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Abstract 85 

Transcription factors (TFs) are key players in eukaryotic gene regulation, but the DNA binding 86 

specificity of many TFs remains unknown. Here, we assayed 284 mostly poorly characterized, 87 

putative human TFs using selective microfluidics-based ligand enrichment followed by 88 

sequencing (SMiLE-seq), revealing 72 new DNA binding motifs. To investigate whether some of 89 

the 158 TFs for which we did not find motifs preferably bind epigenetically modified DNA (i.e. 90 

methylated CG dinucleotides), we developed methylation-sensitive SMiLE-seq (meSMiLE-seq). 91 

This microfluidic assay simultaneously probes the affinity of a protein to methylated and 92 

unmethylated DNA, augmenting the capabilities of the original method to infer methylation-aware 93 

binding sites. We assayed 114 TFs with meSMiLE-seq and identified DNA-binding models for 48 94 

proteins, including the known methylation-sensitive binding modes for POU5F1 and RFX5. For 95 

11 TFs, binding to methylated DNA was preferred or resulted in the discovery of alternative, 96 

methylation-dependent motifs (e.g. PRDM13), while aversion towards methylated sequences was 97 

found for 13 TFs (e.g. USF3). Finally, we uncovered a potential role for ZHX2 as a putative binder 98 

of Z-DNA, a left-handed helical DNA structure which is adopted more frequently upon CpG 99 

methylation. Altogether, our study significantly expands the human TF codebook by identifying 100 

DNA binding motifs for 98 TFs, while providing a versatile platform to quantitatively assay the 101 

impact of DNA modifications on TF binding.  102 
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Introduction 103 

Transcription factors (TFs) are critical for gene regulation by binding their cognate binding sites 104 

(TFBS) to modulate target gene expression1. The interaction between TFs and DNA tends to be 105 

mediated through DNA binding domains (DBDs) that recognize distinct DNA patterns (also called 106 

‘DNA motifs’). Despite their crucial role in gene regulation, the TFBS for approximately 400 out of 107 

around 1,600 putative human TFs remain poorly characterized1–3. The largest and most diverse 108 

TF family is the Cys2His2 zinc finger proteins (C2H2 ZNFs), which constitute the majority of 109 

uncharacterized TFs. A human ZNF contains on average 11 individual zinc finger domains 110 

(ZFDs), most of which are thought to be capable of binding DNA. However, not all ZFDs 111 

necessarily make DNA contacts, which complicates the inference of binding properties, resulting 112 

in nearly one third of all ~750 predicted ZNFs still lacking clearly defined binding motifs. 113 

Additionally, recent studies have provided evidence that DNA binding is not exclusively mediated 114 

by structured DBDs and that intrinsically disordered regions (IDRs) can also alter a TF’s sequence 115 

specificity and even affinity to DNA4–6. Given the difficulty in structurally modeling such IDRs, this 116 

also renders the in silico prediction of DNA binding motifs challenging despite major recent 117 

computational advances7,8. The experimental identification of protein-DNA interactions therefore 118 

remains an important outstanding challenge, as it continues to be seen as the gold standard to 119 

derive DNA binding motifs. 120 

Another convoluting factor for defining TF binding models is the epigenetic state of DNA, 121 

specifically the methylation of CG dinucleotides, which can drastically alter the binding affinity of 122 

TFs to their respective binding sites9,10. For instance, TF families including bHLH and bZIP TFs 123 

are frequently repelled by CG methylation11, while MBDs or C/EBP have an increased affinity for 124 

methylated CGs in a specific sequence context12,13. Various in vitro methods based on protein 125 

binding microarrays (PBMs) and systematic evolution of ligands by exponential enrichment 126 

(SELEX) have been developed to define the effect of DNA modification on TF binding in high-127 

throughput, and have revealed that CG methylation can differentially modulate binding affinities 128 

even for TFs in the same TF family11,14,15. These methods enable profiling TF interactions with 129 

methylated DNA, but they also retain the disadvantages of the original techniques, such as the 130 

limited combinatorial space in PBM and the surplus enrichment of the strongest binding sites in 131 

SELEX. While information about methylation specificity can to some extent also be imputed from 132 

genomic assays such as chromatin immunoprecipitation sequencing (ChIP-seq), these 133 

approaches typically lack resolution (fragment sizes generally span hundreds of base pairs) and 134 

require an indirect link between TF-associated peaks with in-depth whole genome bisulfite 135 
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sequencing (WGBS) from the matched cell types, as the methylation status of pulled-down, TF-136 

bound sequences is often not available. Additionally, ChIP-seq-derived binding motifs might be 137 

cell type- or co-factor-specific and do not necessarily reflect a TF’s ability to directly bind or evade 138 

epigenetically modified DNA. 139 

To assign binding motifs for the remaining, uncharacterized human TFs, the Codebook and 140 

GRECO-BIT initiatives joined in a collaborative attempt to determine the DNA binding sites for 141 

the remaining putative DNA-binding TFs16. In this effort, a total of 394 TFs including positive 142 

controls were assayed using five orthogonal experimental DNA binding assays. The latter 143 

included ChIP-seq17, genomic and classical high-throughput SELEX ((G)HT-SELEX)18, and 144 

PBMs16. A fifth method is presented here: selective microfluidics-based ligand enrichment 145 

followed by sequencing (SMiLE-seq), which is a high-throughput microfluidic technique for 146 

examining TF-DNA interactions that relies on the mechanically induced trapping of molecular 147 

interactions (MITOMI)19 concept. This comprehensive experimental strategy aimed to leverage 148 

the strengths of each of the five methods while mitigating their respective limitations, such as 149 

validating the primary motif of a TF from the often noisy but genomic binding sites acquired by 150 

ChIP-seq with the high information content motifs from HT-SELEX. Additionally, the obtained data 151 

were analyzed with multiple motif discovery tools and conservatively hand-curated16. The 152 

resulting motifs were then benchmarked20 to identify the most robust binding models.  153 

Here, we report the SMiLE-seq-based findings of the Codebook/GRECO-BIT collaboration, 154 

having assayed 284 putative TFs and derived binding models for 98 TFs. To address the 155 

hypothesis that some of the TFs for which no DNA binding motifs were recovered may in fact bind 156 

epigenetically modified DNA instead, we developed methylation-sensitive SMiLE-seq (‘meSMiLE-157 

seq’), an assay to simultaneously probe a TF’s affinity to unmethylated and methylated DNA. By 158 

screening 114 putative TFs using meSMiLE-seq, we identified DNA motifs that include information 159 

about (me)CG affinity for 48 TFs. In addition, we derived motifs for several TFs that exclusively 160 

associate with methylated DNA, rationalizing why they remained orphan in the canonical DNA 161 

binding assays that were employed within the Codebook Consortium. Finally, we provide 162 

evidence that certain methylation-sensitive TFs are directed to distinct binding sites in the genome 163 

in a CG methylation-dependent manner, thus validating our in vitro observations.   164 
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Results 165 

 166 

SMiLE-seq identifies binding motifs of 98 putative human TFs 167 

We aimed to define the DNA binding specificities of 284 putative, uncharacterized TFs (selected 168 

through manual curation and including 3 positive controls, see Table 1 and16) using SMiLE-seq21. 169 

In this assay, DNA libraries are added to in vitro translated TF-GFP fusion proteins and transferred 170 

into a microfluidic device, where binding events between the TF and DNA are captured after a 171 

single enrichment step. Subjecting the TF-bound fraction to high-throughput sequencing of eluted 172 

DNA fragments then allows for computational de novo motif discovery (Supplementary Figure 173 

1a-b)21. Compared to alternative approaches such as HT-SELEX, SMiLE-seq has the advantage 174 

of capturing both strong and weak interactions without compromising the sampling space such 175 

as in PBMs22. However, given the single round of enrichment, SMiLE-seq is sensitive to potentially 176 

skewed nucleotide distributions in the input libraries given that binding enrichment is restricted to 177 

one round (Supplementary Figure 2a). Additionally, while SMiLE-seq allows capturing low-178 

affinity binding sites, the obtained data tend to be noisier than after multiple rounds of enrichment 179 

(as is done in HT-SELEX), which typically results in motifs with lower information content. 180 

To mitigate the effects of potential sequence biases in the input DNA libraries on de novo motif 181 

discovery, we used a one-sided Fisher’s exact test to select sequencing reads containing 182 

statistically enriched k-mers within the SMiLE-seq data of the 284 assayed TFs (Figure 1a, 183 

Methods). The sequences containing enriched k-mers were then passed to the ProBound Suite, 184 

a recently developed motif discovery pipeline that proved to be powerful in predicting binding sites 185 

across a wide range of affinities20,23 (Figure 1a). 186 

Using this approach, we successfully recovered binding motifs for 73 TFs (25.7% of all assayed 187 

TFs, including one positive control), achieving a high level of replicate reproducibility 188 

(Supplementary Figure 2b-e). The same data yielded only 64 approved binding models (22.5%) 189 

when analyzed without the k-mer enrichment step against the input library and using more 190 

conventional motif discovery tools such as Dimont, HOMER, or MEME20,24–26. This showcases the 191 

benefit of explicitly removing input library sequence composition bias in the data for motif 192 

discovery (Figure 1b). In fact, several SMiLE-seq datasets did not yield consistent motifs when 193 

analyzed with conventional tools and were thus not approved by the purposefully conservative 194 

curation and benchmarking of the Codebook Consortium. However, our analytical strategy linked 195 

17 of these datasets to seemingly valid binding motifs, including novel models for 9 TFs that are 196 
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uniquely reported in this manuscript (Table 1 and 2). These datasets either exhibited high 197 

replicate concordance (e.g. ZNF385B, Supplementary Figure 2b), or reproduced binding 198 

models generated by orthogonal experimental methods. For example, the approach extracted a 199 

similar motif for ZNF878 from SMiLE-seq data as was inferred from HT-SELEX data (Figure 1c), 200 

whereas straightforward processing of the same SMiLE-seq data by conventional tools failed to 201 

derive this exact motif (Supplementary Figure 2f). Importantly, even for some approved 202 

datasets, combining pre-filtering of reads based on k-mer enrichment with the ProBound Suite 203 

allowed the identification of the TF’s full-length binding site while the same datasets only yielded 204 

truncated models when analyzed with other tools, such as for ZNF648 (Figure 1d, 205 

Supplementary Figure 2g and20). In total, our SMiLE-seq analyses and linked analytical strategy 206 

yielded binding motifs for 50 TFs with an additional 48 derived using our methyl-sensitive SMiLE-207 

seq method, including an overlap of 22 TFs between both approaches as detailed below. The 208 

overall 98 proteins comprise 14 different TF families, with the largest being C2H2 ZNFs (Figure 209 

1e, Supplementary Figure 2h and Table 1). 210 

 211 

Development and implementation of methylation-sensitive SMiLE-seq 212 

Despite extensive profiling attempts in our collaborative Codebook efforts, 158 putative TFs could 213 

still not be linked to binding motifs16. We hypothesized that some of those might prefer binding to 214 

epigenetically modified DNA instead, as the methylation of CG dinucleotides can alter a TF’s 215 

specificity and affinity for a DNA sequence11,14. To concurrently infer DNA binding motifs and the 216 

methylation preference of TFs, we extended SMiLE-seq to allow for a methylation-aware motif 217 

discovery (a novel workflow that we will refer to as ‘meSMiLE-seq’). Specifically, we redesigned 218 

the bait DNA libraries to expose a TF to ‘naked’ and modified DNA simultaneously (Figure 2a). 219 

Each DNA library thereby contains two unique molecular barcodes that provide information about 220 

the position on the microfluidic chip (BC) and its modification status (mBC). Libraries that carry a 221 

methylation barcode are enzymatically methylated prior to the experiment (methylated library, 222 

mLib) before being combined in equimolar amounts with the corresponding, unmodified 223 

counterpart (unmethylated library, uLib) and added to in vitro translated TF-GFP fusion proteins 224 

(Figure 2a, Supplementary Figure 1, and Methods). Near-complete methylation of CG 225 

dinucleotides within mLib was confirmed using digestion with the methylation-sensitive restriction 226 

enzyme BstBI (Supplementary Figure 3a-b). Considering the observed effect of input library 227 

biases in classical SMiLE-seq and the resulting challenges for data analysis, we compared 228 

different suppliers and synthesis protocols and chose input libraries with near-uniform k-mer 229 
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distributions (Supplementary Figure 3c-d, Methods). This rigorous control removed the need to 230 

prefilter sequencing reads as was required for classical SMiLE-seq data. Since most conventional 231 

motif discovery tools were not developed to report DNA modifications, conveying position-specific 232 

information about DNA methylation using a position frequency matrix (PFM) inferred with classical 233 

tools is challenging. To overcome this issue, we used the ProBound Suite to present the predicted 234 

DNA binding motifs from the meSMiLE-seq workflow as position-specific affinity matrices 235 

(PSAM)27 (Figure 2b, Methods).  236 

As a proof of concept for meSMiLE-seq, we profiled the TF POU5F1 (also known as OCT4), since 237 

it has previously been shown to bind to both methylated and unmethylated DNA motifs that direct 238 

its genomic location, making it a valuable positive control11,28. Using meSMiLE-seq, we found that 239 

POU5F1 enriches two distinct DNA k-mer species, correctly recapitulating its known genomic 240 

consensus binding sites ‘ATGCAAA’ and ‘ATG(meCG)CAT’11,28. The methylation-independent 241 

sequence ‘ATGCAAA’ was equally frequent in uLib and mLib, while ‘G(meCG)CATA’ was much 242 

more prevalent in mLib compared to any unmethylated sequence including ‘GCGCATA’ in uLib, 243 

showcasing the protein’s strong preference only for the methylated version of the motif (Figure 244 

2b). Given meSMiLE-seq’s ‘one-pot reaction’ approach, we thereby note that our data permits a 245 

more precise estimation of actual binding preferences, as uLib and mLib are in direct competition 246 

for the TF. Therefore, k-mer enrichment scatterplots indicate the preferred DNA species bound 247 

by the TF. Full TFBS are shown as PSAM motifs, with letter sizes representing the stability of the 248 

TF-DNA binding complex27. Letters above the x-axis suggest increased stability and an extended 249 

alphabet helps to identify the impact of CG methylation on TF-DNA interactions at base pair 250 

resolution (Figure 2b, Methods). Alternatively, meSMiLE-seq data can be split according to mBC 251 

and analyzed separately using conventional approaches such as HOMER24, generating two 252 

independent motifs. While this strategy yields high information content motifs, it loses the 253 

possibility to directly compare binding preferences (Figure 2b). 254 

Next, we assayed three more positive controls to adequately verify meSMiLE-seq. We included 255 

RFX5 and ZNF23 as controls for TFs binding to methylated sequences in vitro, and ZNF263 as a 256 

control for a methylation-independent binder, as all have been previously profiled for CG 257 

methylation affinity11. meSMiLE-seq correctly recapitulated binding sites of these TFs, enriching 258 

the methylated sequences and predicting methylation-aware motifs for RFX5 and ZNF23, and the 259 

methylation-independent motif for ZNF263 (Figure 2c). Together, these findings demonstrate the 260 

robustness and efficacy of meSMiLE-seq to profile methylation-dependent DNA binding 261 

specificities in parallel. 262 
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 263 

Methylation-sensitive screening of poorly characterized human TFs 264 

Next, we applied meSMiLE-seq to screen the DNA binding specificities of 114 poorly 265 

characterized TFs, profiling in total 128 ‘protein constructs’, i.e. 83 full-length proteins (FL) and 45 266 

isolated DBDs (see Table 1, Supplementary Figure 3e-f). This set included 70 randomly 267 

selected Codebook protein constructs (33 FL, 37 DBDs, ‘set 1’) from approved and non-approved 268 

datasets and 23 constructs (15 FL, 8 DBDs, ‘set 2’) that previously yielded binding motifs only in 269 

ChIP-seq experiments, thus potentially implying a possible interaction with epigenetically modified 270 

DNA. In addition, we expanded this set with 35 lab-available KRAB-ZNFs (‘set 3’), since many 271 

TFs in this class display genomic binding preferences to heterochromatin-associated regions in 272 

ChIP-exo29, which could also suggest an ability to bind methylated DNA. Using the meSMiLE-seq 273 

pipeline, we were able to infer high-confidence binding models for 48 TFs comprising 27 TFs from 274 

‘set 1’, 4 TFs from ‘set 2’ and 17 TFs from ‘set 3’, with detailed insights presented in the sections 275 

below (Figure 1e, Supplementary Figure 3e-f). 276 

To confirm the validity of meSMiLE-seq-derived motifs and the robustness of the method, we 277 

used several approaches. First, we compared the meSMiLE-seq PSAMs to orthogonal data 278 

where TF specificity/affinity towards methylated DNA was not considered and we excluded the 279 

extended, methylation-specific alphabet (Table 5, Methods and Supplementary Figure 4a). 280 

meSMiLE-seq motifs showed high concordance with binding models predicted by orthogonal in 281 

vitro and in vivo methods, achieving an average Pearson correlation coefficient (PCC) of 0.899 282 

across all TFs (based on values in aligned probability matrices) (Figure 3a, Table 5 and16). We 283 

observed that TFs with longer motifs, such as PRDM10 or ZNF793, do not display strong similarity 284 

towards other TFs, even within their respective TF families (Figure 1e, Figure 3a). This was 285 

especially noticeable for C2H2 ZNF proteins, consistent with the expected uniqueness of their 286 

binding sites29,30. Second, we compared the meSMiLE-seq motifs of 13 C2H2 ZNFs to those 287 

derived from ChIP-seq17,31 and ChIP-exo data29 (Table 5) using HOMER de novo motif 288 

enrichment analysis for these same TFs (Figure 3b). Importantly, while most of the first-ranked 289 

(i.e. most significant reported by HOMER) ChIP-seq-inferred motifs resembled meSMiLE-seq-290 

derived models (as indicated by the digit next to the PFMs), this was not the case for ZBTB46 291 

(second-ranked), ZNF133 (second- and third-ranked), and ZNF445 (seventh ranked) (Figure 3b), 292 

illustrating the value of orthogonally validating ChIP-derived binding sites using in vitro assays. 293 

These findings align well with the observation that an estimated ~25 % of all, most significant 294 

motifs reported by traditional motif discovery tools such as HOMER do not represent the ‘true’ 295 
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binding sites of the studied TFs20,32. Instead, these motifs likely reflect those of co-factors (e.g. in 296 

ChIP-seq) or over-amplified DNA sequences due to method-related errors or biases (e.g. in HT-297 

SELEX)20. 298 

 299 

Classification of TFs based on methylation sensitivity inferred from meSMiLE-seq 300 

We next classified the 48 TFs with characterized binding motifs into three distinct groups 301 

depending on their affinity for methylated sequences based on ProBound predictions (see 302 

Methods), which we will refer to as ‘methyl plus’, ‘methyl minus’, and ‘little effect/no CG’11. ‘Methyl 303 

plus’ TFs (n=14) demonstrated a higher attraction towards methylated CG dinucleotides 304 

compared to unmethylated DNA, such as ZNF445, a genomic imprinter predicted to bind 305 

methylated DNA in vivo33. Additionally, some TFs from this group enriched more than one 306 

consensus sequence such as PRDM13, which binds methylation-independently to ‘GCAGGTGG’ 307 

and to methylated ‘G(meCG)GGTGG’, displaying a behavior similar to that of POU5F1. In 308 

contrast, ‘methyl minus’ TFs (n=13) had a reduced affinity to methylated DNA (e.g. USF3). TFs 309 

that interacted with sequences regardless of their methylation status or preferred motifs without 310 

CGs were classified as ‘little effect/no CG’, such as ZNF367 (Figure 4a, Table 3, Supplementary 311 

Database 1). 312 

To provide support for our meSMiLE-seq-derived findings, we performed electrophoretic mobility 313 

shift assays (EMSA) for PRDM13 (methyl plus) and USF3 (methyl minus). PRDM13 caused DNA 314 

shifts with both its ‘methyl plus’ and ‘no CG’ motifs, while USF3 exclusively engaged in binding 315 

with its motif when unmethylated, supporting the results from meSMiLE-seq (Figure 4b-c, 316 

Supplementary Figure 4b-c). 317 

 318 

The methylation of binding sites dictates the genomic distribution of TFs 319 

Next, we investigated whether our in vitro ‘methylation (in)sensitivity’ assessments could be 320 

validated in a cellular context. We searched for individual occurrences of meSMiLE-seq-derived 321 

motifs for each TF within corresponding ChIP-seq17 or ChIP-exo29 data in HEK293 and HEK293T 322 

cells (Table 5). To obtain information on the degree of methylation at the genomic loci that 323 

contained relevant motifs, we intersected the regions with publicly available WGBS data for both 324 

cell lines34,35 (Table 5). We first focused on PRDM13, as PRDM13 binds both unmethylated and 325 

methylated DNA in different sequence contexts in vitro and both of these binding sites were 326 
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abundantly found in ChIP-seq peaks (Supplementary Figure 5a). The lack of CG dinucleotides 327 

in the ‘no CG’ motif ‘GCAGGTGG’ led to the analysis of CG methylation across entire peaks 328 

containing this motif. Here, ~45% of CGs were methylated at less than 10%, while ~25% showed 329 

methylation levels above 90% (Figure 5a-b). In contrast, more than 38% of occurrences of 330 

PRDM13’s ‘methyl plus’ motif ‘GCGGGTGG’ within ChIP-seq peaks were found to be highly 331 

methylated (> 90%) in HEK293 cells. This observation is particularly striking given that CG 332 

methylation levels across entire peaks containing the ‘methyl plus’ motif are predominantly 333 

unmethylated, with ~64% showing less than 10% methylation and only ~14% exceeding the 90% 334 

methylation threshold (Figure 5a-b, Methods). Thus, these findings indicate that PRDM13 can 335 

bind both meSMiLE-seq predicted motifs in a methylation-dependent context in vivo. We 336 

expanded the analysis to include all TFs with available ChIP-seq17 or ChIP-exo data29 and 337 

observed similar patterns for ‘methyl plus’ TFs ZNF445 (Figure 5c), POU5F1, ZNF716, ZNF18 338 

and ZNF518B (Supplementary Database 2). Interestingly, while RFX5 successfully served as a 339 

positive control for a ‘methyl plus’ TF in meSMiLE-seq, showcasing affinity to both methylated 340 

and unmethylated motifs in vitro (Figure 2c), its genomic TFBS were not methylated in HEK293 341 

cells, consistent with previous observations in different cell lines36. Similar discrepancies were 342 

noticed for the ‘methyl plus’ predicted TFs ZKSCAN4, ZNF133, ZNF503, and ZNF648, which 343 

bound predominantly unmethylated regions in HEK293/T cells (Supplementary Database 2). 344 

These data suggest that while a TF’s ability to bind methylated DNA in vitro is a prerequisite for 345 

binding the modification in vivo, it does not guarantee that this behavior will be observable in all 346 

cell types.  347 

In contrast, motif occurrences for most ‘methyl minus’ TFs (11 of 13) were predominantly 348 

unmethylated in cells, as illustrated by ZNF395 (Figure 5d, Supplementary Database 2), 349 

suggesting that these proteins might have in general a weakened affinity towards their motifs 350 

when methylated irrespective of cellular context. 351 

Given that several TFs were found to associate with unmethylated and methylated DNA motifs 352 

with distinct sequences, we aimed to assess the genomic impact of the different binding profiles 353 

of these TFs. We intersected the binding sites of all TFs with available ChIP-seq or ChIP-exo data 354 

with ChromHMM annotations for HEK293/T cells37 (Supplementary Figure 5a-c), but focused 355 

especially on ‘methyl plus’ TFs to compare the genomic annotations of highly methylated motif 356 

occurrences (motif occurrences of ‘methyl plus’ motifs that are at least 50% methylated in WGBS) 357 

to their unmethylated counterparts (i.e. ‘noCG’ motifs) (Figure 5e-f). The analyses revealed that 358 

methylated binding sites are mostly depleted around active transcription start sites (Tss) (except 359 
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ZNF716 and ZNF18) while being enriched in most cases in bivalent/poised regulatory elements 360 

(TssBiv and EnhBiv) and actively transcribed genes (Tx and TxWk). These observations support 361 

the methylation status of these DNA elements (Figure 5f) as they tend to be consistent with 362 

previous findings such as heavy methylation of gene bodies of actively transcribed genes38–41. 363 

Annotation of the genomic regions using gene ontology analysis of nearby genes (< 3 kb distance 364 

of the TFBS) also showed that different DNA motifs may direct TFs to distinct classes of genes 365 

and may thus contribute to the differential regulation of cellular function. This is illustrated by 366 

ZNF18, a poorly characterized KRAB-ZNF whose ZNF18 ‘methyl plus’ motifs are significantly 367 

associated with ‘pathways in cancer’ and more specifically with ‘chronic/acute myeloid leukemia’ 368 

(Figure 5g), which in turn might rationalize its involvement in the pathogenesis of various 369 

malignancies42–44. Although gene ontology enrichment for many other TFs was inconclusive as 370 

most pathways did not surpass the significance threshold (Supplementary Figure 5d-g), our 371 

analyses nevertheless suggest that methylation-sensitive TFs are recruited to different genomic 372 

locations based on their affinity towards DNA methylation and thus exert their regulatory function 373 

in different cellular contexts. 374 

 375 

ZHX2 as a putative Z-DNA binding protein 376 

Among the detected ‘methyl plus’ TFs, we found one TF (zinc fingers and homeoboxes protein 2 377 

(ZHX2)), that encodes two C2H2 ZNFs and four or five homeodomains (HDs)45,46 that specifically 378 

enriched methylated ‘CG’ repeats when expressed as a full-length protein in meSMiLE-seq. To 379 

locate the DNA interaction domains of this protein, we performed experiments using the DBDs 380 

separately and identified the HDs as mediating the observed DNA binding properties (Figure 6a). 381 

However, when comparing our data to that of ChIP-seq-derived ZHX2 motifs, we found that the 382 

motifs were dissimilar as the latter mainly comprised of typical promoter motifs similar to those of 383 

other promoter binders such as ‘TGACG’ or ‘AAGATGG’ for CREB1 and YY1, respectively31,47. 384 

Other reported, predicted genomic binding sites for ZHX2 included sequences such as 385 

‘AGGCTAGA’48 or ‘CCACCAC’49. The methylated poly(CG) core of the ZHX2 motif derived from 386 

meSMiLE-seq is however reminiscent of DNA sequences involved in the formation of non-387 

canonical DNA structures, particularly Z-DNA50. Z-DNA is a higher-energy, left-handed DNA 388 

conformation that can form under various conditions depending on sequence and environment51. 389 

Purine-pyrimidine repeats are particularly prone to adopting this conformation in vitro when 390 

stabilized by specific reagents or multivalent salts such as MgCl2 or hexaaminecobalt(III) 391 

chloride52,53, and methylation of CG repeats further stabilizes the Z-form as compared to 392 
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unmethylated poly(CG)50. In mammalian genomes, Z-DNA-forming regions are enriched in 393 

promoters, where the structure is temporally formed due to negative supercoiling during 394 

transcription54–56. 395 

To test whether the meSMiLE-seq-derived sequences may form Z-DNA, thus indicating that ZHX2 396 

might preferentially bind to this particular DNA conformation, we performed circular dichroism 397 

(CD) spectroscopy. We found that both methylated and unmethylated sequences can transition 398 

from canonical B-DNA to Z-DNA when incubated with hexaaminecobalt(III) chloride. However, 399 

methylated DNA displayed a higher potential to transition as seen by a stronger upshift in ellipticity 400 

at 255 nm (Figure 6b). This demonstrates that methylated ‘CG’ repeats shift the equilibrium from 401 

B-DNA towards Z-DNA compared to unmethylated sequences. The observation also suggests 402 

that Z-DNA could form in a complex medium such as the Wheat Germ IVT-kit that is used for TF 403 

production in meSMiLE-seq experiments (Methods). 404 

We then searched for evidence of Z-DNA formation in the genomic target sites of ZHX2 to further 405 

test if this DNA conformation was preferentially bound by the protein. We calculated associations 406 

of ZHX2-specific regions with peaks from other TFs that were selected based on motif similarity 407 

to ZHX2 or Z-DNA from publicly available ChIP-seq data (Methods, Table 5)55. Additionally, we 408 

included datasets for in silico predicted Z-DNA forming sites56 and for ZBTB43, a TF that has 409 

been recently identified as a Z-DNA remodeler in prospermatogonia57. Most notably, ZHX2 410 

exhibited the highest association scores and strongest local overlap with ZBTB43 across all tested 411 

TFs. These observations strongly suggest that ZHX2 is recruited to its genomic locations by 412 

recognizing Z-DNA conformations rather than canonical B-DNA motifs (Figure 6c-d). Altogether, 413 

our meSMiLE-seq findings suggest an alternative explanation for how ZHX2 may be recruited to 414 

promoter sequences in vivo. Given that Z-DNA is a transient structure in mammalian promoters, 415 

formulating this hypothesis based solely on ChIP-seq data would have been challenging. This 416 

underscores the value of in vitro DNA binding assays such as meSMiLE-seq. 417 

 418 

Discussion 419 

In this study, we investigated the DNA binding properties of 284 putative human TFs using SMiLE-420 

seq and 114 TFs via meSMiLE-seq, identifying motifs for 98 TFs and thus significantly expanding 421 

the TF “codebook”. One of the defining features of SMiLE-seq as a platform to profile TF-DNA 422 

interactions is the single round of DNA enrichment, as best demonstrated in meSMiLE-seq. This 423 

is because the simultaneous exposure of multiple DNA species to a TF, coupled with the single 424 
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step of entrapment of bound molecules during MITOMI allows capturing the actual, potentially 425 

subtle binding preferences of TFs to modified or unmodified DNA. The lack of multiple 426 

amplification steps preserves the methylation status of the DNA and ensures the identification of 427 

TFBS over a wide range of affinities. We demonstrated that meSMiLE-seq-derived motifs 428 

correlate highly with the binding models generated by orthogonal datasets, when we excluded 429 

information about methylation specificity in the form of an extended alphabet. Since most TF-DNA 430 

interaction assays do not include modified DNA by default, there may be interest in the field to 431 

probe already characterized TFs for methylation affinity. Here, meSMiLE-seq offers a clear 432 

advantage for being a scalable competition assay that captures binding events in equilibrium 433 

conditions, as exposure to unmethylated libraries serves as an internal positive control for 434 

assessment of experimental success if a TF’s unmethylated binding site is already known. In this 435 

regard, a valuable future goal may be to expand meSMiLE-seq to include further DNA 436 

modifications which have not yet been studied to the same extent as CG methylation on potentially 437 

impacting TF-DNA interactions such as 5’-hydroxymethylation of cytosine (5hmC)58 or N6’-438 

methylation of adenosine (N6mA)59. 439 

The Codebook/GRECO-BIT initiative successfully identified DNA binding sites for 236 of 394 440 

predicted human TFs. However, for 158 TFs, motif discovery did not yield reproducible motifs, 441 

suggesting a possible misclassification of proteins as TFs1, or a need for specific interaction 442 

partners, such as heterodimers, which were not considered within the Codebook/GRECO-BIT 443 

collaboration or in this study. Our analysis yielded 73 high-quality binding motifs from 284 TFs 444 

using SMiLE-seq, with an initial success rate of ~26% with our analysis approach or ~23% using 445 

non-customized motif discovery pipelines. The lower-than-expected yield was likely due to 446 

technical challenges, including a single round of DNA enrichment and bias in nucleotide 447 

distribution, which complicated motif discovery. By changing the DNA libraries and ensuring 448 

uniform nucleotide distributions in meSMiLE-seq, the success rate nearly doubled (~42%). The 449 

improvement was achieved despite the additional experimental complexity by exposing the TFs 450 

to both methylated and unmethylated DNA, although part of this increase may be influenced by 451 

using a subset of TFs in meSMiLE-seq that was suspected to bind DNA. Nonetheless, this 452 

highlights the importance of customized analysis pipelines for overcoming background noise and 453 

extracting accurate TFBS, indicating that further optimization could significantly enhance future 454 

discoveries. 455 

Many of our meSMiLE-seq-derived motifs could be found in TF-associated ChIP-seq peaks in 456 

HEK293/T cells. Pairing the data with WGBS revealed that the predictions for most ‘methyl minus’ 457 
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TFs were correct, as motif occurrences for these TFs were predominantly not methylated in cells. 458 

Importantly, this analysis also showed that several ‘methyl plus’ TFs bound methylated genomic 459 

regions, not only indicating that binding models acquired by in vitro methods such as meSMiLE-460 

seq can be translated into a cellular context, but also that these TFs are likely involved in different 461 

regulatory pathways depending on the methylation status of their motifs. For example, gene 462 

ontology enrichment analysis for ZNF18 showed that its ‘methyl plus’ binding sites were 463 

significantly associated with ‘Pathways in cancer’. This finding aligns well with DNA methylation-464 

mediated transcriptional dysregulation, considering that aberrant DNA methylation patterns are 465 

frequent in malignancies60,61. The discrepancy that most ‘little effect’ and some ‘methyl plus’ TFs 466 

appeared to mostly bind unmethylated DNA in HEK293/T cells may be due to the inaccessibility 467 

of those motifs in a cell type-specific chromatin landscape since CG methylation is frequently 468 

associated with the formation of heterochromatin and gene silencing. TFs that do not possess 469 

‘pioneering’ capability, i.e. the ability to bind condensed chromatin and/or initiate chromatin 470 

remodeling, may therefore have their TFBS occluded by nucleosomes60,62,63. Another constraining 471 

factor might be competition for methylated binding sites between these TFs and other TFs with 472 

high methylated DNA affinities such as MBDs, as suggested by previous studies36. In this case, 473 

binding to methylated motifs may be restricted to specific loci and cell types. 474 

Lastly, our study identified ZHX2 as a potential Z-DNA binding protein, as it consistently enriched 475 

methylated purine-pyrimidine repeats. The stabilization of poly(CG) sequences in the Z-form by 476 

multivalent salts and cytosine methylation suggests that Z-DNA may be randomly adopted in 477 

meSMiLE-seq experiments where TFs are incubated with DNA for an extended time. While non-478 

canonical DNA conformations like Z-DNA are already well known to impact gene regulation64–66, 479 

recent computational advancements have renewed interest in predicting genomic regions that are 480 

likely to adopt non-B-DNA structures and linking these structures to various cellular processes56. 481 

However, validating protein binding to these structures remains challenging due to their temporal 482 

instability under physiological conditions. In this sense, meSMiLE-seq could offer a valuable 483 

platform to more systematically study these interactions. For example, incubating proteins with 484 

DNA to reach equilibrium and adding reagents to trigger specific DNA transitions would allow the 485 

comparison of eluted DNA with and without reagents to identify interactions with specific DNA 486 

structures.  487 
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Material and Methods 488 

Experimental procedures 489 

TF selection and plasmids 490 

Transcription factors were provided as EGFP fusion proteins in pF3A WG (Promega) by the 491 

Codebook/GRECO-BIT collaboration16. Plasmids encoding additional KRAB-Zinc finger proteins 492 

were kindly provided by Didier Trono’s laboratory and were cloned into pDONR221 plasmids 493 

(ThermoFisher Scientific) as EGFP fusions and further shuffled into custom-made Gateway-494 

compatible pF3A WG. 495 

 496 

SMiLE-seq procedure 497 

1. Library generation 498 

meSMiLE-seq libraries comprising a random region were ordered as hand-mixed DNA oligos from 499 

IDT and resuspended to a concentration of 100 µM (Table 4). dsDNA libraries were synthesized 500 

via enzymatic reaction.3 µl library was mixed with 6 µl annealing_primer (100 µM), 3 µl 10x 501 

NEBuffer2 (NEB), and 18 µl ddH2O, and incubated for 5 min at 95 °C followed by 1 min at 60 °C. 502 

20 µl were transferred into a new tube containing 16 µl ddH2O, 5 µl 10x NEBuffer2, 4 µl 10 mM 503 

dNTPs (Thermo), and 5 µl DNA Polymerase I (Large Klenow Fragment) (NEB). The reaction was 504 

incubated for 60 min at 37 °C and subsequently purified and eluted in 13 µl ddH2O using a 505 

MinElute kit (Qiagen) following the manufacturer’s instructions. 506 

 507 

2. Methylation of libraries for meSMiLE-seq 508 

DNA libraries were treated differently depending on their respective mBCs (Table 4). uLibs 509 

remained unmodified while mLibs were methylated by mixing 250 ng of DNA with 5 µl 1.6 mM 510 

SAM (NEB), 5 µl 10x NEBuffer2 and 1 µl M.SssI (NEB) in a total volume of 50 µl (topped off with 511 

ddH2O), and incubated for 4 h at 37 °C followed by 20 min at 65 °C. To ensure a maximal degree 512 

of CG methylation, this step was performed twice. Libraries were purified using a MinElute kit 513 

(Qiagen). 514 

The efficacy of the methylation protocol was verified by methylation of a control library (CL) (Table 515 

4) followed by enzymatic digestion using BstBI (NEB). 1 μg of both modified and unmodified CLs 516 
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were mixed with 1 μl enzyme, 5 μl 10x rCutSmart buffer (NEB) in a total volume of 50 μl and 517 

incubated for 15 min at 65 °C. The samples were analyzed via agarose gel electrophoresis using 518 

a 1 % agarose gel (Thermo) in 1x Tris-Acetate-EDTA buffer stained with 1:10000 SYBR Safe 519 

(Thermo). 520 

Subsequently, mLibs and uLibs were mixed in a 1:1 molar ratio and diluted 1:10 in ddH2O. Each 521 

library aliquot of 10 µl was mixed with 50 ng of poly-dIdC (Sigma). Aliquots were stored at -20 °C 522 

for a maximum duration of 3 months. 523 

 524 

3. SMiLE-seq assay 525 

The SMiLE-seq pipeline including chip fabrication and functionalization was carried out essentially 526 

as previously described in Isakova et al 201721. In brief, TFs of interest were expressed as GFP 527 

fusion proteins using the TNT SP6 High-Yield Wheat Germ Protein Expression System from 528 

Promega (referred to as IVT-kit) following the manufacturer’s instructions. TFs were incubated 529 

with one aliquot of DNA library for at least 2 h at 25 °C and then transferred into the functionalized 530 

microfluidic device (detailed protocol Isakova et al.67), where mechanical trapping of molecular 531 

interactions was performed. 532 

 533 

4. Post-experiment library purification 534 

Recovered DNA was purified with a MinElute kit (Qiagen) and eluted in 20 μl elution buffer. The 535 

eluate was mixed with 32.5 μl NEBNext High-Fidelity 2x PCR Master Mix (NEB), 0.5 μl 536 

library_primer_fwd (10 μM), 0.5 μl library_primer_rev (10 μM), 0.5 μl 100x SYBR Green I 537 

(Thermo) in a total reaction volume of 65 μl. 50 μl of the reaction were kept on ice while 15 μl 538 

were used to estimate the suitable amount of amplification cycles using StepOnePlus Real-Time 539 

PCR instrument (Applied Biosystems) following the subsequent program: hot start at 98 °C for 540 

30 s and 25 cycles of 98 °C for 10 s, 63 °C for 30 s and 72 °C for 1 min, followed by a final 541 

elongation at 72 °C for 1 min, then kept at 4 °C. The remaining 50 μl were amplified accordingly 542 

and purified with a MinElute kit (Qiagen). DNA was size selected using 1.5x (one-sided) 543 

AMPureXP beads (Beckman Coutler) to remove primer dimers. 544 

After purification, libraries were amplified for 5 cycles with 0.5 μl i5 and i7 Nextera adapters 545 

(10 μM) following the instructions provided by Illumina. Finally, DNA was purified (MinElute, 546 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


Qiagen) and size selected using 1x (one-sided) AMPure XP beads (Beckman Coulter) to remove 547 

impurities.  548 

Libraries were sequenced on Illumina MiSeq and NextSeq500 platforms. All data were acquired 549 

in four sequencing batches. 550 

 551 

Electrophoretic Mobility Shift Assays 552 

Electrophoretic mobility shift assays of PRDM13 and USF3 were performed using precast 6 % 553 

TBE gels (Novex) and were run in 0.5 % TBE buffer at 4 °C and 100 V. The TFs were expressed 554 

as GFP fusion proteins using the IVT-kit. 2 ul of unpurified IVT-TF solution was mixed with 555 

0.1 pmol of Cy5-labeled DNA probe (IDT, Table 4) in 1x binding buffer (80 ng poly-dIdC, 10 mM 556 

Tris-HCl, 10 mM NaCl, 40 mM KCl, 1 mM MgCl2, 1 mM EDTA, 1 mM DTT and 0.05 mg/mL BSA). 557 

To outcompete binding between TF and labeled DNA, 1 pmol (10x molar excess) of unlabeled 558 

DNA probe (referred to as ‘cold probe’) was added where indicated. The solutions were incubated 559 

for 15 min at RT, then supplemented with 1x loading dye (0.1 M Tris-HCl, 10 % Glycerol, and 560 

0.01 % Bromophenol blue (Sigma)) and loaded onto the gel. After electrophoresis, gels were 561 

imaged using an Amersham Typhoon scanner (Cytiva). 562 

 563 

CD spectroscopy 564 

CD spectroscopy measurements were conducted on a Chirascan V100 (AppliedPhotophysics) 565 

using 10 μM DNA probes (Merck) in 270 μl (Table 4) CD buffer (15 mM NaCl, 10 mM Tris-HCl) 566 

with and without hexaaminecobalt(III) chloride (1 mM) (Sigma). DNA probes were incubated at 567 

37 °C for 2 hours to allow a potential B-Z transition. CD measurements were acquired between 568 

230 and 320 nm with a bandwidth of 1 nm and intervals averaged over 0.5 s at 25 °C. 569 

 570 

Data analysis 571 

 572 

SMiLE-seq analysis  573 

Sequenced reads were filtered and demultiplexed using custom Python scripts available on 574 

GitHub (https://github.com/DeplanckeLab/meSMiLEseq) (version 3.9.5) and pandas (version 575 
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2.0.3)68,69. To test for enrichment of DNA motifs, the random stretches from both input and eluted 576 

libraries were split into k-mers (by default 6, 7, 8, and 9-mers). K-mers from both input and eluted 577 

fractions were counted and used to assess significantly enriched k-mers in the eluted libraries 578 

using a right-tailed, one-sided Fisher’s exact test. Calculated p-values were corrected for multiple 579 

testing via the Benjamini-Hochberg method (p-value threshold 0.05). Raw sequencing reads 580 

without significantly enriched k-mers were filtered out; de novo motif discovery was performed 581 

with the ProBound Suite23 as described below. All calculations were performed using NumPy 582 

(version 1.26.4) and SciPy (version 1.13.1)70,71. 583 

 584 

meSMiLE-seq analysis 585 

Data were processed and analyzed as described above (SMiLE-seq analysis) for both uLib and 586 

mLib data to assess enrichment of unmethylated and methylated k-mers. Scatterplots were 587 

created using the ratios of respective k-mers (eluted count/ input count) considering their 588 

methylation status unless otherwise stated. Empirical cumulative distribution functions (ECDFs) 589 

were plotted using Z-transformed k-mer counts from the input libraries. Graphs were plotted using 590 

matplotlib (version 3.6.2)72. 591 

Motif similarities were assessed by flattening both PSAMs and PFMs into one-dimensional arrays. 592 

Pearson correlation coefficients (PCC) were then calculated between these flattened vectors for 593 

each TF pair. For motifs of unequal lengths, the shorter motif was used as a sliding window across 594 

the longer motif, and all possible PCCs were computed. The most extreme PCC value (either 595 

closest to 1 (indicating high correlation) or -1 (indicating high anticorrelation)) was reported. 596 

DNA motifs were visualized using the Python package logomaker73. 597 

 598 

ProBound analysis 599 

SMiLE-seq and meSMiLE-seq data were passed to the ProBound Suite23 for de novo motif 600 

discovery using the same optimizer settings that were used for ProBound benchmarking in MEX 601 

(MEX paper): i.e., the lambdaL2 parameter was set to 0.000001, Dirichlet regularizer weight to 602 

20 and the likelihoodThreshold parameter to 0.000218. meSMiLE-seq data were analyzed using 603 

ProBound’s methylation-aware binding models with an extended alphabet, where ‘mg’ and ‘CG’ 604 

indicated methylated and ‘naked’ CG dinucleotides, respectively. Data were given to ProBound 605 

as full sequences, with the input libraries serving as background. Binding affinities were modeled 606 
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for both specific and non-specific binding (in total three binding modes), using sizes of 6, 9, 12, 607 

15, and 24 base pairs. 608 

To compare PSAM models to PFMs from other datasets, PSAMs were converted into PFMs as 609 

described in Supplementary Figure 4a. To extract ‘methyl plus’ motifs, PSAMs were manually 610 

adapted by swapping values of ‘mg’ dinucleotides with ‘CGs’ at respective positions. Similarly, for 611 

‘methyl minus’ or ‘no CG’ motifs values for ‘m’ and ‘g’ nucleotides were not considered when 612 

converting PSAMs into PFMs. 613 

 614 

HOMER analysis 615 

MeSMiLE-seq sequences were split according to the methylation status using the mBC. Datasets 616 

of eluted and input libraries were stored as .fasta-files and analyzed by calling the program 617 

‘findmotifs.pl’ with the parameters set to human, -fastaBg and -len 6, 8, 10, 12, using the input 618 

libraries as background24. 619 

Data for KRAB-ZNF that were not part of the Codebook/GRECO-BIT consortium data (Geo 620 

accession number GSE78099)29 (Table 5) were analyzed by calling ‘findmotifsGenome.pl’ using 621 

hg19 as reference genome and a search window of 200 bp. 622 

 623 

TF classification  624 

TFs were classified based on ProBound generated PSAM models, where letter sizes represent 625 

the impact of a nucleotide on the stability of the TF-DNA interaction. If a reported motif contained 626 

a ‘CG’ and no ‘mg’ dinucleotide at a given position, and the values of both ‘C’ and ‘G‘ were > 10 % 627 

of the Euclidean norm of the PSAM at this position, the TF would be classified as ‘methyl minus’. 628 

Vice versa, if ‘mg’ was reported instead of ‘CG’, the TF would be classified as ‘methyl plus’. If both 629 

‘CG’ and ‘mg’ were present and the condition mentioned above was met, the ratio ‘CG’/’mg’ was 630 

calculated. If values fluctuated by 10 % or more, the TFs would be classified in the respective 631 

groups. 632 

In case none of the above was met, the TF would be labeled as ‘little effect/no CG dinucleotide’. 633 

 634 

Motif occurrences in ChIP-seq and ChIP-exo data and their methylation status 635 
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All ChIP-seq and ChIP-exo datasets were mapped to or lifted over to the reference genome hg19. 636 

Sequences were extracted from TF-specific datasets (Table 5) by calling ‘bedtools getfasta’74. 637 

Methylation-sensitive PSAM models were transformed into PFMs in MEME format as described 638 

above, and all matrices were elongated by the background model used in the FIMO tool from the 639 

MEME suite to have a standard size of 20 bp26,75. To find individual motif occurrences within TF-640 

specific peaks, PFMs were applied using FIMO with default parameters (p-value threshold < 10-641 

4). The resulting file ‘best_site.narrowPeak’ was intersected with publicly available WGBS data 642 

for HEK293/T cells34,35 (Table 5) via ‘bedtools intersect’74 to obtain information about DNA 643 

methylation. Motif-specific methylation patterns were compared to overall CG methylation levels 644 

of peaks containing those motifs. WGBS data were filtered for lowly covered regions to ensure 645 

the recommended average coverage of 15x76. Significance of motif-specific methylation 646 

distributions was assessed by performing a Kolmogorov-Smirnov test with the background 647 

methylation distribution.  648 

In addition, genomic loci were intersected with ChromHMM tracks for HEK293/T cells37 to extract 649 

motif-specific chromatin annotations. Datasets for ‘methyl plus’ TFs were split based on 650 

methylation levels, comparing motif occurrences being at least 50% methylated to those below 651 

the threshold with adjusted number of reads. These TFBS containing regions were used for 652 

methylation-specific gene ontology (GO) enrichment using Enrichr within a 3 kb distance of the 653 

motif77–79. 654 

 655 

Calculating ChIP-seq associations for ZHX2 656 

Permutation-based global associations between ChIP-seq tracks (Table 5) were calculated with 657 

the regioneReloaded package in R (version 4.3.1)80 using the ‘crosswisePermTest’ function with 658 

the settings ‘resampleGenome’, ntimes = 1000, evFUN = ‘numOverlaps’. Local associations were 659 

calculated with the ‘multiLocalZscore’ function with the same settings mentioned above, a sliding 660 

window of 7500 bp and a step size of 100 bp. 661 

 662 

Table 1: Overview of TFs that were investigated in this study 663 

Table 2: Re-curated and unique TFs differing from MEX 664 

Table 3: TF classification based on affinity towards methylated DNA 665 
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Table 4: DNA libraries and primers 666 

Table 5: Orthogonal datasets used in this study 667 

Database 1: Overview of all meSMiLE-seq-derived DNA binding motifs 668 

Database 2: Methylation levels of genomic TFBS 669 

 670 

Data and Code availability 671 

Raw SMiLE-seq sequencing datasets were deposited on ArrayExpress (meSMS data: E-MTAB-672 

14597; SMS data: E-MTAB-14598). Custom analysis pipelines and PSAMs with logos used in 673 

this manuscript are available on Github (https://github.com/DeplanckeLab/meSMiLEseq). 674 

Additionally, motifs can be browsed at mex.autosome.org, https://cisbp.ccbr.utoronto.ca/. An 675 

updated list of human TFs is available at https://humantfs.ccbr.utoronto.ca/. Information on 676 

constructs, experiments, analyses, processed data, comparison tracks, and browsable pages 677 

with information and results for each TF is available at codebook.ccbr.utoronto.ca. 678 

 679 

Author contributions 680 

 681 

A.G. and B.D. designed the study. A.G., A.Y. and C.O. conducted experiments. A.G., K.F. and 682 

J.K. performed data analyses. C.S., J.R. and N.G. manufactured microfluidic devices. A.G., 683 

G.v.M. and B.D. wrote the manuscript with support from I.K., T.H., J.K and other members of the 684 

Codebook/GRECO-BIT Consortium.  685 

 686 

Acknowledgements 687 

We extend our gratitude to the members of the Deplancke laboratory for their valuable input on 688 

the experiments and analyses, with special thanks to V. Gardeux and C. Lambert. Additionally, 689 

we thank the gene expression core facility and the protein production and structure core facility 690 

at the École Polytechnique Fédérale de Lausanne (EPFL) for their assistance in library 691 

sequencing and CD spectroscopy. 692 

 693 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


Funding 694 

This work was supported by a Swiss National Science Foundation grant (no. 310030_197082) to 695 

B.D., by a Marie Skłodowska-Curie (no. 895426) as well as an EMBO long-term fellowship (1139-696 

2019) for J.F.K., and by institutional funding by the EPFL.  697 

 698 

Competing Interests 699 

The authors declare no competing interest. 700 

 701 

References 702 

 703 

1. Lambert, S. A. et al. The Human Transcription Factors. Cell 172, 650–665 (2018). 704 

2. Rauluseviciute, I. et al. JASPAR 2024: 20th anniversary of the open-access database of transcription 705 

factor binding profiles. Nucleic Acids Research 52, D174–D182 (2024). 706 

3. Vorontsov, I. E. et al. HOCOMOCO in 2024: a rebuild of the curated collection of binding models for 707 

human and mouse transcription factors. Nucleic Acids Research 52, D154–D163 (2024). 708 

4. Már, M., Nitsenko, K. & Heidarsson, P. O. Multifunctional Intrinsically Disordered Regions in 709 

Transcription Factors. Chemistry – A European Journal 29, e202203369 (2023). 710 

5. Laptenko, O. et al. The p53 C Terminus Controls Site-Specific DNA Binding and Promotes Structural 711 

Changes within the Central DNA Binding Domain. Molecular Cell 57, 1034–1046 (2015). 712 

6. Baughman, H. E. R. et al. An intrinsically disordered transcription activation domain increases the 713 

DNA binding affinity and reduces the specificity of NFκB p50/RelA. Journal of Biological Chemistry 714 

298, (2022). 715 

7. Aizenshtein-Gazit, S. & Orenstein, Y. DeepZF: improved DNA-binding prediction of C2H2-zinc-finger 716 

proteins by deep transfer learning. Bioinformatics 38, ii62–ii67 (2022). 717 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


8. Najafabadi, H. S. et al. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat 718 

Biotechnol 33, 555–562 (2015). 719 

9. Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA 720 

methylation in the human genome. Nat Genet 39, 457–466 (2007). 721 

10. Chatterjee, R. & Vinson, C. CpG methylation recruits sequence specific transcription factors 722 

essential for tissue specific gene expression. Biochimica et Biophysica Acta (BBA) - Gene Regulatory 723 

Mechanisms 1819, 763–770 (2012). 724 

11. Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription 725 

factors. Science 356, eaaj2239 (2017). 726 

12. Du, Q., Luu, P.-L., Stirzaker, C. & Clark, S. J. Methyl-CpG-Binding Domain Proteins: Readers of the 727 

Epigenome. Epigenomics 7, 1051–1073 (2015). 728 

13. Rishi, V. et al. CpG methylation of half-CRE sequences creates C/EBPα binding sites that activate 729 

some tissue-specific genes. Proceedings of the National Academy of Sciences 107, 20311–20316 730 

(2010). 731 

14. Kribelbauer, J. F. et al. Quantitative Analysis of the DNA Methylation Sensitivity of Transcription 732 

Factor Complexes. Cell Reports 19, 2383–2395 (2017). 733 

15. Hu, S. et al. DNA methylation presents distinct binding sites for human transcription factors. 734 

eLife 2, e00726 (2013). 735 

16. Jolma, A. et al. Perspectives on Codebook: sequence specificity of uncharacterized human 736 

transcription factors. bioRxiv (2024) doi:10.1101/2024.11.11.622097. 737 

17. Razavi, R. et al. Extensive binding of uncharacterized human transcription factors to genomic 738 

dark matter. bioRxiv (2024) doi:10.1101/2024.11.11.622123. 739 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


18. Jolma, A. et al. GHT-SELEX demonstrates unexpectedly high intrinsic sequence specificity and 740 

complex DNA binding of many human transcription factors. bioRxiv (2024) 741 

doi:10.1101/2024.11.11.618478. 742 

19. Maerkl, S. J. & Quake, S. R. A systems approach to measuring the binding energy landscapes of 743 

transcription factors. Science 315, 233–237 (2007). 744 

20. Vorontsov, I. E. et al. Cross-platform DNA motif discovery and benchmarking to explore binding 745 

specificities of poorly studied human transcription factors. bioRxiv (2024) 746 

doi:10.1101/2024.11.11.619379. 747 

21. Isakova, A. et al. SMiLE-seq identifies binding motifs of single and dimeric transcription factors. 748 

Nat Methods 14, 316–322 (2017). 749 

22. Rastogi, C. et al. Accurate and sensitive quantification of protein-DNA binding affinity. 750 

Proceedings of the National Academy of Sciences 115, E3692–E3701 (2018). 751 

23. Rube, H. T. et al. Prediction of protein–ligand binding affinity from sequencing data with 752 

interpretable machine learning. Nat Biotechnol 1–8 (2022) doi:10.1038/s41587-022-01307-0. 753 

24. Heinz, S. et al. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-754 

Regulatory Elements Required for Macrophage and B Cell Identities. Molecular Cell 38, 576–589 755 

(2010). 756 

25. Grau, J., Posch, S., Grosse, I. & Keilwagen, J. A general approach for discriminative de novo motif 757 

discovery from high-throughput data. Nucleic Acids Research 41, e197 (2013). 758 

26. Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Research 43, 759 

W39–W49 (2015). 760 

27. Foat, B. C., Morozov, A. V. & Bussemaker, H. J. Statistical mechanical modeling of genome-wide 761 

transcription factor occupancy data by MatrixREDUCE. Bioinformatics 22, e141–e149 (2006). 762 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


28. Tan, D. S. et al. The homeodomain of Oct4 is a dimeric binder of methylated CpG elements. 763 

Nucleic Acids Research 51, 1120–1138 (2023). 764 

29. Imbeault, M., Helleboid, P.-Y. & Trono, D. KRAB zinc-finger proteins contribute to the evolution 765 

of gene regulatory networks. Nature 543, 550–554 (2017). 766 

30. Schmitges, F. W. et al. Multiparameter functional diversity of human C2H2 zinc finger proteins. 767 

Genome Res. 26, 1742–1752 (2016). 768 

31. Pratt, H. E. et al. Factorbook: an updated catalog of transcription factor motifs and candidate 769 

regulatory motif sites. Nucleic Acids Research 50, D141–D149 (2022). 770 

32. Wasserman, W. W. & Sandelin, A. Applied bioinformatics for the identification of regulatory 771 

elements. Nat Rev Genet 5, 276–287 (2004). 772 

33. Takahashi, N. et al. ZNF445 is a primary regulator of genomic imprinting. Genes Dev 33, 49–54 773 

(2019). 774 

34. Zhao, S. et al. TNRC18 engages H3K9me3 to mediate silencing of endogenous retrotransposons. 775 

Nature 623, 633–642 (2023). 776 

35. Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based 777 

epigenome editing. Cell 184, 2503-2519.e17 (2021). 778 

36. Hernandez-Corchado, A. & Najafabadi, H. S. Toward a base-resolution panorama of the in vivo 779 

impact of cytosine methylation on transcription factor binding. Genome Biology 23, 151 (2022). 780 

37. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat 781 

Protoc 12, 2478–2492 (2017). 782 

38. Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 783 

72–77 (2017). 784 

39. Küçük, C. et al. Global Promoter Methylation Analysis Reveals Novel Candidate Tumor 785 

Suppressor Genes in Natural Killer Cell Lymphoma. Clinical Cancer Research 21, 1699–1711 (2015). 786 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


40. Ball, M. P. et al. Targeted and genome-scale strategies reveal gene-body methylation signatures 787 

in human cells. Nat Biotechnol 27, 361–368 (2009). 788 

41. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic 789 

differences. Nature 462, 315–322 (2009). 790 

42. Iqbal, J. et al. Genomic analyses reveal global functional alterations that promote tumor growth 791 

and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia 23, 1139–1151 (2009). 792 

43. Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 793 

(2017). 794 

44. The Human Protein Atlas. 795 

45. Bird, L. E. et al. Novel structural features in two ZHX homeodomains derived from a systematic 796 

study of single and multiple domains. BMC Structural Biology 10, 13 (2010). 797 

46. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–798 

589 (2021). 799 

47. Zhang, J. et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal 800 

cell carcinoma. Science 361, 290–295 (2018). 801 

48. Zhang, Y. et al. ZHX2 emerges as a negative regulator of mitochondrial oxidative 802 

phosphorylation during acute liver injury. Nat Commun 14, 7527 (2023). 803 

49. Zhu, L., Ding, R., Yan, H., Zhang, J. & Lin, Z. ZHX2 drives cell growth and migration via activating 804 

MEK/ERK signal and induces Sunitinib resistance by regulating the autophagy in clear cell Renal Cell 805 

Carcinoma. Cell Death Dis 11, 1–12 (2020). 806 

50. Fujii, S., Wang, A. H.-J., van der Marel, G., van Boom, J. H. & Rich, A. Molecular structure of (m 5 807 

dC-dG) 3 : the role of the methyl group on 5-methyl cytosine in stabilizing Z-DNA. Nucleic Acids 808 

Research 10, 7879–7892 (1982). 809 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


51. Mitsui, Y. et al. Physical and Enzymatic Studies on Poly d(I–C).Poly d(I–C), an Unusual Double-810 

helical DNA. Nature 228, 1166–1169 (1970). 811 

52. Guéron, M., Demaret, J.-Ph. & Filoche, M. A Unified Theory of the B-Z Transition of DNA in High 812 

and Low Concentrations of Multivalent Ions. Biophysical Journal 78, 1070–1083 (2000). 813 

53. Jovin, T. M., Soumpasis, D. M. & McIntosh, L. P. The Transition Between B-DNA and Z-DNA. 814 

54. Rich, A. & Zhang, S. Z-DNA: the long road to biological function. Nat Rev Genet 4, 566–572 815 

(2003). 816 

55. Shin, S.-I. et al. Z-DNA-forming sites identified by ChIP-Seq are associated with actively 817 

transcribed regions in the human genome. DNA Res 23, 477–486 (2016). 818 

56. Beknazarov, N., Jin, S. & Poptsova, M. Deep learning approach for predicting functional Z-DNA 819 

regions using omics data. Sci Rep 10, 19134 (2020). 820 

57. Meng, Y. et al. Z-DNA is remodelled by ZBTB43 in prospermatogonia to safeguard the germline 821 

genome and epigenome. Nat Cell Biol 24, 1141–1153 (2022). 822 

58. Richa, R. & Sinha, R. P. Hydroxymethylation of DNA: an epigenetic marker. EXCLI J 13, 592–610 823 

(2014). 824 

59. Liu, X. et al. N6-methyladenine is incorporated into mammalian genome by DNA polymerase. 825 

Cell Res 31, 94–97 (2021). 826 

60. Jones, P. A. & Takai, D. The Role of DNA Methylation in Mammalian Epigenetics. Science 293, 827 

1068–1070 (2001). 828 

61. Wang, Z. et al. Complex impact of DNA methylation on transcriptional dysregulation across 22 829 

human cancer types. Nucleic Acids Research 48, 2287–2302 (2020). 830 

62. Schübeler, D. Function and information content of DNA methylation. Nature 517, 321–326 831 

(2015). 832 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


63. Isbel, L., Grand, R. S. & Schübeler, D. Generating specificity in genome regulation through 833 

transcription factor sensitivity to chromatin. Nat Rev Genet 23, 728–740 (2022). 834 

64. Buzzo, J. R. et al. Z-form extracellular DNA is a structural component of the bacterial biofilm 835 

matrix. Cell 184, 5740-5758.e17 (2021). 836 

65. Zhao, C. et al. Polyamine metabolism controls B-to-Z DNA transition to orchestrate DNA sensor 837 

cGAS activity. Immunity 56, 2508-2522.e6 (2023). 838 

66. Duardo, R. C., Guerra, F., Pepe, S. & Capranico, G. Non-B DNA structures as a booster of genome 839 

instability. Biochimie 214, 176–192 (2023). 840 

67. Isakova, A. et al. SMiLE-seq: Selective Microfluidics-based Ligand Enrichment followed by 841 

sequencing. Protocol Exchange (2017) doi:10.1038/protex.2016.089. 842 

68. The pandas development team. pandas-dev/pandas: Pandas. Zenodo 843 

https://doi.org/10.5281/zenodo.10957263 (2024). 844 

69. McKinney, W. Data Structures for Statistical Computing in Python. in 56–61 (Austin, Texas, 845 

2010). doi:10.25080/Majora-92bf1922-00a. 846 

70. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020). 847 

71. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat 848 

Methods 17, 261–272 (2020). 849 

72. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007). 850 

73. Tareen, A. & Kinney, J. B. Logomaker: beautiful sequence logos in Python. Bioinformatics 36, 851 

2272–2274 (2020). 852 

74. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. 853 

Bioinformatics 26, 841–842 (2010). 854 

75. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. 855 

Bioinformatics 27, 1017–1018 (2011). 856 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


76. Ziller, M. J., Hansen, K. D., Meissner, A. & Aryee, M. J. Coverage recommendations for 857 

methylation analysis by whole genome bisulfite sequencing. Nat Methods 12, 230–232 (2015). 858 

77. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. 859 

BMC Bioinformatics 14, 128 (2013). 860 

78. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 861 

update. Nucleic Acids Research 44, W90–W97 (2016). 862 

79. Xie, Z. et al. Gene Set Knowledge Discovery with Enrichr. Curr Protoc 1, e90 (2021). 863 

80. Malinverni, R., Corujo, D., Gel, B. & Buschbeck, M. regioneReloaded: evaluating the association 864 

of multiple genomic region sets. Bioinformatics 39, btad704 (2023). 865 

 866 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. SMiLE-seq identifies DNA binding motifs for 98 putative human TFs. 1 

a) Schematic description of SMiLE-seq: DNA libraries are incubated with a TF of interest and 2 

transferred to the microfluidic device where interactions between DNA and TF are captured and 3 

sequenced (eluted fraction). Naïve DNA libraries are sequenced without TF enrichment (input 4 

fraction). Significantly enriched k-mers in the eluted fraction are identified using a one-sided, right-5 

tailed Fisher’s exact test, with the input serving as a background distribution. Raw sequences 6 

containing significant k-mers are then analyzed using the ProBound Suite to infer TFBS. b) 7 

SMiLE-seq datasets yielded 64 DNA binding motifs when analyzed with standard motif discovery 8 

pipelines as described in20, whereas our analytical strategy yielded high-quality binding models 9 

for 73 TFs. c) and d) Violin plots depict the distributions of normalized k-mers in the eluted fraction 10 

(eluted/input), with the most significant k-mers shown as yellow dots (top 8 for ZNF878, top 20 for 11 

ZNF648). Note that these are not the most abundant k-mers, indicating overamplification biases 12 

in both input and eluted fractions. DNA motifs generated using the ProBound Suite after 13 

processing steps described in a) yield similar binding motifs as top ranked motifs reported in MEX, 14 

which were generated by orthogonal experimental methods20. e) Radial dendrogram of all 15 

reported motifs generated by SMiLE-seq and meSMiLE-seq (see below) with TF family 16 

annotation. Displayed are positive values of PSAMs. See also Supplementary Figure 1 and 2. 17 
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Figure 2. The workflow of meSMiLE-seq experiments. 19 

a) Each meSMiLE-seq library carries two distinct molecular barcodes (mBC and BC) and a 20 

random region comprising 24 nucleotides. To mitigate any potential affinity towards CG 21 

dinucleotides not linked to the random region, the core library is flanked by CG-free regions. 22 

According to mBC, libraries (mLib) are split and enzymatically methylated before being combined 23 

with their unmodified counterpart (uLib) and exposed to in vitro translated TF of interest. After a 24 

single entrapment, captured DNA is collected, amplified, and sequenced. b) Top panel: The 25 

scatterplot shows the correlation of normalized k-mers (eluted/input) for POU5F1 from methylated 26 

(mLib, x-axis) and unmethylated (uLib, y-axis) libraries, with each circle representing a 7-mer. 27 

Black and red colors represent the absence or presence of a CG dinucleotide within the 7-mer, 28 

respectively. Significant enrichment is tested using a one-sided Fisher’s exact test. ****P < 29 

0.00001. Middle Panel: PSAM generated by the ProBound Suite for POU5F1. Methylation 30 

sensitivity is depicted using an extended alphabet, where ‘mg’ represents methylated CG 31 

dinucleotides. ‘g’ also indicates methylation of the complementary cytosine. Bottom panel: Two 32 

PFMs generated by HOMER for POU5F1. meSMiLE-seq data was split according to mBC. c) 33 

Correlation scatterplots and PSAMs (as described in (b)) for the three positive controls RFX5 and 34 

ZNF23 (methylation sensitive), and ZNF263 (methylation independent) as reported in Yin et al.11 35 

See also Supplementary Figure 1 and 3. 36 
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Figure 3. meSMiLE-seq-derived motifs correlate highly with orthogonal datasets. 38 

a) Correlation matrix between meSMiLE-seq-derived PFMs and DNA motifs generated by 39 

orthogonal datasets, expressed as Pearson correlation coefficients. HTS: HT-SELEX, GHT: 40 

Genomic HT-SELEX, SMS: classical SMiLE-seq, CHS: ChIP-seq, CHexo: ChIP-exo, PBM: PBM. 41 

GFPIVT: TFs expressed as GFP fusion proteins via IVT-kit, Lysate: expressed in HEK293 cells18 42 

b) meSMiLE-seq validation of binding motifs for C2H2-ZNFs that were previously only assayed 43 

by ChIP-seq or ChIP-exo. The digit indicates the rank of the found motif generated by HOMER. 44 
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Figure 4. TF classification based on affinity towards methylated DNA. 46 

a) Categorization of TFs into three groups based on methylation sensitivity: increased affinity or 47 

alternative binding site containing methylated CG (‘methyl plus’), decreased affinity (‘methyl 48 

minus’), no observable effect (‘little effect’ or ‘noCG dinucleotide’). Depicted are correlation 49 

scatterplots and PSAMs as described in Figure 2b of exemplary TFs for each group. b) and c) 50 

EMSA validation of methylation-sensitive DNA binding for PRDM13 (‘methyl plus’) and USF3 51 

(‘methyl minus’). POI: protein of interest, ‘cold, methyl.’: methylated cold probe, ‘cold, unmethyl.’: 52 

unmethylated cold probe, alternative bs.: alternative binding site (applicable for PRDM13). See 53 

also Supplementary Figure 4b-c. 54 

  55 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. Methylation of TFBS drives genomic distribution of TFs 56 

a) Exemplary workflow to identify methylated TFBS in cells. ‘methyl plus’ and ‘no CG’ motifs are 57 

extracted as PFMs from meSMiLE-seq-inferred PSAMs for PRDM13 and used to identify motif 58 

occurrences in PRMD13-specific ChIP-seq peaks. Individual instances are intersected with 59 

WGBS data, and the distribution of methylation is depicted as an ECDF. b) IGV browser 60 

snapshots for a ‘no CG’ and ‘methyl plus’ motif found in PRDM13-specific ChIP-seq peaks. c) 61 

and d) ECDFs depicting methylation levels of motifs for ZNF445 and ZNF395. e) ChromHMM 62 

annotations of TF-peak-specific motifs of ‘methyl plus’ TFs identified as described in (a). ‘me’ 63 

describes ‘methyl plus’ motifs, while the lack of ‘me’ represents ‘no CG’ or unmethylated motifs. 64 

Tss: transcription start site, TssBiv: bivalent/poised transcription start site, Tx and TxWk: actively 65 

transcribed genes, EnhBiv: bivalent enhancer. The full legend for abbreviations can be found in 66 

Supplementary Figure 5b. f) Heatmap of TF-specific ChromHMM annotations expressed as 67 

log2-transformed ratios (‘methyl plus’ / ‘no CG’). g) Gene ontology enrichment analysis of 68 

ZNF18’s ‘methyl plus’ (at least 50 % methylated) motifs (364 peaks in total) and ‘no CG’ motifs 69 

(364 most significant peaks). See also Supplementary Figure 5a-g. 70 
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Figure 6. ZHX2 as a putative Z-DNA binding protein. 72 

a) Schematic structure of ZHX2, depicting its C2H2 ZNFs and homeodomains (HDs). The full-73 

length protein and isolated HDs, but not the ZNFs, enrich methylated CG repeats in meSMiLE-74 

seq, showcased by correlation scatterplots and PSAMs as described in Figure 2b. b) CD 75 

spectroscopy (ellipticity) of meSMiLE-seq-inferred ZHX2 binding sites plotted in function of the 76 

wavelength. The data shows B-Z transition as seen by the upshift and downshift in ellipticity at 77 

255 nm and 295 nm, respectively. Blue and red lines: methylated DNA; green and orange lines: 78 

unmethylated DNA. Red and orange lines: added hexaaminecobalt(III) chloride. c) Heatmap 79 

shows ChIP-seq peak associations between TFs in HepG2 cells expressed as normalized Z-80 

scores. ZHX2 specific peaks display highest scores with ZBTB43 peaks. d) Local Z-scores 81 

between selected TFs and ZHX2 within a 7.5 kbp neighborhood. The sharp drop indicates a 82 

central, peak-specific association instead of lateral, region-wide overlaps. 83 

  84 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619598
http://creativecommons.org/licenses/by-nc-nd/4.0/

