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The coordination of tissue function is mediated by gap junctions (GJs) that enable direct cell-cell transfer of metabolic and electric
signals. GJs are formed by connexin (Cx) proteins of which Cx43 is most widespread in the human body. Beyond its role in
direct intercellular communication, Cx43 also forms nonjunctional hemichannels (HCs) in the plasma membrane that mediate
the release of paracrine signaling molecules in the extracellular environment. Both HC and GJ channel function are regulated by
protein-protein interactions and posttranslational modifications that predominantly take place in the C-terminal domain of Cx43.
Matrix metalloproteases (MMPs) are a major group of zinc-dependent proteases, known to regulate not only extracellular matrix
remodeling, but also processing of intracellular proteins. Together with Cx43 channels, both GJs and HCs, MMPs contribute to
acute inflammation and a small number of studies reports on an MMP-Cx43 link. Here, we build further on these reports and
present a novel hypothesis that describes proteolytic cleavage of the Cx43 C-terminal domain by MMPs and explores possibilities
of how such cleavage events may affect Cx43 channel function. Finally, we set out how aberrant channel function resulting from
cleavage can contribute to the acute inflammatory response during tissue injury.

1. General Aspects of Matrix-Metalloproteases
and Their Role in Inflammation

Metzincinmatrix-metalloproteases (MMPs) comprise a large
family of endopeptidases of which today, 24 distinct genes
have been identified in man (only 23 have been identified in
mouse) [1].Theprefix “metallo-” refers to the reliance of these
endopeptidases on zinc ions to perform hydrolysis of their
respective protein substrates. MMPs are best known for their
actions in remodeling of extracellular matrix (ECM) proteins
and typical classification of the MMPs is based on their ECM
substrate, their primary structure, and their subcellular local-
ization. Later, MMPs were named according to their historic
order of discovery. Groups ofMMPs thus include the collage-
nases (MMP-1, MMP-8, and MMP-13), stromelysins (MMP-
3 and MMP-10), stromelysin-like MMPs (MMP-11 and
MMP-12), matrilysins (MMP-7 and MMP-26), membrane-
type MMPs (MT-MMP-1 to MT-MMP-6), GPI-type MMPs

(MMP-17 and MMP-25), and, probably the best known,
gelatinases (MMP-2 and MMP-9) [2–4]. Research dedicated
to identifying MMP targets has however uncovered that in
fact the prefix “matrix” is far from complete as the MMP
substrate repertoire is much more diverse and also includes
growth factors, hormones, cytokines, and chemokines. Even
more, MMPs are now known to also cleave intracellular tar-
gets (see later) [2, 3]. This multitude of target proteins grants
MMPs involvement in a wide array of cellular functions. As
such, they contribute to cellular differentiation and migra-
tion, regulation of growth factor activity, and cell survival as
well as apoptosis, angiogenesis, and inflammation [1].

MMP activity is controlled at three levels: (i) tran-
scription; (ii) proenzyme activation, and (iii) inhibition by
endogenous proteins, most notably the “tissue inhibitors
of metalloproteases” (TIMPs; TIMP-1 to TIMP-4). MMPs
are synthesized as zymogens that are activated while being
located intracellularly (see further), bound to the plasma
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membrane, or after secretion in the extracellular envi-
ronment, most commonly by removal of their propeptide
domain. A cysteine residue in the propeptide domain inter-
acts with the catalytic zinc ion, thereby preventing protease
activity until the propeptide domain is removed. The disso-
ciation of this cysteine-Zn2+ interaction (“cysteine switch”)
is a critical step in the activation of all MMPs. The third and
fourth MMP protein domains are a linker region of variable
length and a hemopexin domain that confers substrate
specificity [2, 5]. TIMPs bind to the catalytic subunit ofMMPs
and inhibit them with a 1 : 1 stoichiometry (note though
that there are just four TIMPs for over twenty MMPs) and
the protease-antiprotease paradigm states that the net MMP
proteolytic activity is the difference of total active MMPs
minus the total TIMP activity [6]. Internalization, protease
activity, posttranslational modifications (S-nitrosylation, gly-
cosylation, oxidation, and alkylation), compartmentalization,
and availability of substrates add additional levels of MMP
activity control [1, 3].

MMPs are implicated in many physiological as well as
pathological conditions, but we here focus on their role in
inflammation. The inflammatory response is characterized
by a cascade of molecular events including the secretion of
cytokines, chemokines, and proteases by the damaged tissue
as well as by infiltrating mast cells and neutrophils which are
the sentinels responsible for detecting tissue damage or infec-
tion. This acute response subsequently promotes invasion
of leukocytes from the blood side into the inflamed tissue,
giving rise to a more chronic inflammatory state. In nearly
every organ or tissue system, MMPs are involved at several
levels of the inflammatory cascade. For instance, efficient
migration and extravasation of leukocytes along chemotactic
gradients to sites of infection are important for establishing
effective immunity andMMPs have been shown to contribute
to these functions. MMPs aid in establishing a chemotactic
signal for recruitment of leukocytes and at the same time
degrade ECM and junctional proteins, promoting leukocyte
infiltration. Chemokines are immobilized mostly on the
ECM or cell surface by binding to glycosaminoglycans and
MMPs might contribute to the liberation of these molecules,
delivering soluble effectors in the extracellular environment
[8]. Paracellular movement of leukocytes is impeded by
tight junctions and adherens junctions that occlude the
intercellular cleft. Occludin and zonula occludens-1 (ZO-1),
important components of the intercellular tight junctional
complex, have been identified as substrates of MMPs [9–
11]. In addition, vascular endothelium- (VE-) cadherin and
E-cadherin, major components of the adherens junction,
are known to be cleaved by MMP-7 and MMP-9 [12–14].
Importantly, MMPs are derived from the injured tissue as
well as from the infiltrating immune cells. MMP-8 and
MMP-9 are, for instance, stored in intracellular granules in
neutrophils. Macrophages are on the other hand important
in attenuating the acute immune response. Here, MMPs
contribute by removing the chemotaxis of neutrophils and by
inhibiting T-cell proliferation and function [4, 5].

At a second level, MMPs regulate the availability and
activity of inflammatory mediators, including cytokines and

chemokines. Whereas the proinflammatory tumor necrosis
factor-alpha (TNF𝛼) is generally activated by MMPs, a dual
role has been proposed with respect to interleukin-1-beta
(IL1𝛽) activity [15, 16].Vice versa, several cytokines are impli-
cated in the (up)regulation of MMPs. As such, TNF𝛼, IL1𝛽,
and transforming growth factor-beta (TGF𝛽) are implicated
in the upregulation of MMP-1, MMP-3, and MMP-9 via the
nuclear factor kappa-B (NF𝜅B) transcription factor, thereby
creating a positive feedback loop [17–19].

Finally, MMPs can trigger a specialized form of pro-
grammed cell death termed anoikis that is induced by cells
detaching from the surrounding ECM by interrupting cell-
cell and cell-matrix interactions [20].

A thorough discussion of isolated MMPs’ contribution
to inflammation falls beyond the scope of this review but is
excellently reviewed by others [4, 21, 22]. There are however
some aspects that we would wish to highlight here. A first
and very relevant aspect of MMPs in view of this review is
the activation kinetics of MMPs. Some MMPs, for example,
MT-MMPs and the downstream MMP-2, are believed to
be constitutively active, although their activity can still be
enhanced in inflammatory conditions [23]. Oppositely, other
MMPs such as MMP-9 are only induced and activated under
conditions of immune activation and are normally associated
with activated leukocytes, macrophages, and endothelium
[2]. Being dependent on the presence of proinflammatory
cytokines and a cascade of cleavage events by upstream
proteases (other MMPs, plasmin), activation of MMPs is
considered to be a slightly delayed (nevertheless acute)
event in the inflammatory response [1, 23]. However, as we
will discuss later, removal of the prodomain is not always
required and MMPs may be acting at a faster time scale
in such conditions. Second, the mode of activation largely
determines the site of MMP activity. Being dependent on
membrane-bound MT1- and MT3-MMPs for its activation,
MMP-2, for example, is generally considered to be spatially
constrained, whereas other MMPs like MMP-9 are released
in the extracellular space and diffuse to more remote sites.
Therefore, secreted MMPs are presumed to cause more
widespread damage [23]. In addition, as outlined below,
MMPs are now also known to cleave intracellular substrates,
unlocking a new level of complexity with respect to their role
in inflammation. In the following sections we will discuss
their action on connexin (Cx) channel function. These
channels too have been identified as important contributors
to the inflammatory process (see later); however, only a small
number of papers suggested a link between Cxs and MMPs.
Their interaction at the functional level therefore remains
poorly understood. Here, we try to explain how an MMP-Cx
interaction may mechanistically alter channel function and
contribute to acute inflammation.

2. Connexin Channels:
Gap Junctions and Hemichannels

Cxs are a family of transmembrane proteins with molecular
weights (MW) varying from 26 to 60 kDa on which the cur-
rent nomenclature is based (e.g., Cx43 has aMWof∼43 kDa).
Cxs form two kinds of channels, namely, gap junctions (GJs)
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and hemichannels (HCs). GJs mediate the direct diffusion
of ions and molecules with MWs up to 1.5–2 kDa, including
inositol 1,4,5 trisphosphate, cyclic nucleotides, and energy
molecules such as glucose andATP [24], thereby contributing
to the coordination of cell function in several organs and
tissues. GJ channel-mediated intercellular communication
(GJIC) is, for instance, implicated in the communication
of electrical signals between cardiomyocytes, coordinating
cardiac pump function. GJIC between smooth muscle cells
coordinates, for example, bladder and uterus function [25,
26]. GJs also pass signalingmolecules tomediate the propaga-
tion of intercellular Ca2+ waves in various tissues and organs
[27], they provide metabolic coupling between liver cells or
astrocytes [28–30] and contribute to the exchange of bone
modulating molecules [31]. However, on the downside, GJs
also spread cell death signals to neighboring cells, thereby
contributing to tissue/organ damage in pathology [32]. Half
GJ channels that arise from the hexameric assembly of
different Cx subunits can be present in the plasmamembrane
both as GJ precursors, called connexons, or as nonjunctional,
functional channels, known as HCs. For a long time, it
was thought that the only reason for a HC to open was
related to their incorporation into a GJ channel. Uncon-
trolled HC opening was presumed to lead to membrane
depolarization and depletion of essential molecules from
the cytoplasm, ultimately resulting in cell dysfunction and
possibly cell death. The first evidence of functional HCs
arose from in vitro work using Cx46 expression in Xenopus
laevis oocytes, indicating that HC opening resulted not
only in dye uptake, but also in cell depolarization and cell
death [33]. Research over the past decades has however
identified numerous scenarios in which HCs are activated
to open, thereby contributing to paracrine signaling through
the release of ATP [34], glutamate [35], glutathione [36],
NAD+ [37], and prostaglandins [38, 39]. HC-mediated ATP
release, for instance, functions as a paracrine signal in the
propagation of intercellular Ca2+ waves [27, 40]. Evidence is
accruing that HCs may contribute to physiological functions
such as “center-surround” antagonism in the retina [37, 41],
osteogenesis [31, 42], regulation of vascular permeability
[43], central chemoreception [44], and atherosclerotic plaque
formation [45]. However, HCs also have an established role in
pathological conditions associated with inflammation which
has been particularly well-documented in the brain [46–54].
Finally, both HCs and GJs are important in the induction as
well as the propagation of cell death [55].

In this review we will focus on the actions of MMPs on
GJs and HCs formed by Cx43, which is ubiquitously present
in a large array of cells and tissues in the human body [56].
Furthermore, Cx43 is the isoform that has been characterized
in great detail in terms of intramolecular gating mechanisms
as well as its role in inflammation at the functional level.

3. MMPs’ Impact on Connexin Expression and
Channel Function

3.1. Intracellular Action of MMPs. The only paper thus far
indicating that Cx43 is a target for MMPs, more specifically

MMP-7, has documented cleavage of the intracellularly
located C-terminal domain [7]. Indeed, as outlined above,
MMP activity is not confined to the extracellular space and
substrates are much more diverse than just matrix proteins.
At present, intracellular targets such as intracellular matrix
proteins, enzymes, and molecular chaperones regulating
transcription and translation are well known to be part of
the MMP substrate repertoire. Multiple MMPs, including
MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-
13, MMP-26, and MT1,3-MMP, have been shown to process
intracellular proteins, indicating that intracellular activity of
MMPs is not confined to one particular class of MMPs [3].
MMP-3 is, for example, activated in dopaminergic neurons
by the apoptosis inducer BH4 and acts upstream of caspase-3,
indirectly contributing to the cleavage and activation of this
apoptotic mediator [57]. High throughput degradomics
has furthermore identified a myriad of intracellular matrix
proteins as substrates of MMP-9, many of which are linked
to different autoimmune diseases. Such data indicate
that MMP-9 may have an immune-regulatory function,
removing toxic molecules that are released upon cell death,
but also generating substrates for autoantigens [58]. Finally,
intracellular activity of MMP-2 has been confirmed in fast
twitch type II muscle fibers with protease activity being
dependent on physical exercise [59]; MMP-2’s specific role
is however unknown in these cells. In platelets, intracellular
activity ofMMP-2 contributes to platelet aggregation [60, 61].

Intracellular activation of MMPs may be achieved by
intracellular proteases that separate the prodomain from the
catalytic domain. The Golgi-associated prohormone conver-
tase furin, for instance, activates MMP-11 by cleavage at the
Arg-X-Arg-X-Lys-Arg sequence. This recognition motif has
also been identified in MT1-, MT2-, MT3-, MT4-, and MT5-
MMPs and in MMP-23, while the similar Arg-X-X-Arg and
Lys-X-X-Arg sequences have been found in all MMPs, except
MMP-7 and MMP-12 [2, 3]. Other candidate mechanisms
for intracellular proteolytic processing of MMPs include
serine proteases, caspases, upstream intracellularMMPs, and
autolytic cleavage [2, 3]. Trypsin-2 has, for instance, been
shown to activate MMP-9 inside intracellular vesicles of
epithelial cancer cells, thereby determining the aggressive
and invasive character of these cells [62]. Intracellular MMP
activation does not always require removal of the pro-
domain. Reactive oxygen (ROS, e.g., peroxynitrite) and nitro-
gen (RNS) species that reassociated with oxidative stress may
interact with the Cys-thiol group and disrupt the interaction
with Zn2+, leading to autocatalytic activation while the
full-length pro-MMP remains intact. S-nitrosylation and S-
glutathionylation have been shown to activateMMP-1,MMP-
2, MMP-8, and MMP-9 [2, 3, 63]. MMP-2, MMP-7, MMP-
8, and MMP-9 activity have been furthermore shown to
be dependent on ROS levels with low levels activating the
proteases and high levels preventing protease activity. At the
same time, ROS may also alter the structure and binding
affinity of TIMPs, resulting in lower affinity and dissociation
from the MMPs [64]. Alternatively, oxidative stress has been
shown to promote activation of an alternate promoter located
within the first intron of theMMP-2 gene, rendering an intra-
cellularly active N-terminal truncated MMP-2 isoform that
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lacks the secretory sequence and the inhibitory prodomain
region [65]. Intracellular activity of MMPs may be further
facilitated by alternative splicing that renders MMP proteins
lacking the secretory signal peptide [2, 3, 66, 67]. Finally,
it has been proposed that intracellular activation of MMPs
can be achieved by proteins belonging to the SIBLING (small
integrin-binding ligand N-linked glycoprotein) family. BSP
(bone sialoprotein), OSP (osteopontin), and DSP1 (dentin
matrix protein 1), all upregulated in different types of cancer,
may, respectively, bind and activate MMP-2, MMP-9, and
MMP-3 without removing the prodomain, but by inducing
conformational changes in the protease [68].

3.2. MMP Activity Correlates with Altered Connexin Expres-
sion. Evidence for the proteolytic processing of Cx proteins
byMMPs ismostly derived from the heart where Cx40, Cx43,
and Cx45 are expressed in a site-specific manner with Cx43
present in atrial tissue and beingmost prevalent in the ventri-
cles. Cx40 and Cx45 are present in SA and AV nodes and in
atrial and ventricular tissue, respectively [69, 70]. In the heart,
GJsmediate electrical coupling and direct cell-to-cell transfer
of chemical and metabolic signals. Consequently, changes of
GJ properties are collectively known to contribute tomyocar-
dial infarction injury and arrhythmogenesis. Intravenous
injection of the proinflammatory cytokine TNF𝛼 increased
MMP-2 levels in mouse atrial tissue which was correlated
with a decrease in Cx40 expression [71]. In canine ventricular
tissue, Cx43 expression became progressively weaker and
disordered with the duration of ventricular fibrillation. At the
same time, a decline in TIMP-2 levels and increase in MMP-
2/TIMP-2 ratio were observed [72]. Cardiac pressure over-
load in TIMP-2 knockout mice was associated with increased
levels of MMP-9 and MMP-14, leading to a decreased
expression of the endocardial Cx37 as well as Cx43, thereby
exacerbating cardiac dysfunction [73]. In cardiac fibroblasts,
expression of both MMP-2 and MMP-9 was increased and
associated with a concomitant decrease in Cx43 expression
after activation of endothelin receptors [74]. Finally, ele-
vated levels of homocysteine, a sulfur-containing nonprotein
amino acid and a strong inducer of oxidative stress, activated
MMP-9 in mouse ventricular myocytes which led to Cx43
mitochondrial translocation and degradation [75]. A link
between Cx expression and MMP activation has also been
described in extracardiac tissues, for example, in the retinal
endothelial cells, where hyperglycemia increased mitochon-
drial MMP-2 activity, leading to a downregulation of Cx43
as well as the induction of apoptotic cell death. Treatment
with MMP-2 small interfering RNAs prevented the decrease
in Cx43 and protected against apoptosis [76]. Oppositely, in
hyperglycemic kidneys, ROS activated MMP-9 which was
accompanied by an upregulation of Cx40 and Cx43 [77].

Despite correlation between increased MMP expression
and decreased Cx expression levels, none of the papers
referred to above unequivocally demonstrated a direct role of
MMP proteolytic activity in regulating Cx expression. In fact,
very few papers have provided such direct evidence. Wu et
al. have recently indicated that, in rat H9C2 cardiomyocytes,
hypoxia decreased the total Cx43 protein level by ∼30–50%
in a MEK/ERK MAPK-dependent and MMP-9-dependent

manner. The Zn2+ chelating compound doxycycline largely
prevented the decline in Cx43 [78]. Doxycycline is best
known as a broad-spectrum antibiotic tetracycline but also
acts as a broad-spectrumMMP inhibitor at subantimicrobial
doses. Furthermore, the most straightforward evidence for
the proteolytic processing of Cx43 by MMPs was provided
by Lindsey et al. [7]. In postmyocardial infarction heart
sections, Cx43 staining was decreased while cardiomyocyte
MMP-7 levelswere significantly increased.Accordingly, Cx43
downregulation was not observed in MMP-7 knockout
mice. Further evaluation by surface plasmon resonance
(SPR) protein binding studies demonstrated a direct and
specific interaction between Cx43 and MMP-7. Importantly,
decreased Cx43 detection levels were observed when using
an antibody targeting the last 10 C-terminal amino acids
(373–382), but not when using an antibody targeting amino
acids (252–270) that are located more upstream in the C-
terminal domain. This argued in favor for the proteolytic
cleavage of Cx43 C-terminal amino acids, rather than an
overall decrease in Cx43 expression levels. In silico analysis
indeed revealed two sites with sequence homology to known
MMP-7 cleavage sequences within the Cx43 C-terminal
domain: 341NQNAKKVAAGHELQPLAIVD360 shows sim-
ilarity with the MMP-7 cleavage sequence GPQAIAGQ;
375PRPDDLEI382 shows similarity with the MMP-7 cleavage
sequence PPEELKFQ [7] (Figure 1).

We performed further in silico analysis of possible MMP
cleavage sites in the human Cx43 C-terminal domain using
PROSPER (http://lightning.med.monash.edu.au/PROSPER/)
[79] and SitePrediction (http://www.dmbr.ugent.be/prx/bi-
oit2-public/SitePrediction/) [80]. SitePrediction uses known
datasets available in literature to identify possible cleavage
sites in a given amino acid sequence. It combines similarity
scores of the candidate sequence with known cleavage sites,
with frequency scores that indicate whether amino acids of
the candidate sequence are likely to occur at the cleavage
domain recognized by a specific protease [80]. SitePrediction
allows predicting of cleavage sites of numerous proteases,
including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8,
MMP-9, MMP-12, and MMP-13. Of these, only MMP-2,
MMP-7, and MMP-9 have been described in the context of
altered Cx43 expression/function and we therefore chose to
focus only on these three MMPs. SitePrediction identifies
numerous potential cleavage sites in the Cx43 C-terminal
domain that have 95% specificity (the chance that the
identified site is an actual cleavage site) (Table 1). Analysis
using PROSPER seems more stringent as compared to
SitePrediction as only one cleavage domain is identified for
MMP-2 and no candidate sites for MMP-7 are recognized
(Table 2). Like SitePrediction, PROSPER identifies protease
substrates and their cleavage sites, using info available in
the peptidase database MEROPS. It furthermore combines a
number of complementary sequence and structural features,
including local amino acid sequence profile, predicted
secondary structure, solvent accessibility, and natively
disordered region, as well as some global sequence features,
for predicting cleavage sites of protease substrates [79]. The
resulting probability score (that describes the quantitative
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Figure 1: Predicted MMP cleavage sites of the Cx43 C-terminal domain. In silico analysis using PROSPER and SitePrediction reveals several
potential cleavage sites of MMP-2 (green circles), MMP-7 (pink letters), and MMP-9 (blue circles) in the human Cx43 C-terminal domain.
MMP target domains are 8 amino acids in length (P4-P3-P2-P1-P1-P2-P3-P4) with the actual MMP cleavage site (between P1 and P1)
indicated by the arrowhead. In addition, we include one MMP-7 target site published in [7] that is not predicted by in silico analysis using
PROSPER or SitePredict (indicated by the asterisk). Inset depicts the full length topology of Cx43.
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Table 1: Results of cleavage site prediction based on SitePredic-
tion∗ in silico analysis.

Matrix-
metalloprotease Position Segment Average

score Specificity

MMP-2

357# QPLA −/− IVDQ 476.396 >99%
355 ELQP −/− LAIV 117.022 >99%
277 PTAP −/− LSPM 155.854 >99%
254 TSGA −/− LSPA 106.264 >99%
256 ALSP −/− AKDC 26.467 >95%
326 AGST −/− ISNS 25.335 >95%
252 ATSG −/− ALSP 22.937 >95%
280 PLSP −/−MSPP 19.688 >95%
379 RPDD −/− LEI 18.873 >95%

MMP-7

355 ELQP −/− LAIV 29.767 >99%
287 PGYK −/− LVTG 29.767 >99%
352 AGHE −/− LQPL 5.998 >95%
255 GALS −/− PAKD 5.152 >95%
277 PTAP −/− LSPM 4.057 >95%
379 RPDD −/− LEI 3.397 >95%
253 TSGA −/− LSPS 3.242 >95%
285 SPPG −/− YKLV 2.469 >95%
349 KLAA −/− GHEL 2.431 >95%
238 GVKD −/− RVKG 2.119 >95%

MMP-9

285# SPPG −/− YKLV 47.023 >99%
324 GQAG −/− STIS 35.498 >99%
255 GALS −/− PAKD 13.580 >95%
357# QPLA −/− IVDQ 11.443 >95%
252 ATSG −/− ALSP 11.129 >95%
235 FFKG −/− VKDR 4.991 >95%

∗http://www.dmbr.ugent.be/prx/bioit2-public/SitePrediction/; #also identi-
fied by PROSPER.

Table 2: Results of cleavage site prediction based on PROSPER∗ in
silico analysis.

Matrix-
metalloprotease Position Segment Probability

score
MMP-2 357# QPLA −/− IVDQ 1.06

MMP-9

357# QPLA −/− IVDQ 1.21
285# SPPG −/− YKLV 1.10
248 DPYH −/− ATTG 1.08
231 LFYV −/− FFKG 1.08
359 LAIV −/− DQRP 1.03
287 PGYK −/− LVTG 1.01
334 HAQP −/− FDFP 0.98
277 PTAP −/− LSPM 0.97
379 RPDD −/− LEI 0.96

∗https://prosper.erc.monash.edu.au; #also identified by SitePrediction.

cleavage probability for each cleavage site) contains a
confidence in the prediction and only cleavage sites with
a predicted cleavage probability score greater than 0.8 are

listed. Only MMP-2, MMP-7, MMP-9, and MMP-3 are
available in PROSPER [79] and we again focused onMMP-2,
MMP-7, and MMP-9 for identifying potential cleavage sites
in the Cx43 protein. Figure 1 summarizes the potential target
sites of MMP-2, MMP-7, andMMP-9 in the Cx43 C-terminal
domain as identified by PROSPER and SitePrediction.
We stress, however, that in silico analysis is predictive and
requires further experimental validation. For instance,
although an interaction between Cx43 and MMP-7 has been
confirmed by SPR [7], PROSPER did not identify MMP-7
as a protease that cleaves Cx43. SitePrediction does, but the
identified domains do not correspond with those described
by Lindsey et al. [7]. In addition, one of the sites identified in
[7] (Figure 1, indicated by ∗) has an average score of 0.005
and a specificity far below 95% in SitePrediction. Oppositely,
both PROSPER and SitePrediction identified MMP-2 as a
potential candidate, but MMP-2 failed to bind Cx43 in SPR
studies [7].

Based on the data presented by Lindsey et al. [7] and
those obtained with in silico analysis demonstrating cleavage
of the C-terminal domain, a careful reevaluation of previous
studies reporting Cx43 downregulation should perhaps be
considered. Indeed, most commercially available antibodies
against Cx43 target the C-terminal domain, but unfortu-
nately, epitopes are not always mentioned in studies claiming
Cx43 downregulation.

3.3. Functional Consequences of C-Terminal Cx43 MMP-
Cleavage at the Channel Level. Cx43 is by far best charac-
terized in terms of the role of its C-terminal domain in
modulating channel function.This domain comprises amino
acids 232–382 and is the primary interaction domain of Cx-
associated partner proteins like ZO-1, tubulin, microtubules,
and caveolins that may regulate protein trafficking and
function [81–83]. Additionally, it is the prime target for
posttranslational modifications such as S-nitrosylation [84]
and phosphorylation [85]. Under both basal and stimulated
conditions, Cx channel activity appears to be regulated by
ongoing phosphorylation-dephosphorylation events. How-
ever, much of the details on how Cx phosphorylation can
determine the activity state of HCs and GJs still remains to
be resolved [85]. Interestingly, certain kinases, including pH-
dependent kinases [86], act on the Cx43 C-terminal domain,
a molecular hotspot for the control of GJ and HC activity.
Phosphorylation of the CT tail may add negative charges
at this site, potentiating an interaction between the CT and
the second half of the cytoplasmic loop (CL), termed the
L2 region (AAs 119–144). As such, the L2 region, which
contains a stretch of positively charged AAs, serves as a
receptor domain for the CT [87, 88]. This intramolecular
CT-CL interaction has been proposed to act as a ball-and-
chain mechanism mediating the closure of GJ channels, for
instance, during voltage gating and chemical gating of GJ
channels by intracellular acidification [89–95] (Figure 2(a)).
The CT-CL interaction is expected to induce a change
in channel conformation that brings the GJs in a closed
state [96]. Strikingly, for Cx43HCs, such CT-CL interaction
is essential for HC opening. This was suggested for the
first time in studies investigating the bimodal response of
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Figure 2: Cx43 channel gating by CT-CL interactions and possible effects of Cx43 C-terminal cleavage on hemichannel function. The
Cx43 C-terminal domain is intricately involved in gating of both HCs and GJ channels. (a) In normal conditions, GJ channels are open,
with the C-terminal domains not interacting with the CLs. GJ closure occurs when the CT binds the CL (ball-and-chain closure). In GJ
channels composed of CT-truncated Cx43, closure via the ball-and-chain mechanism cannot occur and GJ channels remain open. (b) An
intramolecular CT-CL interaction has been proposed to bring Cx43HCs in the “available to open” state whereas in the absence of such
interaction, HCs remain closed. HC closure at above 500 nM [Ca2+]i is mediated by cytoskeletal contractions that dislocate the C-terminal
domain from theCL and act as a brake onHCopening. SuchCT-CL interaction cannot take place inHCs consisting of C-terminally truncated
Cx43, making them refractive for activation. MMP cleavage of Cx43HCs in the “available to open” state will result in a C-terminal peptide
that is bound to the CL. This will cause loss of the high [Ca2+]i brake when the cleavage site is located downstream of the Cx43-actomyosin
interaction site. When theMMP cleavage site is located N-terminally of this actomyosin linker domain, the outcome is less clear. In principle,
actomyosin contractionmay remove theCTpeptide from theCL, but a residual interaction of the CLwithmore upstream sequencesmay keep
the HC in an “available to open” state. Identification of the actomyosin interaction domain within the Cx43 C-terminal domain responsible
for mediating the high [Ca2+]i brake on HC opening will resolve these uncertainties.

Cx43HCs to an increase in [Ca2+]i. A moderate increase in
[Ca2+]i up to 500 nM strongly promotes Cx43HC opening
while this effect disappears with larger [Ca2+]i elevations to
the micromolar level that tend to close the HCs [97–99].
Mechanistically, Ca2+-activation of Cx43HCs is mediated
by calmodulin-dependent signaling [98] and is dependent
on a CT-CL interaction [100] that brings the HCs in the
“available to open” state [96] (Figure 2(b)). Importantly, CT-
CL interaction is a necessary condition for HC opening, but
the actual opening is triggered by membrane depolarization
or moderate (<500 nM) elevation of [Ca2+]i. HC closure at
above 500 nM [Ca2+]i is mediated by cytoskeletal contrac-
tions that pull the C-terminal domain away from the CL
[96, 101] (Figure 2(b)).The latter system acts as a brake onHC
opening and is operational under physiological conditions
presumably to prevent the detrimental effect of uncontrolled
opening of this large conductance channel. The dependence
of Cx43HC opening on a CT-CL interaction stands in stark
contrast to the fact that such interaction results in closure of
GJs [102]. At the molecular level, it is still uncertain why and
how GJs and HCs are differentially modulated by a CT-CL
interaction. Nonjunctional HCs (closed) may adopt different
conformations as compared to those incorporated into GJs
(open). Interactions between subunits during docking of two
HCs may indeed result in conformational changes of the Cx
protein, thereby altering gating properties. Another element
that may contribute is the fact that HCs and GJ channels are
differentially located in different plasma membrane domains
with different properties such as lipid rafts [48].

Like most transmembrane proteins, Cxs are cotransla-
tionally integrated into the rough endoplasmic reticulum
(ER) membrane where they adopt their native transmem-
brane configuration [103, 104]. The subsequent oligomeriza-
tion of Cx proteins into HCs starts in the ER, progressing
to the trans-Golgi network [103, 104]. After leaving the ER-
Golgi intermediate compartment, Cxs then transit through
the cis- and trans-Golgi network before being shuttled to the
PM [56, 105]. Some data indicate that Cx43 is transiently
phosphorylated early in the secretory pathway [106], sug-
gesting that the CT is exposed and available for interaction
with modifying proteins during transit from the ER to the
Golgi network and plasma membrane. Thus, in principle,
intracellular cleavage of theCx43C-terminal domainmaynot
only occur in plasma membrane Cx43 channels, but also in
channels that are “en route” to the plasma membrane. Work
with CT-truncated Cx43 mutants has repetitively shown that
CT-truncated proteins are present at the plasmamembrane of
mammalian cells [93, 107–109]. Consequently, also following
MMP cleavage, channels harboring truncated Cx43 will be
present at the plasma membrane. Note though that in vivo
data describing the trafficking behavior of disease-associated
Cx43 mutations giving rise to preliminary CT-truncated
Cx43 indicates that these truncated proteins are not inserted
in the plasma membrane [110–113].

GJs have generally been shown to remain functionalwhen
composed of truncated Cx43. This has been confirmed by
dye coupling studies for Cx43M239stop [114] and Cx43D378stop
[115] mutants. Dual patch clamp studies have revealed similar
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results at the macroscopic level for Cx43D378stop [115] and
Cx43K258stop. Yet, single channel analysis of the latter revealed
that mean open time was prolonged and transitions to
intermediate, residual open states were lost.This was demon-
strated both in cardiomyocytes [107] and astrocytes [116]. GJs
formed by truncated Cx43 were furthermore found to be
resistant to closure upon intracellular acidosis [117]. Opposite
toGJs, HCs containingCT-truncatedCx43 become refractive
to activation in response to membrane depolarization [34]
and increased [Ca2+]i (Cx43

M239stop [100]) or by omission
of extracellular Ca2+ form the culture medium (Cx43M239stop
[114]), most likely because the CT-CL interaction that is
necessary for HC opening is lost. Opposite results exist
for HCs formed of truncated Cx43 (Cx43M258stop) that still
open in zero Ca2+ conditions [116]. As the mechanism of
Cx43HC opening by depletion of extracellular Ca2+ condi-
tions remains to be fully elucidated, it is uncertain whether
the short, remaining CT stretch in the Cx43M258stop versus the
Cx43M239stop can be responsible for this differential outcome.

C-terminal Cx43 cleavage by MMPs not only results in
a truncated protein with compromised CT-CL interaction
capabilities but also renders small, free endogenous C-
terminal peptides that have potential to alter channel func-
tion in their own right [7]. This is exemplified by application
of exogenous peptides that mimic the last 9 amino acids
of the Cx43 protein (RPRPDDLEI). ACT1, developed by
Gourdie and coworkers, is an example of such a peptide that
is N-terminally linked to an antennapedia cell-penetrating
peptide [118]. ACT1 interferes with the binding of ZO-1 to
the C-terminal domain, thereby sequestering undockedCx43
connexons into GJs, enhancing GJ aggregation and potenti-
ating GJIC, without stimulating Cx43 expression [118, 119].
ACT1 is currently under investigation as a novel therapeutic
in wound healing [120–123] and may also be applicable as
an antiarrhythmogenic compound [124] as well as a tumor
suppressor [125]. The ACT1 peptide was only found effective
as a HC inhibitor in confluent cell monolayers, but not in
semiconfluent cells. It was therefore hypothesized that ACT1
inhibitsHCs only becausemoreHCs are incorporated intoGJ
channels [119]. However, a slightly different picture has been
proposed by Ponsaerts et al. [100]. In this collaborative work,
we used the very same C-terminal peptide (RPRPDDLEI)
but linked to the TAT translocation sequence (derived from
the HIV-1 virus), to investigate HC gating by [Ca2+]i changes
in subconfluent cell cultures. Here, addition of the “TAT-
CT” peptide prevented HC closure at high [Ca2+]i by bind-
ing to the CL, thereby mimicking the endogenous CT-CL
interaction. Exogenously added TAT-CT peptide is thus able
to substitute for the endogenous CT sequence. In line with
this, TAT-CT restored HC activity of C-terminally truncated
Cx43 (Cx43M239stop), while not affecting HC activation by
modest (<500 nM) [Ca2+]i. The lack of TAT-CT effect on
closed Cx43HC in resting conditions points to a scenario
whereby CT-CL interaction is a necessary condition for
HC opening triggered by stimuli such as strong membrane
depolarization or moderate (<500 nM) [Ca2+]i elevation.
Some additional activation steps may be necessary that first
expose the CL domain for subsequent binding of the CT

[96]. In this context, ZO-1 did not seem to play a role in
the modulation of HC function by TAT-CT since a TAT-
CT version lacking the last isoleucine residue, essential for
interaction with ZO-1, was fully capable of alleviating closure
by high [Ca2+]i and of restoring the activity of Cx43M239stop

HCs [100]. This was later confirmed in Cx43D378stop adult
hearts where Cx43 and ZO-1 still normally colocalized at the
intercalated disk despite the absence of the 5 last C-terminal
amino acids [115]. As a consequence of these considerations,
the peptide resulting from cleavage of the Cx43 C-terminal
domain at 375PRPDDLEI382 as has been described for MMP-
7 [7] and suggested for MMP-9 (Figure 1), may thus prevent
pathological closure of GJs while promoting HC opening
at high [Ca2+]i. On a longer time scale (hours/days), HC
opening may be dampened as suggested by the work with
ACT1 peptide.

Finally, forced expression of Cx43 C-terminal fragments
has additionally revealed their translocation to the nucleus
where they act to inhibit cell growth and abrogate differen-
tiation [126–129]. Thus, MMP generated CT fragments may
potentially act via nuclear signaling as well.

Intriguingly, endogenous, cytoplasmic C-terminal frag-
ments of Cx43, about 20 kDa in size have been observed
in cultured murine and hamster cells and tumor cells and
in cardiac cells subjected to ischemia [130–134]. These nat-
urally occurring fragments have been suggested to result
from internal translation of the GJA1 gene transcript [133]
since their occurrence could not be prevented by the MMP
protease inhibitor EGTA-complete(R) and the serine pro-
tease inhibitor phenylmethylsulfonyl fluoride (PMSF) [131].
However, it looks less convincing that addition of protease
inhibitors in the lysis buffer would prevent the occurrence
of previously MMP-cleaved fragments in the lysate. In
another paper, cleavage was excluded as a possible source
of these fragments because detection with an N-terminal
Cx43 antibody could only reveal full-length protein but not
truncated Cx43 [132]. Obviously, posttranscriptional control
of Cx43 expression at the mRNA level may explain some
of these results but we propose to carefully consider the
alternative option of cleavage by proteases. Indeed, in most
cases, these C-terminal 20 kDa fragments mainly remain at
the observational level and their origin is not discussed.
Particularly in conditions known to induce MMP activity
such as ischemia, protease activity may well contribute to the
cellular production of these fragments.

4. Implications of Altered Connexin Channel
Function in Inflammation

Several studies specifically implicate Cx43HCs in various
injuries and inflammatory pathways. Some evidence comes
from the cardiac system [48, 135, 136] but most evidence
derives from the central nervous system where increased
Cx43 expression has been observed following stroke, epilepsy,
optic nerve damage, spinal cord injury, amyloid plaque
formation, and MS and where Cx43HC opening leads to
increased damage via the inflammatory response [47, 52,
137–144]. Cx43HC opening in inflammatory conditions is
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known to be mediated by advanced glycation end-products
(AGEs) [145], oxidative stress [84, 145], and proinflammatory
cytokines [146, 147]. Almost simultaneously, Retamal et al.
[146] and Morita et al. [147] were the first to show that
exposure of cultured astrocytes to (microglia-derived) proin-
flammatory cytokines such as IL1𝛽 and TNF𝛼 stimulated
Cx43HC opening. This was mediated by the activation of
p38 MAPK and increase in NOS activity and NO production
[146]. Acute opening of astroglial Cx43HCs by IL1𝛼/𝛽 was
later confirmed using live brain slices from mice harboring
S. aureus induced abscesses [148].

Upon opening, Cx43HCs form awell-known pathway for
the release of ATP which is driven by a large concentration
gradient between the intra- and extracellular compartment
[34, 149, 150]. This purinergic messenger is a crucial factor
in establishing a chemotactic signal for infiltrating polymor-
phonuclear neutrophils [151–154]. Modulation of Cx43HCs
and inhibition of ATP release indeed correlate with reduced
tissue invasion of neutrophils [155]. Neutrophils on their part
also release ATP by means of Cx43HCs, further contributing
to the progression of the inflammatory response [156, 157].
In addition, Cx43HC-mediated ATP release can actively
contribute to the activation of the NLRP3 inflammasome, a
protein complex that serves to sense pathogen- and danger-
associated molecular patterns and is involved in IL1𝛽 and
IL18 processing [158]. Using the endothelial cell line b.End5,
Robertson and coworkers have furthermore indicated that
ATP release induces the expression of Toll-like receptor-
2 (TLR2) and production of IL6 upon infection with S.
epidermidis. In turn, TLR2 activation gave rise to a further
upregulation of Cx43 expression, albeit it had no impact
on actual Cx43HC opening [159]. Not only ATP but also
other active compounds released by HCs might contribute
to progression of inflammation. For instance, inhibition
of glutamate release from activated microglia has proven
beneficial in the outcome of spinal cord injury, reducing glial
scar formation and increasing expression of growth factors
[140]. Recently, Cx43HCs were also found to play a role in
neuropathic pain. Here, Cx43 expression was upregulated in
spinal cord astrocytes following chronic constriction injury
and subsequent Cx43HC opening led to the release of the
chemokine CXCL1 [160].

In short, aberrant Cx43HC-mediated signaling may pro-
mote acute inflammation. Intriguingly, all of the above-
mentioned pathological conditions (stroke, epilepsy, bacte-
rial infection, etc.) in which Cx43HCs contribute to inflam-
mation are also associated with increased MMP activity [23,
161–166]. In the following paragraphs we set out a hypothesis
of how proteolytic cleavage of MMPs can contribute to
inflammation.

Interestingly, knockout of theMMPs that have been asso-
ciated with reduced Cx43 expression/function (i.e., MMP-2,
MMP-7, andMMP-9) leads to altered chemotaxis, attenuated
leukocyte influx, and reduced cell death [8, 167–173]. How-
ever, an equal amount of papers describes impaired repair,
increased leukocyte load, and an aggravated inflammatory
response upon knockout of these MMPs [13, 174–176].

As described above, an important feature of the MMPs
is their minor latency of activation, with oxidative stress

and/or expression of proinflammatory cytokines generally
precedingMMPactivity. Interestingly, activation ofCx43HCs
by the proinflammatory cytokines TNF𝛼, IL1𝛽, and IFN𝛾
requires exposure times in the order of 9 h [177], 24 h [146],
and 48 h [178]. These very slow actions may well reflect
the involvement of MMPs. Additionally, MMP expression
and activity depend on an increase of [Ca2+]i triggered
by proinflammatory cytokines [179]. This [Ca2+]i increase
will also activate Cx43HC opening when HCs are in the
“available to open” state. Subsequent MMP-cleavage in the
CTwill generate a C-terminal peptide that is bound to the CL
(Figure 2(b)). The consequent effect of proteolytic cleavage
on HC function may depend on the position of the MMP
cleavage site relative to the yet unidentified Cx43-actomyosin
interaction domain(s) in the Cx43 C-terminal tail that medi-
ates high [Ca2+]i-induced HC closure (“high [Ca2+]i brake”).
When cleavage occurs at a site that is situated C-terminally
from the Cx43-actomyosin interaction domain, it is expected
that the C-terminal peptide cannot be removed from the
CL by cytoskeletal/actomyosin contractions (see Section 3.3).
Thus, HCs remain in the “available to open” state (with
effective opening triggered by membrane depolarization or
[Ca2+]i increase), but the high [Ca2+]i brake disappears,
thereby promoting HC opening in cells with pathologically
high [Ca2+]i (Figure 2(b)). Alternatively, when cleavage takes
place at a site that lies upstream at the N-terminal side of
the actomyosin linkage domain, the outcome is less clear.
Theoretically, it is possible that cytoskeletal contractions
remove the C-terminal peptide from the CL; however, multi-
ple amino acid domains in the CTmay participate in the CT-
CL interaction. Indeed, Cx43C-terminal amino acid domains
281–295, 299–304, 341–327, 342–348, and 360–382 have all
been shown to engage in the intramolecular interactions
necessary for ball-and-chain GJ channel gating [180, 181]. For
Cx43HCs, at present, only the last 10 amino acids have been
described to contribute to the CT-CL interaction necessary
for promoting HC opening. However, as for GJs, it is to be
expected that more upstream domains also participate in this
intramolecular interaction. Identification of the actomyosin
interaction site in the Cx43 C-terminal domain will allow
us to further define the effects of MMP cleavage upstream
(N-terminally) of the actomyosin linkage domain on HC
function. For GJ channels, various proteins have been sug-
gested to function as a linker between the cytoskeleton and
the Cx43 C-terminal tail, including drebrin [182], cortactin
[183], ezrin [184], Src [185], CIP85 [186], CCN3 [187], and
ZO-1 [100, 188, 189]. For HCs, the latter can be excluded as
the intermediate between the cytoskeleton and the Cx43 C-
terminal domain [100]; however, whether the other candidate
proteins, mentioned in the context of GJs, also interact with
Cx43HCs remains to be confirmed.

Oxidative stress, that is tightly linked to the intracellular
Ca2+ household [190] and to fast, intracellular MMP acti-
vation, has also been shown to promote Cx43HC opening
within a time frame of several minutes [84, 191]. As described
above, MMP cleavage may in this case further promote HC
opening mediated by a loss of their high [Ca2+]i brake.
Interestingly, Cx43HCs themselves may subsequently act as
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an entry channel for ROS that may further activate MMPs
and HC through a positive feedback loop [191].

Increased opening of Cx43HCs following proteolytic
processing by MMPs would give rise to exaggerated ATP
release and leukocyte infiltration, altogether aggravating the
inflammatory response. Additionally, persistent loss of ATP
and nutrients would also result in cellular energy deprivation
and ultimately cell death. Furthermore, in the brain, elevated
levels of glutamate in the cerebral interstitial fluid are known
to be excitotoxic and so HC glutamate release by microglial
cells would give rise to neurodegeneration. Although HC
opening in inflammatory conditions is generally considered
deleterious for the cell, a few reports indicate that HC
opening may act protective, for example, by releasing signal-
ing molecules that activate Src and ERK-mediated survival
signals or by releasing prostaglandin E2 that protects against
apoptosis [192–194].

Opposite to HCs, generally taken, GJIC is reduced in
inflammatory conditions, as shown for proinflammatory
cytokines, ATP, and oxidative stress [146, 195–200]. Such
uncoupling has dual effects on the inflamed tissue; on the one
hand, it may act as a protective mechanism that encapsulates
the injured cells and functionally separates them from the
surrounding healthy tissue. However, at the same time,
uncoupling also impedes the supply of energy and nutrients
that are necessary for tissue repair processes. Notably, con-
trasting reports that describe persisting functional GJIC in
inflammation are available as well [159, 201, 202]. GJs have,
for instance, been shown to propagate oxidative stress and
bystander cell death [32, 203]. Additionally, coupled cells are
able to share antigens with and trigger a response in cytotoxic
T-lymphocytes [204]. Finally, GJs have been suggested to
mediate the propagation of NF𝜅B andMAPK activation from
infected to noninfected cells, leading to IL8 production, also
by the latter [201]. Interestingly, using a brain abscess model,
Karpuk et al. [46] have indicated that the degree of GJIC
inhibition is dependent on the distance to the lesion site and
that coupling gradually increases with expanding distance
from the lesion site. Despite the upregulation of Cx43 expres-
sion, uncoupling was observed at the third day after infection
and persisted up to the 7th day, indicating a long lasting
effect [46]. The mechanisms that mediate such persistent
block ofGJICwithout affecting expression levels are currently
unknown. Given the double role of GJIC, the differential
outcome of uncoupling in inflammation, and uncertainties
regarding the detailed mechanisms of uncoupling, it is very
difficult to speculate on the functional outcome of proteolytic
cleavage mediated by MMPs in terms of GJIC and its impact
on inflammation.

Finally, CT truncation not only should be considered
relevant in view of intramolecular gating mechanisms and
single channel function but is also of utmost importance
at the level of protein-protein interactions. As mentioned
above, the Cx43 C-terminal domain contains interaction
sites for, for example, ZO-1, occludin, claudin, tubulin, and
the protooncogene Src [205, 206]. Deletion of the last 5
amino acids has no functional effects of the level of GJIC
but nevertheless induces arrhythmogenesis due to aberrant,
channel independent interactions of Cx43 with sodium and

potassium channels [115]. The purinergic receptor P2Y1 is
another example protein believed to interact with the C-
terminal domain of Cx43 and its expression is reduced in
Cx43 knockout animals [207, 208]. Via their interaction with
proteins that contribute to tight and adherens junctions (e.g.,
ZO-1 and occludin), Cxs stabilize the junctional complex
that is situated between epithelial and endothelial cells and
impedes paracellular diffusion [209–212]. A reduction in
Cx43 expression is often accompanied by a downregulation of
the junctional proteins leading to compromised intercellular
junctions. Importantly, destabilization of the junctions abro-
gates the barrier function of epithelial and endothelial cells
and therefore facilitates the paracellular movement of leuko-
cytes into the inflamed tissue. On the other hand, exposure
of astrocytes to IL1𝛽 leads to a concomitant downregulation
of Cx43 and upregulation of the tight junctional protein
claudin-1. It is believed that the latter brings astrocytes closer
together, reducing the extracellular space volume and forcing
inflammatory molecules to move in a particular direction
[198]. Notably, connexin protein interactions with junctional
proteins also stabilize the GJ plaques [213, 214]. In addition,
many of the Cx43 interaction partners, including ZO-1 and
occludin, are also MMP substrates and their proteolytic
cleavage is expected to induce GJ uncoupling. Yet, such
matter is ought to be addressed in future studies.

5. Conclusions

Via their remodeling of ECM and intercellular junctions
as well as by their proteolytic processing of cytokines,
chemokines, and growth factors, MMPs importantly con-
tribute to inflammation, a process in which they are known to
have beneficial as well as detrimental functions. In this paper
we specifically describe the regulation of Cx43 expression and
channel function by the intracellular action of MMPs. Cx43
is the most prevalent building block of GJs and HCs, two
types of channels intricately involved in tissue homeostasis
as well as in acute inflammation. A handful of reports
describe a link between altered expression of Cx43 on the
one hand and elevated levels of MMP activation on the
other. In silico analysis additionally demonstrates that MMPs
are capable of mediating cleavage of the Cx43 C-terminal
domain which is an important determinant of HC and
GJ channel function. Such cleavage has also been directly
demonstrated in cardiac tissue where it contributes to tissue
damage followingmyocardial infarction. Unfortunately, until
now, no studies have been performed that unequivocally
demonstrate the direct impact of MMPs on channel function
at the mechanistic level. We here explain the possible effects
of C-terminal cleavage on Cx43 channel function, using
available information that comes from work with Cx43
truncated mutants and studies with exogenous C-terminal
peptides as a basis. However, in inflammatory conditions
where the oligomerized Cx43 protein is cleaved in the plasma
membrane instead of being exogenously expressed as a
truncated mutant, the underlying mechanisms may be very
different. In addition, much like MMPs, the contribution
of GJs and HCs to the inflammatory process seems very
diverse with inhibition of the channels resulting in a positive
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as well as a negative outcome, depending on the tissue, the
trigger, and the timing. Therefore, future challenges will be
to better understand the role of MMPs and Cx43 channels
in inflammation and to gain detailed insight in the nature
of MMP-Cx interactions as well as in the effects on channel
function before gearing up to the therapeutic level.
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[4] L. Nissinen and V.-M. Kähäri, “Matrix metalloproteinases in
inflammation,” Biochimica et Biophysica Acta—General Sub-
jects, vol. 1840, no. 8, pp. 2571–2580, 2014.

[5] R. Khokha, A. Murthy, and A. Weiss, “Metalloproteinases and
their natural inhibitors in inflammation and immunity,”Nature
Reviews Immunology, vol. 13, no. 9, pp. 649–665, 2013.

[6] M. Giannandrea and W. C. Parks, “Diverse functions of matrix
metalloproteinases during fibrosis,”Disease Models andMecha-
nisms, vol. 7, no. 2, pp. 193–203, 2014.

[7] M. L. Lindsey, G. P. Escobar, R. Mukherjee et al., “Matrix
metalloproteinase-7 affects connexin-43 levels, electrical con-
duction, and survival after myocardial infarction,” Circulation,
vol. 113, no. 25, pp. 2919–2928, 2006.

[8] P. Van Lint and C. Libert, “Chemokine and cytokine processing
by matrix metalloproteinases and its effect on leukocyte migra-
tion and inflammation,” Journal of Leukocyte Biology, vol. 82,
no. 6, pp. 1375–1381, 2007.

[9] A. Schubert-Unkmeir, C. Konrad, H. Slanina, F. Czapek, S.
Hebling, and M. Frosch, “Neisseria meningitidis induces brain
microvascular endothelial cell detachment from the matrix and
cleavage of occludin: a role for MMP-8,” PLoS Pathogens, vol. 6,
no. 4, Article ID e1000874, 2010.

[10] A. Reijerkerk, G. Kooij, S. M. A. Van Der Pol, S. Khazen, C.
D. Dijkstra, and H. E. De Vries, “Diapedesis of monocytes
is associated with MMP-mediated occludin disappearance in
brain endothelial cells,” The FASEB Journal, vol. 20, no. 14, pp.
2550–2552, 2006.

[11] D.-Y. Lu, W.-H. Yu, W.-L. Yeh et al., “Hypoxia-induced matrix
metalloproteinase-13 expression in astrocytes enhances perme-
ability of brain endothelial cells,” Journal of Cellular Physiology,
vol. 220, no. 1, pp. 163–173, 2009.

[12] D. Navaratna, P. G. McGuire, G. Menicucci, and A. Das, “Pro-
teolytic degradation of VE-cadherin alters the blood-retinal
barrier in diabetes,”Diabetes, vol. 56, no. 9, pp. 2380–2387, 2007.

[13] J. K. McGuire, Q. Li, and W. C. Parks, “Matrilysin (matrix
metalloproteinase-7) mediates E-cadherin ectodomain shed-
ding in injured lung epithelium,” The American Journal of
Pathology, vol. 162, no. 6, pp. 1831–1843, 2003.

[14] Y. Ichikawa, T. Ishikawa, N. Momiyama et al., “Matrilysin
(MMP-7) degrades VE-cadherin and accelerates accumulation
of beta-catenin in the nucleus of humanumbilical vein endothe-
lial cells,” Oncology Reports, vol. 15, no. 2, pp. 311–315, 2006.

[15] G. A. McQuibban, J.-H. Gong, E. M. Tam, C. A. G. McCulloch,
I. Clark-Lewis, and C.M. Overall, “Inflammation dampened by
gelatinase a cleavage of monocyte chemoattractant protein-3,”
Science, vol. 289, no. 5482, pp. 1202–1206, 2000.

[16] A. Ito, A. Mukaiyama, Y. Itoh et al., “Degradation of interleukin
1beta by matrix metalloproteinases,” The Journal of Biological
Chemistry, vol. 271, no. 25, pp. 14657–14660, 1996.

[17] Y.-P. Han, T.-L. Tuan, M. Hughes, H. Wu, and W. L. Garner,
“Transforming growth factor-𝛽- and tumor necrosis factor-𝛼
-mediated induction and proteolytic activation of MMP-9 in
human skin,” Journal of Biological Chemistry, vol. 276, no. 25,
pp. 22341–22350, 2001.

[18] T. Sakai, F. Kambe, H. Mitsuyama et al., “Tumor necrosis factor
𝛼 induces expression of genes for matrix degradation in human
chondrocyte-like HCS-2/8 cells through activation of NF-𝜅B:
abrogation of the tumor necrosis factor 𝛼 effect by proteasome
inhibitors,” Journal of Bone and Mineral Research, vol. 16, no. 7,
pp. 1272–1280, 2001.

[19] M. P. Vincenti, C. I. Coon, and C. E. Brinckerhoff, “Nuclear
factor 𝜅B/p50 activates an element in the distal matrix metal-
loproteinase 1 promoter in interleukin-1𝛽-stimulated synovial
fibroblasts,” Arthritis & Rheumatism, vol. 41, no. 11, pp. 1987–
1994, 1998.

[20] F. Mannello, F. Luchetti, E. Falcieri, and S. Papa, “Multiple roles
of matrix metalloproteinases during apoptosis,” Apoptosis, vol.
10, no. 1, pp. 19–24, 2005.

[21] R. E. Vandenbroucke and C. Libert, “Is there new hope for ther-
apeutic matrix metalloproteinase inhibition?” Nature Reviews
Drug Discovery, 2014.

[22] N. T. V. Le, M. Xue, L. A. Castelnoble, and C. J. Jackson, “The
dual personalities of matrix metalloproteinases in inflamma-
tion,” Frontiers in Bioscience, vol. 12, no. 4, pp. 1475–1487, 2007.

[23] G. A. Rosenberg, “Matrix metalloproteinases in neuroinflam-
mation,” Glia, vol. 39, no. 3, pp. 279–291, 2002.

[24] D. B. Alexander and G. S. Goldberg, “Transfer of biologically
important molecules between cells through gap junction chan-
nels,” Current Medicinal Chemistry, vol. 10, no. 19, pp. 2045–
2058, 2003.

[25] J. Neuhaus, A. Weimann, J.-U. Stolzenburg, H. Wolburg, L.-C.
Horn, and W. Dorschner, “Smooth muscle cells from human
urinary bladder express connexin 43 in vivo and in vitro,”World
journal of urology, vol. 20, no. 4, pp. 250–254, 2002.

[26] H. Miyoshi, M. B. Boyle, L. B. MacKay, and R. E. Garfield,
“Voltage-clamp studies of gap junctions between uterinemuscle
cells during term and preterm labor,”Biophysical Journal, vol. 71,
no. 3, pp. 1324–1334, 1996.



12 Mediators of Inflammation

[27] L. Leybaert and M. J. Sanderson, “Intercellular Ca2+ waves:
mechanisms and function,” Physiological Reviews, vol. 92, no.
3, pp. 1359–1392, 2012.

[28] N. Rouach, A. Koulakoff, V. Abudara, K. Willecke, and C.
Giaume, “Astroglial metabolic networks sustain hippocampal
synaptic transmission,” Science, vol. 322, no. 5907, pp. 1551–1555,
2008.

[29] C. Giaume, A. Tabernero, and J. M. Medina, “Metabolic traf-
ficking through astrocytic gap junctions,” Glia, vol. 21, no. 1, pp.
114–123, 1997.

[30] M.Maes, E. Decrock, B. Cogliati et al., “Connexin and pannexin
(hemi)channels in the liver,” Frontiers in Physiology, vol. 4,
article 405, 2014.

[31] N. Batra, R. Kar, and J. X. Jiang, “Gap junctions and hemichan-
nels in signal transmission, function and development of bone,”
Biochimica et Biophysica Acta: Biomembranes, vol. 1818, no. 8,
pp. 1909–1918, 2012.

[32] E. Decrock, D. V. Krysko, M. Vinken et al., “Transfer of IP
3

through gap junctions is critical, but not sufficient, for the
spread of apoptosis,” Cell Death and Differentiation, vol. 19, no.
6, pp. 947–957, 2012.

[33] D. L. Paul, L. Ebihara, L. J. Takemoto, K. I. Swenson, and D. A.
Goodenough, “Connexin46, a novel lens gap junction protein,
induces voltage-gated currents in nonjunctional plasma mem-
brane of Xenopus oocytes,”The Journal of Cell Biology, vol. 115,
no. 4, pp. 1077–1089, 1991.

[34] J. Kang, N. Kang, D. Lovatt et al., “Connexin 43 hemichannels
are permeable to ATP,”The Journal of Neuroscience, vol. 28, no.
18, pp. 4702–4711, 2008.

[35] Z.-C. Ye, M. S. Wyeth, S. Baltan-Tekkok, and B. R. Ransom,
“Functional hemichannels in astrocytes: a novel mechanism of
glutamate release,” Journal of Neuroscience, vol. 23, no. 9, pp.
3588–3596, 2003.

[36] S. Rana and R. Dringen, “Gap junction hemichannel-mediated
release of glutathione from cultured rat astrocytes,” Neuro-
science Letters, vol. 415, no. 1, pp. 45–48, 2007.

[37] D. A. Goodenough and D. L. Paul, “Beyond the gap: functions
of unpaired connexon channels,”Nature ReviewsMolecular Cell
Biology, vol. 4, no. 4, pp. 285–294, 2003.

[38] J. X. Jiang andP. P. Cherian, “Hemichannels formed by connexin
43 play an important role in the release of prostaglandin
E(2) by osteocytes in response to mechanical strain,” Cell
Communication and Adhesion, vol. 10, pp. 259–264, 2003.

[39] J. A. Orellana, X. F. Figueroa, H. A. Sánchez, S. Contreras-
Duarte, V. Velarde, and J. C. Sáez, “Hemichannels in the neu-
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