR34 | p53)

CDH1 !TWIST1 & ! SNAI2 & ! ZEB1 & ! ZEB2 & ! SNAI1 & ! AKT2

CDH2 TWIST1

CTNNB1 !DKK1 & ! p53 & ! AKT1 & ! miR34 & ! miR200 & ! CDH1 & ! CDH2 & ! p63

DKK1 CTNNB1 | NICD

ERK (SMAD | CDH2 | GF | NICD) & ! AKT1

GF !CDH1 & (GF | CDH2)

miR200 (p63 | p53 | p73) & !(AKT2 | SNAI1 | SNAI2 | ZEB1 | ZEB2)

miR203 p53 & !(SNAI1 | ZEB1 | ZEB2)

miR34 !(SNAI1 | ZEB1 | ZEB2) & (p53 | p73) & AKT2 & ! p63 & ! AKT1

NICD !p53 & ! p63 & ! p73 & ! miR200 & ! miR34 & ECM

p21 ((SMAD & NICD) | p63 | p53 | p73 | AKT2) & !(AKT1 | ERK)

p53 (DNAdamage | CTNNB1 | NICD | miR34) & ! SNAI2 & ! p73 & ! AKT1 & ! AKT2

p63 DNAdamage & ! NICD & ! AKT1 & ! AKT2 & ! p53 & ! miR203

p73 DNAdamage & ! p53 & ! ZEB1 & ! AKT1 & ! AKT2

SMAD TGFbeta & ! miR200 & ! miR203

SNAI1 (NICD | TWIST1) & ! miR203 & ! miR34 & ! p53 & ! CTNNB1

SNAI2 (TWIST1 | CTNNB1 | NICD) & ! miR200 & ! p53 & ! miR203

TGFbeta (ECM | NICD) & ! CTNNB1

TWIST1 CTNNB1 | NICD | SNAI1

VIM CTNNB1 | ZEB2

ZEB1 ((TWIST1 & SNAI1) | CTNNB1 | SNAI2 | NICD) & ! miR200

ZEB2 (SNAI1 | (SNAI2 & TWIST1) | NICD) & ! miR200 & ! miR203

CellCycleArrest (miR203 | miR200 | miR34 | ZEB2 | p21) & ! AKT1

Apoptosis (p53 | p63 | p73 | miR200 | miR34) & ! ZEB2 & ! AKT1 & ! ERK

EMT CDH2 & ! CDH1

Invasion (SMAD & CDH2) | CTNNB1

Migration VIM & AKT2 & ERK & ! miR200 & ! AKT1 & EMT & Invasion & ! p63

Metastasis Migration

doi:10.1371/journal.pcbi.1004571.t001
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linked by an OR, e.g., DKK can be activated either by CTNNB1 or by NICD, independently of
each other; (4) In some other cases, two activators are linked by an AND connector, e.g., ZEB2
whose activity depends on several inputs including TWIST1 & SNAI2 which are needed simul-
taneously: it has been observed experimentally that both transcription factors Twist1 and Snai2
are required to induce gene expression of zeb2. All models are available in GINsim format in
S1 File.

Computing phenotype probabilities using MaBoSS
MaBoSS is a C++ software for simulating continuous/discrete time Markov processes, defined
on the state transition graph describing the dynamics of a Boolean network. The rates up
(change from OFF to ON) and down (from ON to OFF) for each node are explicitly provided
in the MaBoSS configuration file together with logical functions, which allows working with
physical time explicitly. All rates are set to be 1 in this model since it is difficult to estimate
them from available experimental facts. Probabilities to reach a phenotype are computed as the
probability for the phenotype variable to have the value ON, by simulating random walks on
the probabilistic state transition graph. The probabilities for the selected outputs are reported
for each mutant based on predefined initial conditions (which can be all random). Since a state
in the state transition graph can combine the activation of several phenotype variables, not all
phenotype probabilities appear to be mutually exclusive. For example, Apoptosis phenotype
variable activation is always accompanied by activation of CellCycleArrest phenotype variable
(because p53 is a transcription factor of p21, responsible for cell cycle arrest, and the miRNAs,
activated by the p53 and its family members, lead to a cell cycle arrest), and activation of the
Metastasis phenotype variable is only possible when all three EMT, Invasion andMigration
phenotype variables are activated.

With MaBoSS, we can predict an increase or decrease of a phenotype probability when the
model variables are altered, which may correspond to the effect of particular mutants or drug
treatments. If mutation A increases the Apoptosis probability when compared to the Apoptosis
probability in wild type, we conclude that mutant A is advantageous for apoptosis. All models
are available in MaBoSS format in S1 File.

Module activity
The pathway activity (synonymously, module activity) score in a tumour sample is defined as
the contribution of this sample into the first principal component computed for all samples on
the set of the module target genes, as it was done in [35]. This way, we test target gene sets
selected fromMSigDB [36] and KEGG [37] databases together with few tens of gene sets
assembled by us from external sources. The gene lists for each module is provided in S5 Table.
Differential activity score of each module was estimated by t-test between metastatic and non-
metastatic groups and significantly active/inactive modules were selected according to p-value
<0.05 condition.

Transcriptomics data for tumour samples
We conducted our study on the publicly available data of human colon cancer from TCGA
described in [38]. By excluding rectal cancers from the original dataset, the remaining 105
tumour samples were included in our analysis, classified into two groups (‘metastatic’M1 = 17
tumours and ‘non-metastatic’M0 = 88 tumours) according to clinical information about
metastasis appearance during cancer progression.
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Transcriptomics data for cell lines
We used gene expression data generated from A549 lung adenocarcinoma cell line that was
treated with TGF-β1 ligand at eight different time points [39]. In short, gene expression was
measured for three replicates at each time point using Affymetrix Human Genome U133 Plus
2.0 Array. For more information about treatment and growth protocols see [40].

Matching transcriptomics data to logical steady states on EMT-induced
cancer cell lines
We followed the following six steps to link transcriptome data to the stable states of the model
(described in detail in S2 Text): (1) We first matched the genes of the model with their HUGO
names. For phenotypes such as Apoptosis,Migration or Invasion, the genes coding for CASP9,
CDC42, and MMP2 were used as biomarkers, respectively. These readouts were selected as the
most representative of the process; they were chosen based on the changes of the expression of
a list of candidate genes we explored throughout the experiments. (2) We averaged the genes
over the 3 replicates for time point T0 (initiation of experiment with no TGF-β), for T8 (identi-
fied as the beginning of EMT), for T24 (EMT in process) and for T72 (last point). (3) Using
several methods (binarization algorithms available in [41]), we identified a threshold of expres-
sion and binarized the data accordingly. Among our list of genes, only 11 of them have signifi-
cant expression dynamics along the experiment: cdh1, cdh2, ctnnb1, egfr,mapk1,mmp2,
smad3, snai2, tgfb1, vim and zeb1. The other genes were either always ON or always OFF
throughout the 72 hours of experiments because the expression is either above or below the
threshold we set. (4) We associated a label (phenotype) to the 9 stable states of the logical
model based on the activity status of the phenotype variable. (5) The similarity matrix was
computed according to the following rule: for each stable state and for each time point, if a
gene is ON (= 1) or OFF (= 0) in both the vector of discretized expression data and the vector
of the stable state, we set the entry in the similarity matrix to 1, otherwise, it is set to 0. (6) For
each time point and each stable state, we then summed up the corresponding similarity matrix
row, and set an expression-based phenotypic (EBP) score for each stable state. The highest EBP
score for each time point corresponds to the phenotype that is the closest to the studied sample
and is representative of the status of the cells.

Non-linear principal component analysis by elastic maps method
The non-linear principal manifold was constructed for the distribution of all single and double
mutants of the model in the space of computed model phenotype probabilities, using elastic
maps method and ViDaExpert software [42–44]. We preferred using a non-linear version of
principal component analysis (PCA) for data visualisation in this case, because it is known to
better preserve the local neighbourhood distance relations and allows more informative visual
estimation of clusters compared to the linear PCA of the same dimension [42]. For data analy-
sis, only those “mixed” phenotypes were selected whose probability expectation over the whole
set of single and double mutants was more than 1%. It resulted in a set of 1059 single and dou-
ble mutants embedded into 6-dimensional space of phenotype probabilities for which the prin-
cipal manifold was computed.

Synthetic interactions with respect to metastatic phenotype
The results of double mutants were used to quantify the level of epistasis between two model
gene defects (resulting either from gain-of-function mutation of a gene or from its knock-out
or loss-of-function mutation) with respect to metastatic phenotype. The level of epistasis was
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quantified using the simplest multiplicative null model applied for the event of not having
metastasis: ε = (1-p12)-(1-p1)(1-p2), where p1 and p2 are the probabilities of having metastasis
in single mutants, and p12 was the probability of having metastasis in the double mutant.
Therefore, negative values of the epistasis score E correspond to synergistic interactions when
two gene defects amplify each other’s effect stronger than expected in the multiplicative model.
On the contrary, positive values correspond to alleviating effect, when the effect of one gene
defect could be masked (sometimes, even reduced to zero) by the second mutation. For genetic
network visualisation, we kept the most significant interactions with ε<-0.2 or ε>0.3 values.
These thresholds were chosen because at these levels we observed gaps in the distribution of ε
values. The complete list of interactions together with p1, p2, p12 and ε values can be found as a
Cytoscape 3 session (S2 File).

Results

Construction of an influence network regulating EMT, invasion and cell
migration
Mesenchymal cells are characterised by their increased motility, loss of cdh1 (coding for E-cad-
herin) expression, increased expression of cdh2 (coding for N-cadherin), and presence of
vimentin (Vim) [7,10,45]. The EMT program can be initiated by the transcription factors
snai1, snai2, zeb1, zeb2 and twist1. They are considered to be the core regulators of EMT as
each has been shown to down-regulate cdh1 [46–50]. In turn, the genes coding for these core
EMT-regulators are subjected to regulation by other signalling pathways. The TGF-β pathway
has been reported to be able to induce EMT [7,51], but other pathways are also involved in
EMT including Wnt, Notch and PI3K-AKT pathways [52–56].

Furthermore, microRNAs regulate the Snai and Zeb family members. For example, miR200
targets snai2, zeb1 and zeb2mRNA [57–59] whereas miR203 targets snai1 and zeb2mRNA
[59], and miR34 targets snai1mRNA [60]. The transcription of these microRNAs is under the
control of p53 [61–64]. The miR200 expression can also be induced by p63 and p73 proteins,
while miR34 is only induced by p73 but is down-regulated by p63 [65–67]. The microRNAs
can be down-regulated by the EMT-inducers Snai1/2, and Zeb1/2 [59,60,68]. Note that the
proteins p63 and p73 have been identified as members of the p53 protein family since their
amino acid sequences share high similarity with that of p53 [69]. They are able to bind to the
promoters of the majority of the p53-target genes and therefore have overlapping functions in
cell cycle arrest and apoptosis [70,71]. The p53-family members are involved in cross-talks
with Notch and AKT pathways: p63 protein is inhibited by the Notch pathway, p53 by AKT1
and AKT2 [69,72–76] while p73 is down-regulated by p53 (itself negatively regulated by p73),
AKT1, AKT2, and Zeb1 [69,72,77].

The PI3K-AKT pathway has been considered to be important in evading apoptosis and cell
cycle arrest by modulating the TRAIL pathway, down-regulating pro-apoptotic genes and
phosphorylating p21 [78–80]. More recently, AKT has been assigned additional but important
roles in the development of metastasis. AKT1 suppresses apoptosis upon cell detachment
(anoikis) of the ECM [34]. The different isoforms of AKT seem to have opposing roles in the
regulation of microRNAs: AKT1 inhibits miR34 and activates miR200 while AKT2 inhibits
miR200 and activates miR34 [81]. Another opposing role for both AKT isoforms has been
found in migration. AKT1 inhibits migration by phosphorylating the protein Palladin; phos-
phorylated Palladin forms actin bundles that inhibit migration. AKT2 increases the protein
Palladin stability and upregulates β1-integrins stimulating migration [82,83] or by inhibiting
TSC2 that, in turn, activates RHO [84]. Furthermore, AKT1 inhibits cell cycle arrest while
AKT2 activates it [85,86] (all these effects are shown implicitly in Fig 1A).
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Fig 1. Regulatory networks of mechanisms leading to EMT, invasion, migration andmetastasis. A. Detailed network of the pathways involved in
metastasis. B. Modular network derived from network in A.

doi:10.1371/journal.pcbi.1004571.g001
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Extracellular stimuli are also included in the logical model. Growth factors (GF) are soluble
ligands that can be excreted locally or from longer distances and are able to activate the
PI3K-AKT, and MAPK pathways [87,88]. Another extracellular stimulus might be the extracel-
lular microenvironment (ECMicroenv) with components that are not soluble including the
extracellular matrix. The ligands for the TGF-β pathway can be imbedded in the extracellular
matrix [89–91] and the ligands for the Notch pathway are transmembrane proteins from adja-
cent neighbouring cells [92,93].

These mechanisms are depicted in an influence network (Fig 1A). The network is composed
of nodes and edges, where some nodes represent biochemical species (proteins, miRNAs, pro-
cesses, etc.) and others represent phenotypes, and edges represent activating (green) or inhibi-
tory (red) influences of one node onto other node. Each edge is annotated and supported by
experimental papers (see S1 Table). Throughout the article, we will use the general term “phe-
notypes” to refer to “phenotype variables”, which correspond to the four outputs: CellCycleArr-
est, Apoptosis,Metastasis (depending on EMT,Migration and Invasion), and Homeostatic
State (HS) as presented below.

Mathematical modelling of the influence network
Construction of a logical model and its stable states. The network of Fig 1A is translated

into a logical model using GINsim software [94]: a logical rule is assigned to each node of the
network (Table 1, and Materials and Methods). Once the logical rules are set for each node of
the network, the Boolean model can simulate solutions or outcomes that correspond to attrac-
tors in the state transition graph (see Materials and Methods for details). The model, for the
wild type condition (i.e. no mutations or gene alterations), counts nine stable states for all com-
binations of inputs (Table 2). To each stable state, a phenotype is assigned based on the genes
that are activated (variable is ON, thus equal to 1). The phenotypes identified are: CellCycleArr-
est together with Apoptosis; CellCycleArrest together with EMT;Metastasis (depending on three
other processes: EMT,Migration and Invasion); and a stable state with only Cdh1 ON. This
state corresponds to a state where metastasis is inhibited by Cdh1 activity. We refer to it as the
homeostatic state (HS). It is a particular state of an epithelial cell that is not explicitly repre-
sented as a phenotype variable in this mathematical model. Four out of the nine stable states
lead to Apoptosis, in the presence of DNA damage and absence of growth factors (GF). Two sta-
ble states show an EMT phenotype alone (without inducingMetastasis). In these stable states,
Invasion andMigration are not activated because TGF-β pathway is not initially ON. The last
two stable states lead toMetastasis in the presence of growth factors. GF activates the ERK path-
way that switches off the p53-family targets and permits the triggering of events leading to
metastases. Indeed, several studies have shown the importance of ERK in migration [95–97].

Testing robustness of the model with respect to small changes in the logical rules. We
systematically checked the effect of changing the logical operators of the model from “OR” to
“AND”, and vice versa, onto the resulting model phenotype probabilities. More specifically, we
generated model variants with one change of a logical operator in one logical rule, two changes
in the same logical rule, or one single change in two different logical rules, leaving the rest of
logical operators the same as in the wild type model. Therefore, we considered all model vari-
ants different from the wild type model by at most two different logical operators. The analysis
resulted in 8001 model variants.

We first show that the distributions of phenotype probabilities after these changes are con-
centrated around the wild type probability values (S6 Fig).

Metastasis appeared to be the least robust model phenotype, which confirms the fact that
there are some necessary conditions that need to be met to lead to metastasis (illustrated by
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AND operators in the logical rules). If approximately 49% of changes in the logical rules have
minor or no effect onto theMetastasis phenotype probability, some modifications in some
rules changed theMetastasis phenotype to zero (implicating p63, p73, AKT1 variables of the
model and, to a lesser extent, CTNNB1, miR34, p53). Most of the rules that concern these vari-
ables are indeed more stringent. A change from an AND gate to an OR gate for the case of p63
or AKT1 has an important impact on the metastasis process. For instance, if p63 is more pres-
ent, because it is inactivated with fewer constraints, it can block more easily migration and
thus, metastasis. These logical rules should be considered more carefully than the others
because a mistake in defining these rules can have more drastic effects on the model properties
than any other modifications.

We also performed a reproducibility analysis of individual logical stable states in the models
differing from the wild type model by one or two changes in the same logical rule or one
change in two logical rules as presented above. The wild type model is characterized by nine

Table 2. The nine stable states of the mathematical model. The label of the columns corresponds to the phenotypic outputs.

HS Apop1 Apop2 Apop3 Apop4 EMT1 EMT2 M1 M2

Metastasis 0 0 0 0 0 0 0 1 1

Migration 0 0 0 0 0 0 0 1 1

Invasion 0 0 0 0 0 0 0 1 1

EMT 0 0 0 0 0 1 1 1 1

Apoptosis 0 1 1 1 1 0 0 0 0

CellCycleArrest 0 1 1 1 1 1 1 1 1

ECMicroenv 0 0 0 1 1 0 0 1 1

DNAdamage 0 1 1 1 1 1 0 1 0

GF 0 0 0 0 0 1 1 1 1

TGFbeta 0 0 0 1 1 0 0 1 1

p21 0 1 1 1 1 0 0 0 0

CDH1 1 1 1 1 1 0 0 0 0

CDH2 0 0 0 0 0 1 1 1 1

VIM 0 0 0 0 0 1 1 1 1

TWIST1 0 0 0 0 0 1 1 1 1

SNAI1 0 0 0 0 0 1 1 1 1

SNAI2 0 0 0 0 0 1 1 1 1

ZEB1 0 0 0 0 0 1 1 1 1

ZEB2 0 0 0 0 0 1 1 1 1

AKT1 0 0 0 0 0 0 0 0 0

DKK1 0 0 0 0 0 0 0 1 1

CTNNB1 0 0 0 0 0 0 0 0 0

NICD 0 0 0 0 0 0 0 1 1

p63 0 0 1 0 1 0 0 0 0

p53 0 1 0 1 0 0 0 0 0

p73 0 0 1 0 1 0 0 0 0

miR200 0 1 1 1 1 0 0 0 0

miR203 0 1 0 1 0 0 0 0 0

miR34 0 0 0 0 0 0 0 0 0

AKT2 0 0 0 0 0 1 1 1 1

ERK 0 0 0 0 0 1 1 1 1

SMAD 0 0 0 0 0 0 0 1 1

doi:10.1371/journal.pcbi.1004571.t002
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stable states, including the homeostatic state (HS) (see Table 2). 8001 model variants men-
tioned above are characterized by 68726 stable states counted in total. Hence, in average, each
model variant is characterized by 8 or 9 stable states, which might be different from the wild
type model. In total, we have counted 1176 distinct stable states in all the 8001 model variants,
observed with different frequencies (S6 Table). The nine stable states of the wild type model are
robustly reproducible, being the most frequently observed stable states, and accounting for
59% of all observed stable states in different model variants. Another 13% of observed stable
states differ from one of the wild type stable states by only one change in the Boolean variable
values (DIST_TO_WT = 1). Some modifications of logical rules for CTNNB1 or NICD lead to
very rarely observed atypical but very different from the wild type stable states (DIS-
T_TO_WT = 12). Based on all these analyses, we conclude that the nine wild type model stable
states are robust and “typical” with respect to moderate random modifications of the logical
rules and fragile to few targeted modifications.

Model reduction into a modular network. To make our modelling more insightful, we
reduced the complexity by lumping variables into modules corresponding to signalling path-
ways: the TGF-β pathway (TGFb_pthw consisting of TGFbeta, SMAD), Notch pathway
(Notch_pthw, includes activated Notch intracellular domain (NICD), the WNT pathway
(WNT_pthw consisting of DKK1, CTNNB1), the p53 pathway (p53, consisting of p53), the
p63-p73 proteins (p63_73 consisting of p63 and p73), the miRNA (miR34, miR200, miR203),
the EMT regulators (EMT_reg including Twist1, Zeb1, Zeb2, Snai1, Snai2, Cdh2, Vim), E-
cadherin (Ecadh with Cdh1), growth factors (GF), the ERK pathway (ERK_pthw: ERK), p21 is
included in the CellCycleArrest phenotype, AKT1 module and AKT2 module. In the reduced
model (Fig 1B), the inputs (ECMicroenv and DNAdamage) and (final and intermediate) out-
puts (Migration, Invasion,Metastasis, and Apoptosis) are conserved. The reduced model pro-
duces the same stable states (for the wild type conditions) as those of the initial model (Fig 1A,
see S4 Text).

Validation of the Boolean model. We simulated the genetic perturbations that corre-
spond to published experimental settings and verified that the stable states of the mathematical
model correspond to the experimental observations. An overexpression or gain of function
(GoF) of a gene is simulated by forcing the value of the node to ON and a deletion or loss of
function (LoF) by forcing the value of the node to OFF. We first simulated not only previously
described mutants but also mutants that have not yet been experimentally validated (see S4
Table). The mathematical model is able to reproduce the experimental results of almost all
described mutants. In few cases, there is a discrepancy between the mathematical and the bio-
logical model due to three reasons described below: 1) Metastasis in our logical model is
defined as colonisation of tumour cells into distant organs through migration in the systemic
and/or lymphatic vessels. A limitation of the cell line model is that a metastatic output cannot
be measured. 2) Dosage-dependent effects cannot be modelled using the logical formalism. For
example, our model predicts metastasis in a kras GoF while the mouse model does not develop
distant metastatic tumours. A possibility for the difference is that in the mouse model the wild
type kras allele is still present (a heterozygous mutation) while in our model KRAS mutant is
homozygous. It has been reported that the remaining wild type kras gene has still tumour sup-
pressive properties: it can reduce tumourigenesis in lung [98,99] and in colon cancer cell line
by inhibiting proliferation [100]. Other studies in cancer cell lines that are heterozygous for
krasmutation showed that the wild type kras gene in those cell lines decreased the migration
and colonisation capacity [101,102] suggesting a dose-dependent effect [103]. This might indi-
cate that mouse mutants homozygous for krasmutation may develop distant metastasis as pre-
dicted by our mathematical model. 3) Simulating mutations of genes that are not explicitly
represented as a node in the model has its limitations because the network does not describe
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exactly the function of such node. For example, even though PTEN is not a variable of our
model, we simulated a ptenmutation to understand the controversial results of such deletion
on metastasis in experimental models. The pten LoF mutations have been associated with
many different types of cancers [104–106] and recently it has been demonstrated that pten
mutations cause genomic instability [107,108]. In our model, in order to simulate a PTEN LoF,
its two targets, AKT1 and AKT2, are forced to be ON: PTEN inhibits activation of AKT iso-
forms [109–111]. The model predicts that a PTEN LoF alone or in combination with gene
mutations will reach the stable states without having metastasis while metastasis is observed in
the mouse model. In our model, due to activation of AKT1 by the PTEN LoF, metastasis is pre-
vented, because AKT1 inhibits migration as mentioned before. A recent study indicates that in
PTEN-deficient tumours, AKT2 is the active isoform [112] but not AKT1. The model confirms
this study: when we simulate the single AKT2 activation as a result of PTEN LoF, the model
predicts a stable state in which metastasis can be reached (All references and model results are
available in S4 Table).

Role of different pathways/modules in triggering metastasis
To assess the importance of each pathway on metastasis, apoptosis and cell cycle arrest, we
simulated a gain of function or a loss of function, in the reduced model, for each module and
for all combinations of inputs. These simulations mean that when an important entity in a
pathway is altered, it affects the whole pathway activity. The model shows that mutations lead-
ing to either GoF or LoF of each pathway have opposing results in the occurrence of migration
and for the occurrence of metastasis (S2 Table). The Notch_pthw is an exception in this: both a
GoF and LoF of the Notch pathway can lead to a stable state solution with metastasis ON. This
might indicate that Notch (pathway) activity must be in a certain range in order to have a non-
pathological effect or that Notch is important for the functioning of some dynamic feedback
controls preventing metastasis (so fixing it at a particular value would destroy these feedbacks).
In addition, GoF of the Notch_pthw, TGFb_pthw, ERK_pthw, EMT_reg or AKT2 shows their
inhibitory role in the apoptotic process as it has been demonstrated before [113–117]. For the
p53, TGF-β, EMT_reg and miRNA pathways, mutations leading to activation or inhibition
have opposing results in regulating invasion when either the pathway is activated or inhibited.
This effect on invasion is a direct result of having an activating or inhibiting role on EMT
except for the TGF-β pathway.

The role of TGF-β pathway has been investigated. The activation of TGF-β pathway might
be dependent on the micro-environment as its ligands can be found in the extracellular matrix
[89–91]. The triple mutant: Notch_pthw GoF, p53 LoF and TGFb_pthw LoF leads to one stable
state in which the EMT_reg is ON but no metastasis, migration, invasion or apoptosis are
reachable (S2 Table) indicating that activation of TGF-β pathway (e.g., by the peripheral
tumour cells more exposed to the micro-environment) is required to have metastasis in the
double mutant by activating invasion [118,119].

Comparing the Boolean model with dynamical transcriptomic data on EMT induction
and tumoral transcriptomes. In this section, the aim is to investigate if the model can predict
temporal trends in the dynamics of high-throughput data in cancer cell lines or to retrospec-
tively predict a possible appearance of metastasis using the model. Is it possible to correlate
experimental or clinical data to the stable states of the model?

We first analysed the publicly available colon gene expression dataset generated by The
Cancer Genome Atlas (TCGA) project [38]. Student t-test between metastatic and non-
metastatic tumours was performed for genes included in the influence network to identify sig-
nificant changes in their expression between the two groups (S1 Fig). Few significant
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differences were observed in the expression of the influence network genes in these two groups.
Moreover, there was no significant differential expression of the EMT regulators observed
between the two groups: expression of the EMT regulators seems to be OFF in these tumours.
Since single gene-based analysis of colon cancer did not show significant differential changes
in the expression of the influence network genes, we investigated the expression of the down-
stream targets for the transcription factors in the modular network (Notch_pthw, p53,
p63_p73, EMT regulators, etc.) and recapitulated their expression into a pathway activity score
(see Methods). The assumption was that the differential activity of a given transcription factor
can be better reflected by a score based on the expression of its target genes rather than from its
own individual expression. For the nodes that are not transcription factors (AKT1, AKT2, etc.)
we considered all genes involved in the same network module. We observed that the targets of
Notch pathway, Wnt pathway, p63_p73, and AKT1 and AKT2 downstream genes showed sig-
nificantly higher activity score in metastatic compared to non-metastatic samples whereas p53
and microRNAs targets were less active in metastatic samples. However, the EMT regulator
module showed almost no difference in module activity even if all regulators were combined in
one module (See S2 and S3 Figs). Indeed, in the recent colorectal tumour-specific EMT signa-
ture established by Tan et al. [120] none of the genes of our EMT module were included. This
means that at least in the colorectal cancer, the transcriptional dynamics of the EMT genes has
relatively small amplitude, when measured on the bulk of the tumour.

Based on our analysis, we hypothesize that only a small portion of the tumour cells in a
tumour sample are undergoing EMT and as a result, the EMT signal is strongly diluted when
looking at the whole cell population in a sample taken from the tumour bulk. This low signal to
noise ratio is not favourable to study the dynamics of the EMT process, and subsequently, the
metastatic process.

We thus analysed publicly available transcriptomics data from cancer cell lines in which
EMT has been induced. In a study conducted by Sartor and colleagues [39], lung carcinoma
cell lines were administered with increasing amount of TGF-β and genome-wide transcriptome
was measured at eight different time points, following the induction of EMT. The induction of
EMT was accompanied by increasing expression for some of the EMT regulators (S4 Fig).

The expression of these regulators follows a sigmoid curve in response to TGF-β induction.
For a given time-point, we checked if the expression level of the components of our model
could be associated to a particular steady state of the model. We expect our model to reflect the
behaviour of EMT expression level at early or late time points.

We then determined the consistency of the EMT induction experiment with the logical
model following the steps presented in Materials and Methods section (and in S2 Text for
details of each step). The resulting EBP (expression-based phenotypic) score of the method
represents how similar an experimental condition is to a stable state. Thus, the higher the EBP
score for a stable state is, the more similar the data are to that stable state, and as an extension,
to the phenotype variable associated to that stable state. The computed EBP scores at each time
point illustrate the evolution of the data in terms of the stable states. At T0, the highest EBP
score is associated with apoptosis. At T8, both metastasis and apoptosis stable states have the
highest EBP score illustrating the balance of phenotypes observed in the gradual entry into
EMT. At T24 and at T72, the metastatic phenotype has the highest EBP score suggesting that
EMT has occurred. Based on the above-mentioned results, the logical model is in accordance
with the time course experiments in EMT-induced cell lines.

With this similarity EBP score, we have developed a method to characterise tumours in
terms of a particular biological process (how the metastatic process follows EMT, migration
and invasion here) with respect to the solutions of a logical model.
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Role of individual EMT regulators in triggering metastasis
To identify for each EMT regulator (Snai1, Snai2, Zeb1, Zeb2, Twist1) their specific role in the
different cell fates considered in our model, we simulated LoF and GoF mutants and observed
that all GoF, except for that of Snai2, led to the loss of apoptosis (S3 Table).Metastasis can be
reached for all GoF mutants but other phenotypes can still be reached depending on the combi-
nations of inputs. The single deletions of each EMT regulator show that Zeb2 and Twist1 are
required for metastasis. Zeb2 controls migration mainly through VIM but has no direct impact
on invasion. Twist1 LoF, on the contrary, modulates negatively the possibility to reach not only
the metastatic phenotype but also EMT, migration and invasion. Twist1 controls EMT through
Cdh2 that controls migration and EMT. Other factors, such as CTNNB1 (β-catenin) or TGF-β,
play a role in triggering the metastatic process by modulating invasion or migration, but our
model suggests that the main EMT regulators are Zeb2, Twist1 or Snai2, either as loss of func-
tion for Zeb2 and Twist1, or gain of function for Snai2. Note that by definition, Cdh2 is abso-
lutely required for metastasis to occur because of its direct role in controlling EMT and
migration. In our model, Cdh1 inhibits EMT (directly) and migration (through CTNNB1 and
VIM) but not invasion. Since all three phenotypes are required for metastasis, the process is
thus impaired when Cdh1 is over-expressed [121,122].

Modelling synthetic interactions between genes composing the model
The probability of achieving the metastatic phenotype for all possible single and double
mutants was systematically computed using MaBoSS [123]. Each single and double mutant is
characterised by the distribution of phenotype probabilities. A non-linear PCA analysis was
performed as described in Methods, which allowed to group together single and double
mutants having similar effect on the model phenotypes (Fig 2A). In this plot, one can

Fig 2. A. Genetic interactions between twomutants leading to the masking or the antagonism of a phenotype (metastasis). Application of non-linear
dimension reduction for visualising the distribution of phenotype probabilities, computed with MaBoSS for all single and double mutants of the model. The
grading in the background shows the density of points (mutants) projections. Six clusters are distinguished based on this grading. Wild-type model, all single
over-expression and knockout mutants and the NICDGoF / p53 LoF mutant are labelled. Note that each gene pair in this plot is represented by four different
double mutants (small red points) corresponding to LoF/LoF, LoF/GoF, GoF/LoF, GoF/GoF combinations. B. Genetic interaction network showing the most
significant synergistic (shown in green) and alleviating (masking, showing in red) interactions between GoF and LoF mutants with respect to the probability of
having metastasis. The size of the node reflects the metastasis probability for individual mutation. The thickness of the edge reflects the absolute value of
epistasis measure (see Methods).

doi:10.1371/journal.pcbi.1004571.g002
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distinguish six major clusters (a to f) which can be tentatively annotated as “almost wild-type”
(no significant changes in the phenotype probabilities compared to the wild-type model), “risk
of metastasis” (elevated probability of having metastasis though not equal to 1), “apoptotic”
(for these mutants Apopotosis and CellCycleArrest phenotypes are activated), “EMT without
migration” (for these mutants, presented as two clusters, the formation of metastases cannot be
accomplished because the cells did not acquire ability to migrate), “cell cycle arrest only” (these
mutants are found arrested without starting EMT or invasion or apoptotic programs). The
direction of increased metastasis probability is shown by dashed line in Fig 2A, which ends at
NICD GoF/p53LoF double mutant for which the probability of having metastasis equals to 1,
according to the model (whereas single p53 LoF mutation belongs to “almost wild type” and
single NICD GoF mutation belongs to “risk of metastasis” clusters respectively).

Synthetic interactions with respect to metastatic phenotype. The most significant
genetic interactions with respect to probability of having metastasis (see Methods) are shown
in Fig 2B. The following observations can be made: (1) Hubs in this genetic interaction network
are the genes for which a single mutation (GoF) leads to a significant increase in having the
metastatic phenotype. These genes are akt2, twist1, snai1, and snai2; (2) There are a number of
genes whose LoF or GoF lead to a significantly masking effect on the phenotype caused by the
hub-gene mutations (red edges in Fig 2B). For example, overexpression of p53 gene or knock-
out of erk gene drastically decreases the probability of metastatic phenotype in SNAI1 LoF
mutant; (3) There are relatively few synergistic effects observed between single mutants (green
edges in Fig 2B). Some of them have been experimentally performed while other synergistic
interactions are rather unexpected such as GoF for both AKT2 and NICD, and can be a subject
of further experimental work.

There are four synergistic interactions, which result in augmenting the probability of having
metastasis to 100%. First, two of them are combinations of NICD GoF and p53 LoF (NICD+/
p53-), or simultaneous NICD GoF and p73 GoF (NICD+/p73+). These two interactions can be
considered as being dependent, since overexpression of p73 leads to downregulation of p53
function [124,125]. The other two interactions (SNAI2 GoF and NICD GoF, AKT2 GoF and
NICD GoF) are potential amplifier mechanisms for appearance of metastasis in NICD GoF
mutant alone.

In addition, we classified all gene pairs into five large clusters according to four different
combinations of in silicomutation types (LoF/LoF, LoF/GoF, GoF/LoF, GoF/GoF). Inside each
cluster, the gene pairs can be ranked according to the strength of the activating effect of one of
the mutation combinations on theMetastasis phenotype (S5 Fig). Moreover, all gene pairs can
be ranked according to the amplitude, i.e. the difference between the maximal and minimal
metastatic phenotype probabilities among four values (LoF/LoF, LoF/GoF, GoF/LoF, GoF/
GoF). The most distinguished gene pair in this analysis is p53/NICD, which is a unique and
extreme case of the gene pair cluster when any combination of mutation types besides LoF/
GoF makes the metastatic phenotype non-reachable (zero or close to zero probability) while
the synthetic-dosage interaction LoF/GoF makes the metastatic phenotype unavoidable (prob-
ability one) (cluster 3 in S5 Fig).

Synthetic dosage interaction between Notch and p53 genes. Using MaBoSS, we have
been able to quantify the changes of probabilities for reaching each phenotype relative to the
wild type model. We are thus interested in results such as: “more or less apoptosis than in wild
type”. We simulated three mutants with MaBoSS: p53 LoF (Fig 3B), NICD GoF (Fig 3C) and
the double mutant NICD+/p53- (Fig 3D). These simulations are of particular interest since they
show an example of genetic interaction predicted to have the probability of metastasis pheno-
type equals to 1, as presented above.
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The probabilities of the four phenotypes for wild type conditions are shown in Fig 3A. They
show all possible phenotypes for all input configurations. Note thatMetastasis can be only
reached in the wild type for a particular set of initial conditions (ECMicroenv, GF and TGFbeta
all ON), which might correspond to extreme situations. The mutant p53 LoF is very similar to
the wild type in terms of possible phenotypes (Fig 2A). The NICD GoF mutation, compared to
the wild type, showed an increased probability for EMT as previously reported [126].Metasta-
sis could be reached as well in this single mutant with a higher probability than in the wild
type; Apoptosis is no longer reachable, confirming that Notch pathway is a pro-survival path-
way (Figs 2A and 3C). In addition, in this mutant,Metastasis was clearly blocked by p53 since
a loss of function of p53 in a NICD GoF mutant completely suppressed both the EMT and

Fig 3. MaBoSS simulation of wild type, of individual mutations of p53 and NICD and of the double mutant. The probabilities associated with each
phenotype represent the number of stochastic simulations leading to each phenotype from pre-defined initial conditions. A. Wild type, see text. B. p53 LoF,
same phenotypes found in (A) are reachable but with different probabilities than wild type conditions. C. NICD GoF, apoptosis is no longer reachable. D. p53
LoF and NICD GoF, only metastasis is observed. Note that HS stands for “Homeostatic State” and CCA for “CellCycleArrest.”

doi:10.1371/journal.pcbi.1004571.g003
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Invasion phenotypes present in the single mutant, and onlyMetastasis could be reached (Fig
3D). The deletion of both p63 and p73 in a NICD GOF mutant maintained the EMT pheno-
type (not shown) proving the importance of p53 in protecting the cells from metastasis.

In this context, we further investigated the role of TGF-β pathway in metastasis. Although
the NICD GoF/p53 LoF double mutation has been predicted to be the best mutation to acquire
metastasis, an important role for the TGF-β pathway is suggested by the model. The triple
mutant NICD GoF, p53 LoF and TGF-β LoF (S4 Table) seems to suppress the metastatic pro-
cess in the model: cells are able to go through EMT but cannot invade the tissue. Suppressing
the TGF-β pathway might be an interesting therapeutic option to control metastasis in patients;
however more studies are required to test this hypothesis.

Discussion
In this study, we propose a logical model focusing on the specific conditions that could allow
the occurrence of metastasis. Our model of the metastatic process represents its early steps:
EMT, invasion and migration. A cell acquires the capability to migrate when both EMT and
invasion abilities have been acquired. These steps are regulated by several signalling pathways,
where genetic aberrations could influence the efficiency of metastatic process. Both the influ-
ence network and the assignment of logical rules for each node of this network have been
derived from what has been published from experimental works as of today. With this model,
we were able to explore known conditions (and predict new ones) required for the occurrence
of metastasis. Our influence network describes the regulation of EMT, invasion, migration, cell
cycle arrest and apoptosis known from the literature. In this regulatory network, cell cycle
arrest and apoptosis are mechanisms or phenotypes that maintain homeostasis of organs [127]
or ways to evade metastasis. Cell migration depends on pathways involving AKT, ERK, Vimen-
tin, miR200 and p63 but also on the acquisition of EMT and invasive abilities such as produc-
ing MMPs to dissolve the laminae propria enabling migration to distant sites. Cells that have
only invasive properties are not able to move as they are still well attached to their surrounding
neighbouring cells resulting in absence of cell migration. Only when those two requirements
are met and the other pathways allow migration, can metastasis occur.

The role of each EMT regulator, for acquiring invasive properties, has been investigated and
the model shows that each individual EMT regulator is sufficient to induce EMT when over-
expressed and with the appropriate initial conditions. The model also predicts that a LoF muta-
tion of the EMT regulators does not affect metastasis except for ZEB2 and TWIST1: ZEB2 inhi-
bition leads to abrogation of migration, while a TWIST1 LoF leads to inhibition of EMT, since
TWIST1 is the only transcription factor that can induce transcription of cdh2 gene which is
required to have EMT. These regulators are interesting targets for therapy since both are more
downstream in the metastasis’ cascade knowing that most activating mutations occur relatively
more upstream e.g. KRAS and EGFR mutations.

The model has been validated using experimental data by matching the transcriptomic data
with stable state solutions of the logical model. The direct comparison between stable states
and gene expression of tumour samples shows no conclusive results. This may be due to that
only at the front of tumours, cells undergo EMT and this signal is obscured by the bulk of the
tumour [30,128]. On the other hand, the model matches well the transcriptomic data from a
time course experiment of lung carcinoma cell lines in which EMT was induced by increasing
concentration of TGF-β.

Qualitative simulations of the model using MaBoSS confirmed that single mutations are not
sufficient to enable metastasis. Therefore, we systematically computed the level of epistasis of
each two-gene mutation with respect to reaching the metastatic phenotype. We determined
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which double mutations are the most efficient for inducing metastasis with NICD GoF/p53
LoF mutations being the most efficient combination of gene knock-out and over-dosage, as
this double mutant leads in silico to 100% probability of having metastasis.

In our previous work, this specific double mutation NICD GoF/p53 LoF has been carried
out experimentally in a mouse model, by crossing the villin-CreERT2mice [129] (in this study
referred as p53 LoF) and RosaN1icmice [130] (in this study referred as NICD GoF) with the
isogenic C57BL/6 animals to generate the NICD GoF/p53 LoF compound mice. These com-
pound mice develop intestinal tumours with metastatic tumours to distal organs [31]. Our logi-
cal model successfully reproduces experimental observations of the compound mouse and
proposes mechanisms explaining the metastatic phenotype with high penetrance in mice. In
addition, we have investigated the role of TGF-β pathway in metastasis and showed its crucial
role in the metastatic phenotype in the double mutant. Suppressing the TGF-β pathway might
be an interesting target therapy to control metastasis, however future studies are required.

We also explored the activity of the Wnt pathway in the double mutant. Increased activity
of the Wnt pathway due to mutations in the apc and ctnnb1 genes leads to tumourigenesis of
many cancers [131–133] and subsequently to metastasis [134,135]. Our mathematical model
predicts phenotypes that correspond to adenocarcinomas as a result of linear progression of
acquired mutations during sporadic colorectal cancer (CRC) suggested by the “Vogelstein
sequence” [136] but no metastasis is reached with the model. Indeed, when we simulate APC
LoF, KRAS GoF and p53 LoF (the Vogelstein sequence), the model predicts stable states of
cells that are not arrested in the cell cycle, can undergo EMT and can invade (see S4 Table).
Thus our logical model supports the hypothesis that the Wnt pathway contributes to tumour
initiation [137]. However, there is still a debate if the Wnt pathway is actively involved in
metastasis. For example, a negative correlation has been demonstrated between the presence of
β-catenin and metastasis in breast cancer [138], in lung cancer [139–141], and in CRC [142–
144]. It has been also demonstrated that the canonical Wnt pathway (β-catenin-dependent
pathway) is suppressed at the leading edge of the tumour [145] and this might happen without
affecting the β-catenin protein levels [146,147]. In the mouse model with Notch GoF /p53 LoF
double mutation, in some tumours samples, mutations in apc and ctnnb1 have been found but
also tumours without those mutations have been shown to acquire metastasis. Both truncated
APC and mutations in β-catenin correspond in our mathematical model to full activation of
CTNNB1 and this will induce activation of AKT1. In our model, activation of AKT1 will
inhibit migration and therefore inhibit metastasis. Appearance of metastasis in the mouse
model with activated Wnt pathway might be putatively explained if one looks at the length of
the truncated APC isoform for tumours with apcmutation. The APC mutation found in the
Notch GoF /p53 LoF mouse model results in a relatively large truncated APC isoform that
might still have inhibitory effect on β-catenin [148]. More details about the APC isoforms and
its effect on β-catenin can be found in S3 Text.

Another explanation for having metastasis in tumours with active Wnt pathway might be
the involvement of another mutation that affects the akt1 or the akt2 gene. According to our
model, the Wnt pathway inhibits metastasis by up-regulation of AKT1. There are tumours in
CRC patients (TCGA data from http://cbioportal.org, [31]) that can have an akt2 gene amplifi-
cation or a homozygous deletion or missense mutation of akt1. AKT2 induces migration while
AKT1 inhibits migration thus the ratio AKT1 to AKT2 might be an important determinant for
acquiring metastasis in the colon. Indeed studies have shown that AKT2 is predominant in
sporadic colon cancer [149] and have a critical role in metastasis in CRC [150].

A Boolean model of EMT induction has been recently published, where the theoretical pre-
diction that the Wnt pathway can be activated upon TGF-β administration was validated
experimentally by measuring increased gene expression of the Wnt target gene axin2 in Huh7
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and PLC/PRF/5 cell lines [151]. Those cell lines are derived from hepatocellular carcinomas
[152,153] and both can harbour known mutations [154] and unconfirmed mutations (http://
tinyurl.com/l6mjd8y) that affect the signalling pathways: the Wnt pathway has constitutive
activity in the Huh7 cell line [137,155]. An alternative explanation could be that our model is
more specific for epithelial cancers as the model depicts many reactions observed in epithelial
cells; it has been shown that different types of cancer have different protein (or isoforms) abun-
dance [112,149]. Therefore, our model might be less adequate in predicting the activity for cer-
tain nodes for hepatocellular carcinoma and lung adenocarcinoma.

EMT is considered to be the first step and is very often modelled as an equivalent of having
metastasis once it is activated. We provide here a logical model that proposes the involvement
of three independent processes in order to have metastasis: EMT, invasion and migration.
These phenotypes are controlled by an intricate network and only when EMT, invasion and
migration do occur, can metastasis happen. The logical model explores the mechanisms and
interplays between pathways that are involved in the processes, identifies the main players in
these mechanisms and gives insight on how these pathways could be altered in a therapeutic
perspective. Note that other mechanisms involving other alterations in the pathways that we
model, or in other pathways might also take place, and we do not claim that our approach
cover all possibilities of inducing metastasis. Still, our approach provides candidate interven-
tion points for designing innovative anti-metastatic strategies.

Supporting Information
S1 Text. Review on published articles of mathematical models of EMT.
(DOCX)

S2 Text. Link between model solutions and transcriptomics data.
(DOCX)

S3 Text. Description of Wnt pathway.
(PDF)

S4 Text. From the master model to the reduced model.
(DOCX)

S1 Fig. Colon transcriptomics data.Mean value expression for each gene is mapped on the
network. The figure is the same for both metastatic and non-metastatic samples.
(PNG)

S2 Fig. Modular network of the metastasis model.
(PDF)

S3 Fig. Colon transcriptomics data mapped onto the modular network. The score for the
modules are calculated based on the expression of target genes for metastatic and non-
metastatic samples.
(PDF)

S4 Fig. Mean gene expression value of the three replicates for the genes of the network at 4
different time points: At t = 0, at t = 8h, at t = 24h and at t = 72h. Green nodes correspond to
low expression and red nodes to high expression. The minimum and maximum expression val-
ues are set over the whole dataset and are the same for the four graphs.
(PDF)

S5 Fig. Distribution of pairs of genes of the mathematical model in the four-dimensional
space ofMetastasis probabilities, corresponding to four possible mutation type
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combinations LoF/LoF, LoF/GoF, GoF/LoF, GoF/GoF (here LoF is Loss-of-Function and
GoF is Gain-of-Function). The image shows a two-dimensional projection onto a non-linear
principal manifold from the space defined by four metastatic phenotype probabilities [p(LoF/
LoF);p(GoF/GoF); p(LoF/GoF)+p(GoF/LoF);|p(LoF/GoF)-p(GoF/LoF)|]. Projection density is
shown in the background by grey shading. The size of the node corresponds to the amplitude
of the node pair (maximum difference in phenotype probability between the four mutants:
LoF/LoF, GoF/GoF, GoF/LoF, LoF/GoF), such that the most sensitive (allowing control of phe-
notype to maximal degree) gene pairs correspond to bigger node sizes. Five clusters are identi-
fied: they correspond to five patterns which existence can be guessed from the symmetry
considerations and which are shown on the right panels. 1a) Any GoF cancels the phenotype
while double LoF can amplify it (14% of gene pairs); 1b) Any LoF cancels the phenotype while
double GoF can amplify it (13%); 2a) Double GoF cancels the phenotype, double LoF or syn-
thetic-dosage interaction can amplify it (23%); 2b) Double LoF cancels the phenotype, double
GoF or synthetic-dosage interaction (LoF/GoF or GoF/LoF) can amplify it (16%); 3) Double
LoF and double GoF cancel the phenotype, while synthetic-dosage interaction can amplify it
(30%). TP53-NICD (top-left corner) mutant is an extreme example of group 3. NICD-AKT2
(bottom-left corner) is an extreme example of group 2b.
(PNG)

S6 Fig. Results of robustness tests for the logical model with respect to small changes in the
logical rules of the model. In the wild type logical model, for each logical rule, several "variant"
models were created by changing one or two "OR" or "AND" operators to "AND" or "OR" oper-
ators respectively. The resulting distributions of phenotype probabilities over all such model
modifications are shown.
(PDF)

S1 Table. Annotations of the logical model.
(DOCX)

S2 Table. Phenotypes that can be reached by setting the activity of a single module or path-
way to always ON (GoF: gain of function) or always OFF (LoF: loss of function).
(XLSX)

S3 Table. Phenotypes that can be reached by setting the activity of a single EMT regulator
to always ON (GoF: gain of function) or always OFF (LoF: loss of function). EMT regula-
tors: Snai1, Snai2, Zeb1, Zeb2, and Twist1.
(XLSX)

S4 Table. Table of mutants. For each condition or mutation, all possible inputs are considered.
Thus, all possible outputs corresponding to stable states are shown in this table (values for
internal variables are not shown). The existence of a stable state in accordance with what has
been published is enough to conclude that the mutant is validated: there exists a condition
for which the model explains the experiments. The fact that other stable states exist shows
that for some particular conditions, the stable state could be reachable. For instance, for NICD
GoF, we see that a stable state with metastasis exits which has not been observed in experi-
ments. However, for this stable state, all p53 family members are OFF, thus, it is a particular sit-
uation.
(DOCX)

S5 Table. Signatures of module activity.
(XLS)
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S6 Table. Robustness analysis; table of mutants for the logical stable states of the perturbed
models.
(XLSX)

S1 File. Detailed and modular models in GINsim and MaBoSS formats. The zip file
includes: Detailed model in GINsim format (SuppMat_Model_Master_Model.zginml), Modu-
lar model in GINsim format (SuppMat_Model_ModNet.zginml), SuppMat_MaBoSS_Master-
Model.bnd (To simulate the model, MaBoSS needs to be downloaded from maboss.curie.fr and
launched with the following command line:./MaBoSS -c SuppMat_MaBoSS_MasterModel.cfg
-o SuppMat_MaBoSS_MasterModel SuppMat_MaBoSS_MasterModel.bnd), SuppMat_Ma-
BoSS_MasterModel.cfg, SuppMat_MaBoSS_ModNet.bnd (To simulate the model, MaBoSS
needs to be downloaded from maboss.curie.fr and launched with the following command
line:./MaBoSS -c SuppMat_MaBoSS_ModNet.cfg -o SuppMat_MaBoSS_ModNet SuppMat_
MaBoSS_ModNet.bnd), SuppMat_MaBoSS_ModNet.cfg.
(ZIP)

S2 File. SuppMat_metastasis_mutants.cys.
(ZIP)
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