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Abstract

Background

Left atrial (LA) electro-anatomical remodeling and diameter increase in atrial fibrillation (AF)

indicates disease progression and is associated with poor therapeutic success. Further-

more, AF leads to a hypercoagulable state, which in turn promotes the development of a

substrate for AF and disease progression in the experimental setting. The aim of this study

was to identify pathways associated with LA remodeling in AF patients using untargeted pro-

teomics approach.

Methods

Peripheral blood samples of 48 patients (62±10 years, 63% males, 59% persistent AF)

undergoing AF catheter ablation were collected before ablation. 23 patients with left atrial

low voltage areas (LVA), defined as <0.5 mV, and 25 patients without LVA were matched for

age, gender and CHA2DS2-VASc score. Untargeted proteome analysis was performed

using LC-ESI-Tandem mass spectrometry in a label free intensity based workflow. Signifi-

cantly different abundant proteins were identified and used for pathway analysis and pro-

tein-protein interaction analysis.

Results

Analysis covered 280 non-redundant circulating plasma proteins. The presence of LVA cor-

related with 30 differentially abundant proteins of coagulation and complement cascade

(q<0.05).
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Conclusions

This pilot proteomic study identified plasma protein candidates associated with electro-ana-

tomical remodeling in AF and pointed towards an imbalance in coagulation and complement

pathway, tissue remodeling and inflammation.

Introduction

Atrial fibrillation (AF) is the most common sustained arrhythmia occurring in approximately

2% of the general population [1]. It is a progressive disease as an evolution from paroxysmal to

persistent AF (AF type) is frequently observed. This is related to advanced structural and elec-

trical left atrial remodeling. Structural remodeling might be suggested by electrocardiography

as increased left atrial diameter (LAD). Evidence for electro-anatomical remodeling is cur-

rently detectable only invasively during catheter ablation in up to 20–25% of AF patients [2]

and is represented by low voltage areas (LVA), e.g. pathologically low electrical signals with

amplitudes less than 0.5 mV. Previous studies suggested that LVA correspond to areas of

fibrotic and electrically silent myocardium [3]. Advanced LA remodeling is associated with

worse rhythm outcomes after catheter ablation [2,4,5] and as consequence is associated with

higher rates of repeated catheter ablations.

One of the most serious complications in AF patients related to hypercoagulability and

impaired blood flow is an ischemic stroke [6,7] also leading to increased hospitalization and

cost-intensive treatment.[1] The increased risk for thromboembolic events is attributable to

alterations in blood flow combined with anatomical and structural defects resulting in the ful-

filment of Virchow’s triad for thrombogenesis and a hypercoagulable state in AF patients [8].

Interestingly, recent experimental studies indicated that hypercoagulability promotes the

development of an electro-anatomical substrate and AF progression [9].

In the current study we applied a novel approach, where we performed an untargeted prote-

ome screening of high and medium abundant circulating blood proteins to identify differen-

tially expressed proteins in AF patients with and without LVA and with LAD� or < 44mm.

Furthermore, the proteins were used to characterize potential pathophysiological pathways

associated with LA remodeling in AF patients.

Methods

Study population

The study population comprised 48 patients with symptomatic AF who underwent catheter

ablation at Heart Center Leipzig, Germany. Twenty-three patients with LVA and 25 without

LVA respectively were matched according to age, gender and CHA2DS2-VASc score. The

study was approved by the local Ethical Committee (Medical Faculty, University Leipzig) and

patients provided written informed consent for participation. Paroxysmal and persistent AF

were defined according to current guidelines [10]. Paroxysmal AF self-terminated within 7

days after onset. Persistent AF lasted longer than 7 days or required drugs or direct current

cardioversion for termination. In all patients, transthoracic and transesophageal echocardiog-

raphy were performed prior to the ablation. LAD was measured in parasternal long axis view

in M-Mode. All class I or III antiarrhythmic medications with exception of amiodarone were

discontinued for at least 5 half-lives before the AF ablation.
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Electro-anatomical mapping and definition of substrate

The electro-anatomical mapping was performed in sinus rhythm. In patients presenting with

atrial fibrillation, the arrhythmia was terminated by electrical cardioversion and the mapping

was further performed in sinus rhythm. End-point of the catheter ablation was isolation of the

PV with proof of both exit and entrance block. The electro-anatomical voltage maps of the LA

excluding the pulmonary veins were created using multielectrode spiral catheter with inter-

electrode distance 2-5-2 or ablation catheter with a 3.5 mm electrode tip and contact measure-

ment properties (SmartTouch Thermocool and TactiCath, St Jude Medical (SJM), Saint Paul,

MN, USA) as mapping catheter. Electro-anatomical mapping was performed using 3-D elec-

tro-anatomical mapping systems (Carto, Biosence Webster, Diamond Bar, CA, USA or EnSite

Precision, SJM). Electrograms with amplitudes over 0.5 mV were defined as normal potentials,

and signals with amplitude under 0.5 mV as low-voltage potentials. In areas with low-voltage

amplitudes we aimed at sufficient mapping points density (>200 points). Points with insuffi-

cient catheter-to-tissue contact or inside ablation lines were excluded.

At the end of the procedure, an attempt to induce AF or left atrial macro-reentry tachycar-

dia (LAMRT) was performed using a standardized protocol (burst stimulation with 300, 250,

200 ms from coronary sinus). According to the underlying LVA and inducible LAMRT addi-

tional ablation lines were applied.

Blood samples

Blood samples were obtained in EDTA test tubes in fasting state prior ablation procedure from

femoral vein and processed within one hour after collection. Blood plasma was prepared

(1000 × g for 10 min at 20˚C) and aliquots were stored at -70˚C for subsequent analyses.

Proteomic analysis

Samples were prepared, measured by mass spectrometry and data analyzed according to a

modified protocol described earlier [11]. Briefly, plasma samples were subjected to immunoaf-

finity subtraction of six high abundant proteins using the Multiple Affinity Removal System

(MARS6) (Agilent Technologies, Wilmington, DE, USA). Protein in the flow through fraction

was precipitated using trichloroacetic acid (TCA) at a final concentration of 15% (v/v). Precip-

itates were reconstituted in urea/thiourea (8M/2M) and protein was determined using a Brad-

ford assay (Bio-Rad, Hercules, CA, USA). Four μg protein lysate were reduced and alkylated

and digested with trypsin (Promega, Madison, WI, USA) with a ratio of 1:25 at 37˚C overnight.

Peptide purification was performed with μC18 ZipTip (Millipore Cooperation, Billerica, MA,

USA) as described before [12]. LC-ESI tandem mass spectrometry was carried out on a

nanoAquity UPLC (Waters)—LTQ Orbitrap Velos MS (Thermo Scientific Electron, Bremen,

Germany) configuration. High precision precursor scans were recorded in the Orbitrap and

MS/MS data were recorded in data-dependent mode for the Top-20 peaks in the ion trap.

Raw MS data were processed using the Refiner MS 10.0 and Analyst 10.0 module (Gene-

data, Basel, Switzerland). Identification was performed against a human FASTA-formatted

database containing 20,155 unique sequence entries (reviewed human database, release of

2016/06) with MASCOT (v2.3.2, Matrix Science, London, UK) as search engine. Carbamido-

methylation of cysteine was set as fixed modification and oxidation of methionine as variable

modification. Enzyme specificity was selected to trypsin with using 10 ppm MS tolerance and

0.6 Da MS/MS tolerances. Peptide FDR was set to 1% of protein groups identified. Peptides

sharing protein group identifications within the data set were not considered for quantitative

analyses. Only proteins identified by at least one unique or razor peptide were considered for

further analysis (S1 and S3 Tables for further information).
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Relative quantification protein values were exported from Refiner as summed intensities of

Hi3 peptides per protein. Preprocessing steps before statistical analysis included removal of

proteins with more than 50% missing values per group, which diminished the initially identi-

fied 280 to 237 proteins, and log10 transformation of data.

All methods were performed in accordance with the relevant guidelines and regulations.

Statistical analysis

Data are presented as mean and standard deviation (SD) if normally distributed or as median

[interquartile range] for skewed continuous variables and as proportions for categorical vari-

ables. Continuous variables were tested for normal distribution using the Kolmogorov-Smir-

nov test. The differences between continuous values were assessed using an unpaired t-test or

the Mann–Whitney, and a chi-square test for categorical variables. A p-value <0.05 was con-

sidered statistically significant, and all analyses were performed with SPSS statistical software

version 23. Proteomic data significance tests were corrected for multiple testing using Benja-

mini-Hochberg false discovery rate and significance cut-off set to q<0.05.

We detected differentially expressed proteins by comparing patients with LVA vs. without

LVA (23 vs 25 patients) and patients with LAD<44mm (n = 20) and LAD�44mm (n = 28).

Categorization of proteins in particular physiological pathways was done using WebGestalt

[13] accessing databases of Kyoto Encyclopedia of Genes and Genomes (KEGG) [14] and gene

ontology (GO) [15]. Over-enrichment p-values are not reported as the applied screening

method only detects highly abundant plasma proteins and an unbiased over-enrichment anal-

ysis of the plasma wide proteome is not possible.

Results

Untargeted proteomic analysis was performed in 48 AF patients matched for age, gender and

CHA2DS2-VASc score). The clinical characteristics of study population are presented in Table 1.

There were no differences in age, gender, AF type, BMI, renal function or CHA2DS2-VASc score.

However, patients with LVA had significantly larger LAD than patients without (p = 0.01).

Proteomic analysis

Our protein analysis covered a dynamic range of 4–5 magnitudes as estimated by published

concentrations of the highest abundant protein in our data set (apolipoprotein A1: 2000–

3000μg/μl) and one of the lowest abundant proteins S100A9 protein (0.1–0.01 μg/μl).

This analysis covered 1.985 unique peptides representing 280 non-redundant proteins (see S1

Table). Among the 237 proteins being quantified in at least 50% of the patients in each group, 30

proteins displayed different levels (t-test (FDR), p<0.05) in patients presenting with LVA in com-

parison to the control group (Table 2). L-selectin and peptidase inhibitor 16 had higher abun-

dances in the control group with fold changes> 1.5. Ten proteins were identified to be>1.5-fold

more abundant in the LVA group. Tetratricopeptide repeat protein 39A and SWI/SNF complex

subunit SMARCC1 were more than 2-fold enriched in plasma from this group.

We annotated all 30 candidate proteins to physiological pathways using WebGestalt [16] to

get an insight into physiological impact. F9, CFH, CFP, C1QB, and C1Q were assigned to

GO:0072376 Protein activation cascade. CASP8, PI16, SERPINA4, SMARCC1, and SERPINA7

were assigned to GO:0045861 Negative regulation of proteolysis. CFH, CFP, C1QB, and C1QC

were assigned to GO:0006959 Humoral immune response. F9, CFH, PLG, C1QB, and C1QC

were assigned to KEGG:hsa04610 Complement and coagulation cascades.

When comparing LAD<44mm and LAD>44mm 26 proteins were found differentially

expressed in t-test but did not pass multiple testing corrections (Table 2 and S2 Table).
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Discussion

This study used an untargeted proteomic approach to discover high and medium abundant pro-

teins related to left-atrial remodeling in AF patients. Significant differences in protein profiles in

patients with and without LVA were detected. The pathway analysis suggests that alterations in

the complement and coagulation cascade, inflammatory processes, and tissue remodeling are

associated with LVA and LAD. We therefore assume that the observed alterations are more spe-

cific for LVA than for increased left diameter although both phenotypes are interrelated. This is in

line with previous findings [4] and of great clinical importance. However, because of relatively

small cohort, proteomic differences in LAD phenotype did not reach significance after FDR.

Complement and coagulation cascade and electro-anatomical remodeling

As initially stated, hypercoagulability associated with an increased risk for stroke, is a common

finding in AF patients [6]. In our study, we observed differential abundance of proteins from

the complement and coagulation system. Classical complement cascade is started by activation

of multimolecular C1-complex which consists of C1q, C1r, and C1s. We found C1q-B and

C1q-C significantly lower in the patients with LVA, whereas the third C1q subcomplex C1q-A

was detected but unchanged. C1qr as well as C1qs were also found to be lower in LVA patient

plasma but did not pass FDR significance testing (S1 Table). Decreased C1-complex activity

was found to associate with impaired immune response and auto-immune reactions [16].

CFH and properdin were also less abundant in the patients with LVA. Both are complement

system regulators which identify and protect the host from complement also during pathologi-

cal states. An imbalance might therefore contribute to tissue damage [17,18].

Plasminogen typically is highly abundant in blood and if catalyzed into plasmin is fibrino-

lytic. Downregulation of plasminogen, which might explain the lower levels observed in LVA

Table 1. Clinical characteristics of study population.

Low voltage areas p-value

No (n = 25) Yes (n = 23)

Age, y 66 ± 10 67 ± 11 0.074

Males, % 64 65 0.930

Persistent AF, % 68 74 0.653

BMI, kg/m2 30 ± 5 30 ± 4 0.657

eGFR, ml/min/1.73m2 72 ± 14 66 ± 20 0.218

CHA2DS2-VASc score 2.8 ± 1.3 3.3 ± 1.6 0.240

LA Diameter, mm 42 ± 6 47 ± 7 0.010

EF, % 56 ± 7 52 ± 12 0.201

Medication, %

Betablockers 80 86 0.562

ACE inhibitors 52 77 0.072

Statins 44 59 0.320

Antiarrhythmics 32 39 0.140

Anticoagulation 0.520

Heparin 12 4

VKA 28 48

NOAC 48 44

None 8 -

Other 4 4

https://doi.org/10.1371/journal.pone.0198461.t001
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patients, could therefore attribute to the hypercoagulation state often observed in AF. F9 is

part of the intrinsic coagulation cascade, is activated through factor 11, and then cleaves factor

10 which facilitates prothrombin cleavage. Prothrombin was found to be lower in LVA patient

plasma but did not pass FDR significance testing (S1 Table). Altogether, our data indicate an

imbalance of coagulation and complement cascade activation, homeostasis, and regulation in

AF patients with LVA and generate hypothesis regarding whether progression of electro-ana-

tomical remodeling is cause or consequence to those alterations.

Fibrosis, inflammation, and electro-anatomical remodeling

LVA is supposed to be an electro-anatomical remodeling with fibrotic character. Fibrosis is

characterized by increased production of ECM, cell death, cell trans-differentiation e.g. myofi-

broblast activation and infiltration of inflammatory cells [19]. Several proteins found altered

by our approach are known to contribute to those pathological processes. The highest plasma

level decrease in the LVA group was found for cell adhesion molecule L-selectin. L-selectin is

Table 2. Significantly differentially expressed circulating plasma proteins in AF patients with- compared to patients without LVA. UP–unique peptides of the pro-

tein identified in proteome screening, P–t-test p-value, P(FDR)–p-value with FDR, FC–fold change with LVA vs. without LVA, negative fold change indicates lower con-

centrations in the LVA group. An asterisk marks proteins that were also differentially abundant in patients with LAD<44mm vs. LAD�44mm (significance in t-test but

not following FDR).

Protein names UP P P (FDR) FC

Complement C1q subcomponent subunit B 4 0.005 0.044 -1.16

Complement C1q subcomponent subunit C 4 0.005 0.044 -1.16

Caspase-8 1 0.005 0.044 1.92

Complement factor H 40 0.000 0.018 -1.25

Properdin 3 0.005 0.044 -1.23

Cortactin-binding protein 2 1 0.003 0.039 1.76

Dynein heavy chain 12 axonemal 1 0.002 0.025 1.61

Coagulation factor IX 6 0.003 0.035 -1.35

Vitamin D-binding protein 24 0.001 0.018 -1.22

Hepatocyte growth factor activator 6 0.001 0.018 -1.27

Putative heat shock 70 kDa protein 7 1 0.001 0.018 1.77

Kin of IRRE-like protein 3 1 0.005 0.044 1.47

Phosphatidylcholine-sterol acyltransferase 5 0.001 0.018 -1.25

Mannosyl-oligosaccharide 12-alpha-mannosidase 1 0.001 0.018 1.54

Endonuclease 8-like 3 1 0.004 0.041 1.32

Nicotinamide/nicotinic acid mononucleotide adenylyltransferase 3 1 0.001 0.018 1.33

Protocadherin-15 1 0.006 0.046 -1.20

Peptidase inhibitor 16 1 0.001 0.020 -1.69

Plasminogen 22 0.001 0.018 -1.19

Ras-related GTP-binding protein B 1 0.003 0.039 1.44

L-selectin 2 0.000 0.018 -1.75

Kallistatin 8 0.001 0.018 -1.35

Thyroxine-binding globulin 11 0.001 0.018 -1.29

SWI/SNF complex subunit SMARCC1 1 0.001 0.018 2.49

Serine palmitoyltransferase 2 1 0.002 0.025 1.89

Transcription elongation factor SPT6 1 0.000 0.018 1.83

Protein-glutamine gamma-glutamyltransferase 6 1 0.005 0.044 1.41

E3 ubiquitin-protein ligase TRIM33 1 0.006 0.046 1.39

Tetratricopeptide repeat protein 39A 1 0.001 0.018 2.04

Zinc finger protein 30 homolog 1 0.001 0.018 1.75

https://doi.org/10.1371/journal.pone.0198461.t002
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expressed on a variety of leukocytes, but is best explored in naïve T-lymphocytes where its

shedding from the cell membrane in the primary lymph nodes occurs during their activation

and has implications for subsequent cell fate. Shedding from the surface is thought to mobilize

intracellular cytotoxic granules leading to the release of lytic enzymes towards target cells [20].

Interestingly, L-selectin was also proposed to be a receptor for the earlier discussed CFH, thus

connecting immune function and complement system [21]. Furthermore, L-selectin was

found to be down regulated through shedding by atrial natriuretic peptide (ANP) leading to

decreased neutrophil infiltration [22]. Recently we found that plasma ANP levels are signifi-

cantly higher and therewith predictive for LVA in AF patients [23] what is well in line with the

literature reports and the now observed lower levels of L-selectin.

Furthermore, we observed altered levels of proteins that are annotated to GO:0045861 Neg-

ative regulation of proteolysis whereas proteolysis is indispensable in fibrosis and inflamma-

tion [24]. Peptidase inhibitor 16 (PI16), which was lower in the LVA group, was assigned to

this group. PI16 might contribute to electro-anatomical remodeling as the protein is known to

be regulated by sheer stress, to inhibit ECM-remodeling matrix metallo-proteinases, and is

thought to maintain anti-inflammatory and non-activated cell homeostasis [25]. In context of

heart failure, PI16 is supposed to inhibit myocyte hypertrophy [25]. Caspase-8, another pro-

teolytic enzyme, is involved in controlled extrinsic apoptosis induced via death receptor. The

observed increase in the LVA patient plasma might represent apoptotic activity. Higher circu-

lating levels of caspase-8 were found to associate with increased incidence of cardiovascular

events [26]. Several proteins found at higher abundance in LVA patients are involved in tran-

scriptional processes or chromatin remodeling respectively, namely SWI/SNF complex sub-

unit SMARCC1 (SMARCC1), transcription elongation factor SPT6 (SUPT6H), and zinc

finger protein 30 homologue (ZFP30). Chromatin remodeling was already identified as prom-

ising tool for intervention in fibrotic and inflammatory disease (YANG, targeting). SMARCC1

showed the highest observed difference between the experimental groups in our screening.

SMARCC1 is component of a chromatin remodeling complex which is needed to induce tran-

scription e.g. in neurogenesis [27]. ZFP30 encodes a transcription factor which was found to

be involved in differentiation processes and inflammatory response [28]. SUPT6H alters

nuclear histone status to allow for a transcriptionally competent chromatin state [29] especially

important for expression of genes in developmental and differentiation e.g. myogenesis [30].

The second most altered protein in our study was tetratricopeptide repeat protein 39A

(TTC39A) whose function is widely unknown. Interestingly, an interaction of TTC39A with

P2RY12, a receptor involved in platelet aggregation, regarded to be a potential target of throm-

boembolism treatment, was supposed [31].

Altogether, we suppose that the observed markers associate with altered cell proliferation

rates or cell differentiation processes.

Limitations

Several proteins that were discussed typically act inside cells or are bound to them. We inter-

pret this to be indicative for shedding, secretion, endothelial damage (e.g. in consequence of

increased atrial sheer stress) or cell death (e.g. fibrosis-related decline of cardiomyocytes).

Although, sample processing aimed to limit cell contamination of the plasma used in this

study the contamination with cell debris is unlikely, nevertheless, it cannot be excluded.

The used technology only detected proteins with high and medium abundance in plasma;

typically, 250–350 proteins with concentrations in a range of μg to mg per ml. Lower concen-

trations were not detected whereas we cannot estimate the quantity of natriuretic peptides,

growth factors or cytokines. This limitation also impedes over-enrichment analysis of
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physiological pathways. We used pathway annotation tools to get insights into the physiologi-

cal pathways the identified candidates are assigned to.

In general, the source of the detected proteins is beyond the scope of this study and causal asso-

ciation with atrial LVA cannot be proved. Further larger studies are needed to address this aspect.

Rhythm outcomes, although clinically relevant, were not analyzed for the following reasons:

Arrhythmia recurrences depend on different factors (operator experience, ablation catheters

and systems used, post-ablation and follow-up strategies, length of Holter ECG). Therefore we

expect that the analysis of this factor is possible in larger prospective studies with continuous

monitoring covered by e.g. implantable loop recorders.

Conclusions

This pilot proteomic study identified plasma protein candidates associated with electro-ana-

tomical remodeling in AF and pointed towards an involvement of coagulation and comple-

ment pathway, inflammation, and tissue remodeling. Further studies are underway to replicate

and apply these findings.

Supporting information

S1 Table. Proteins detected in proteomic approach comparing 23 patients with LVA and

25 patients without LVA. UP–number of unique peptides belonging to the protein which

were detected in the screening, p-value—from T-Test comparing LVA and controls, p-value

(FDR)–Benjamini Hochberg false discovery rate, FC–fold change in protein levels. Proteins in

bold were found significantly different in LVA group compared to controls.

(DOC)

S2 Table. Plasma proteins found differentially abundant when comparing patients with

LAD>44mm compared to patients with LAD<44mm. P-value–derived from T-Test, p-value

(FDR)–T-Test data with Benjamini Hochberg false discovery rate, FC–fold change in protein levels.

(DOC)

S3 Table. Peptide data of the proteins significantly different between patient subgroups

with and without LVA, UP/RP = unique/ razor peptides, Modifications—

CM = Carbamidomethyl, O = Oxidation.

(DOC)

Author Contributions

Conceptualization: Jelena Kornej, Petra Büttner, Uwe Völker, Andreas Bollmann.
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