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Integrins are adhesion receptors on the cell surface that enable cells to respond to 
their environment. Most integrins are heterodimers, comprising α and β type I trans-
membrane glycoprotein chains with large extracellular domains and short cytoplasmic 
tails. Integrins deliver signals through multiprotein complexes at the cell surface, which 
interact with cytoskeletal and signaling proteins to influence gene expression, cell pro-
liferation, morphology, and migration. Integrin expression on γδ T cells (γδTc) has not 
been systematically investigated; however, reports in the literature dating back to the 
early 1990s reveal an understated role for integrins in γδTc function. Over the years, 
integrins have been investigated on resting and/or activated peripheral blood-derived 
polyclonal γδTc, γδTc clones, as well as γδ T intraepithelial lymphocytes. Differences 
in integrin expression have been found between αβ T cells (αβTc) and γδTc, as well as 
between Vδ1 and Vδ2 γδTc. While most studies have focused on human γδTc, research 
has also been carried out in mouse and bovine models. Roles attributed to γδTc integrins 
include adhesion, signaling, activation, migration, tissue localization, tissue retention, cell 
spreading, cytokine secretion, tumor infiltration, and involvement in tumor cell killing. This 
review attempts to encompass all reports of integrins expressed on γδTc published prior 
to December 2017, highlights areas warranting further investigation, and discusses the 
relevance of integrin expression for γδTc function.

Keywords: gamma delta T  cells, adhesion and signaling molecules, cellular migration, tissue retention,  
tissue localization, tumor infiltrating lymphocytes, cytotoxicity, cytokine secretion

inTRODUCTiOn

Although much was known about integrins on lymphocytes as early as 1990 (1), integrin expression 
on γδTc has been only sporadically, and often indirectly, investigated. Considered all together, these 
reports reveal an understated role for integrins in γδTc function (Table 1).

Integrins are heterodimeric adhesion receptors comprising non-covalently linked α and β chains 
(2). Greek letters indicating chain pairings for β1 and cluster of differentiation designations for β2 
integrins are used throughout this review; cited works may have used alternative nomenclature.

inTeGRin ACTivATiOn AnD FUnCTiOnS

Integrins play a role in many cellular functions including development, activation, differentiation, 
proliferation, mobility, and survival (1, 3). Integrins enable two-way communication between cells 
(cytoskeleton) and their surroundings [extracellular matrix (ECM), other cells]. ECM proteins with 
which integrins interact include collagen, a structural protein, and adhesion proteins fibronectin 
(FN) and vitronectin (4). Signaling through integrins can be “inside-out,” regulating extracellular 
interaction between integrins and their ligands, but also “outside-in,” influencing actin cytoskeleton 
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TAble 1 | Integrin expression reported on γδ T cells; cells used were blood-derived unless otherwise indicated.

α β a.k.a binds Function spp Reference

β1
α1β1 CD49a CD29 VLA-1 Collagen IV Extravasation, tumor infiltration, cellular morphology H (16)

α2β1 CD49b CD29 VLA-2 Collagen n.d. H (15)

α4β1 CD49d CD29 VLA-4 FN

VCAM-1

n.d. H (15)
Signaling, adhesion H (17)
Adhesion to endothelial cells H (9)
Endothelial layer permeability H (29)
Transendothelial migration? H (30)
Adhesion to fibroblasts H (49)

α5β1 CD49e CD29 VLA-5 FN n.d. H (15)
Signaling, adhesion H (17)
Transendothelial migration? H (30)
Vδ1 activation, localization, retention H (9)
Adhesion to fibroblasts H (49)

α6β1 CD49f CD29 VLA-6 Transendothelial migration H (30)

β2
αLβ2 CD11a CD18 LFA-1 CD54/ICAM-1 Adhesion to endothelial and epithelial cells, fibroblasts H (9)

Naive αβTc activation? H (19)
Endothelial layer permeability H (29)
Transendothelial migration? H (30)
Trafficking to infected airways (TB)? NHP (33)
Adhesion to fibroblasts H (49)
K562 leukemia cell binding H (54)
Cytotoxicity against Burkitt Lymphoma, prostate cancer, Daudi B cell lymphoma H (55–58)
CNS trafficking in EAE? (LN, spleen-derived) M (22)

αMβ2 CD11b CD18 Mac-1 Naive αβTc activation? H (19)
Mo-1 Early fetal thymocyte differentiation? M (67)

CNS trafficking in EAE? (LN, spleen-derived) M (22)

αXβ2 CD11c CD18 P150,95 Naive αβTc activation? H (19)
Homing, activation, interferon γ secretion H (20)
CNS trafficking in EAE? (LN, spleen-derived) M (22)

αDβ2 CD11d CD18 ICAM-1 Vδ1 cell spreading? H (25)
VCAM-1 Inflammatory response? Vδ1 tissue retention? H (23)

Proliferation? M (22)
Early fetal thymocyte differentiation? M (67)
CNS trafficking in EAE? (LN, spleen-derived) M (22)

β3
αvβ3 αv β3 VNR RGD sequence IL-4 production (DETC) M (71)

β7
αEβ7 CD103 β7 E-cadherin Epithelial retention of γδTc IEL? H (37)

M (78, 79)
Proliferation? IL-9 production? H (40)
Vδ1 binding SCC H (49)
Vδ1 tumor retention? H (49)
Homing to gut? (mLN, colitis) M (80)
Homing to and retention in gut? R (81)

α4β7 CD49d β7 MadCAM Susceptibility to HIV infection on CCR5+Vδ2 H (60)
Homing to gut (TDL, RTE) M (76, 80)
Migration to inflamed tissue in allergic reaction M (77)
Migration to tissues B (7)

Question marks denote suggested functions that require further validation. a.k.a., also known as; B, bovine; CNS, central nervous system; DETC, dendritic epidermal T cells; EAE, 
experimental autoimmune encephalitis; ECM, extracellular matrix; FN, fibronectin; H, human; ICAM, intercellular adhesion molecule; IEL, intraepithelial lymphocyte; IL, interleukin; 
LFA-1, lymphocyte function-associated antigen-1; LN, lymph node; M, murine; MAdCAM-1, mucosal addressin cell adhesion molecule 1; mLN, mesenteric lymph node; n.d., 
not determined in this report (with respect to γδ T cells); NHP, nonhuman primate; ref, reference; RTE, recent thymic emigrant; SCC, squamous cell carcinoma; spp, species; TB, 
tuberculosis; TDL, thoracic duct lymphocytes; VCAM-1, vascular cell adhesion molecule-1; VLA, very late antigen; VNR, vitronectin receptor.
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rearrangement as well as gene expression and transcription 
of associated proteins, including cytokines, to impact cellular 
processes (5, 6).

Integrins are integral to lymphocyte homing to tissues and 
migration within tissues; they—together with selectins and their 
respective ligands—participate in tethering, rolling, and adhesion 
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FiGURe 1 | Integrins found on γδ T cells and some of their functions. Red stars indicate integrins whose expression and/or function on γδTc has been reported to 
require activation. Vitronectin receptor signals through CD3 zeta of the TCR.
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(7). Integrins respond to chemokine signaling arresting migra-
tion of lymphocytes and facilitating transmigration into tissues 
(8). In contrast to other cell types, β1 integrins on conventional 
T  cells require activation for adhesion to occur (9, 10). Basal 
adhesion levels reflect inactive or low-affinity status of integrins; 
stimulus with 12-O-tetradecanoylphorbol-13-acetate, anti-CD3 
or anti-CD2 activates β1 integrins, converting them to a high-
affinity state without necessitating greater surface expression 
(10). Such activation dependence is also true for the β2 integrin 
CD11a/CD18 in T cell adhesion and de-adhesion (11). Indeed, 
several integrins serve as costimulatory molecules in concert with 
T  cell antigen receptor (TCR) engagement (10, 12–14). Much 
occurs downstream of integrin-mediated cell adhesion, includ-
ing phosphorylation of proteins in signaling pathways for cell 
cycle, cytokine expression, and cytoskeletal remodeling enabling 
processes such as proliferation and migration (3, 6).

Integrins on human γδTc will first be considered, loosely 
grouped according to function, and then findings in other species 
will be discussed. Figure 1 depicts integrins found on γδTc and 
some of their functions.

ADHeSiOn AnD SiGnAlinG

In 1992, α4, β1, and CD18 were identified on human Vγ9 γδTc 
derived from stimulated peripheral blood mononuclear cells 
(PBMCs). While no α3, αv, or β3 expression was observed, less 
than 30% expressed α1, α2, or α5 chains. CD8+ γδTc clones 
expressed high β1, and consistent α4 and α5 levels. Phorbol 
12-myristate 13-acetate (PMA)-induced adhesion via integrin 
activation; while α2β1 was required for collagen binding, FN 
binding relied on both α4β1 and α5β1. Most polyclonal γδTc 
only expressed α4β1, whereas individual clones showed variation 
attributed to extended culturing and selection during clon-
ing (15), corroborating evidence that β1 expression on T  cells 
increases qualitatively and quantitatively over time in culture (1, 

16). Admittedly, these studies used activated γδTc and may not 
have reflected the state of cells in circulation (15).

Expression of α4 and α5 on CD3+CD4−CD8− γδTc, and lack of 
α3 or α6 was confirmed. Activated CD25hi γδTc bound FN better 
than resting CD25low γδTc, mediated mostly by α4 and partly 
by α5. Culturing cells on immobilized anti-γδ TCR antibodies 
together with FN enhanced proliferation and increased CD25 
expression, suggesting both signaling and adhesion roles for 
α4 and α5 integrins. While γδTc adhesion required activation 
through the TCR, surface levels of α4 and α5 remained unaltered 
(17). Cytokines such as interleukin (IL)-1β and TNF-α may influ-
ence γδTc integrin expression and/or activation (18); this has yet 
to be explored.

Compared to αβTc, fresh primary γδTc were more adhesive 
(~2:1 to 4:1) to endothelial cells, fibroblasts, and epithelial cells 
independent of activation. Both αβTc and γδTc required CD11a/
CD18 and α4β1 to bind endothelial cells, whereas CD11a/
CD18-ICAM-1 interaction facilitated adherence to fibroblasts 
and epithelial cells. Phorbol dibutyrate treatment of PBMCs 
and cytokine stimulation of monolayers greatly enhanced T cell 
adhesion, correlated with their expression of CD11a/CD18 and 
α4β1 (9). CD11a, b, c, and CD18 were detected on isopentenyl 
pyrophosphate (IPP)-stimulated γδTc, in parallel with markers 
indicating antigen presenting potential; integrins were likely 
involved in clustering between γδTc and naïve αβTc in an activa-
tion capacity, but their role was not directly addressed (19). It 
would be of interest to determine whether loss of one or more 
integrins might impact γδTc antigen presentation.

In healthy women, constitutively high CD11c levels were 
observed on circulating CCR7−CD4− populations co-expressing 
γδTCR and CD8; cervical γδTc (>20%) also expressed CD11c. 
α1β1 and α4β7 were co-expressed on CD11c+CCR7−CD4− T cells, 
of which γδTc were a part, but unfortunately not specifically 
analyzed. CD11c expression was associated with T cell homing 
and activation, and interferon γ (IFNγ) secretion in a fraction of 
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(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate-stimulated 
γδTc (20).

CD11d, first described in 1995 (21), has now been identified on 
both murine (22) and human γδTc (23). CD11d/CD18 binds vascu-
lar cell adhesion molecule (VCAM-)1 (24) and intercellular adhe-
sion molecule (ICAM-)3 (21). Vδ1 clones cultured on anti-ICAM-3 
plates in the presence of IL-2 underwent spreading; however, the 
participating receptor on γδTc had not yet been identified (25). 
Since ICAM-3 is a CD11d ligand, and CD11d is highly expressed on 
Vδ1 γδTc (23), it was likely CD11d-ICAM-3 interaction mediating 
this response. ICAM-3 may play a role in inflammatory response 
initiation, potentially aiding in such processes as antigen presenta-
tion and cytotoxicity (26). ICAM-3 on neutrophils participates in 
IFNγ production but not cytotoxicity of NK cells (27) and has some 
predictive value in perioperative systemic inflammatory response 
syndrome (28). Thus, CD11d on γδTc may play a role in inflamma-
tion, but this requires further investigation.

TRAnSenDOTHeliAl MiGRATiOn

In the first report investigating mechanisms by which γδTc cross 
the endothelium to migrate into inflamed tissue from the circula-
tion, CD11a/CD18 and α4β1 on γδTc bound to endothelial cell 
ligands CD54/ICAM-1 and VCAM-1, respectively, increasing 
endothelial cell permeability. While cytotoxicity of γδTc clones 
to endothelial cells surely contributed to endothelial layer per-
meability, it was thought unlikely to occur with autologous cells 
in vivo (29).

An immunophenotyping study showed that γδTc had greater 
transendothelial migratory capacity than αβTc (30), explaining 
γδTc enrichment in chronic inflammation (31, 32), attributed to 
CD11a/CD18 expression, and increased α4, α5, and α6 β1 integrin 
density on migrating compared to non-migrating T cells; block-
ing assays were not performed to confirm functional relevance 
here (30). While CD11d expression on PBMC-derived γδTc 
was higher compared to αβTc (freshly isolated or expanded), 
their migratory ability was not compared (23). In a non-human 
primate tuberculosis model, adoptively transferred Vδ2 cells 
trafficking to infected airways expressed CD11a/CD18 (33). 
In contrast, increased numbers of peripheral γδTc expressing 
reduced CD18 levels were identified in patients suffering acute 
psoriasis, suggesting a role in disease pathogenesis (34).

inTeGRinS On vδ1 veRSUS vδ2 
DiReCTinG lOCAliZATiOn AnD TiSSUe 
ReTenTiOn

Integrins likely play a role in the tissue specificity of γδTc subsets. 
In Galéa’s study, Vδ1 and Vδ2 migrated similarly, suggesting 
that Vδ1 tissue accumulation relates to their retention rather 
than migratory abilities (30). Indeed, higher CD11d expression 
on Vδ1 compared to Vδ2 cells may also account for preferential 
Vδ1 retention (23), as well as Vδ1 prevalence in large intestinal 
mucosal epithelium (35) and conditions such as rheumatoid 
arthritis (31, 32, 36).

An E-cadherin binding integrin associated with epithe-
lial retention, αEβ7 (CD103), was found on human γδTc 

intraepithelial lymphocytes (IELs). While peripheral blood 
T  cells did not express much αEβ7 the authors posited its 
upregulation after T  cells extravasate in the lamina propria, 
since αEβ7 expression positively correlated with nearer prox-
imity to epithelium (37). IL-2 and phytohemagglutinin (PHA) 
stimulation activated αEβ7 on cultured CD4+CD8+ IEL, and TCR 
crosslinking enhanced αEβ7-E-cadherin avidity (38). On αβTc, 
this transforming growth factor β (TGF-β)-induced integrin is 
associated with pro- and anti-inflammatory conditions, tissue 
retention, and both cytotoxic and regulatory T lymphocyte tumor 
infiltration and function, expertly reviewed in Ref. (39). Peters 
and colleagues noted upregulation of ITGAE, the gene encoding 
αEβ7, and corresponding surface expression on expanded Vδ2 
cells treated with TGF-β and IL-15 correlating with enhanced 
proliferation and IL-9 production (40).

Subset variation exists for α5β1, with Vδ1 expressing more than 
Vδ2, providing an explanation for previous reports of low α5β1 
expression in studies focusing on Vδ2 cells. High α5β1 expression 
accounted for increased Vδ1 binding to FN, potentially reflect-
ing Vδ1 adhesion to fibroblasts in vivo, and the importance of 
this interaction for Vδ1 activation and localization (9). During 
inflammation, mucosal epithelial cells display increased FN 
levels (41), which may increase Vδ1 retention. Similar ICAM-1 
and VCAM-1-mediated binding of Vδ1 and Vδ2 cells could be 
explained by their comparable expression of CD11a/CD18 and 
α4β1 (9). Thus, γδTc tissue recruitment may be achieved through 
CD11a/CD18 and α4β1 binding to endothelial cell ligands, and 
cells retained in tissue via CD11a/CD18 and α5β1 interactions 
with epithelial cell-, fibroblast-, and ECM ligands (9).

TUMOR inFilTRATiOn

Increased α1β1 expression may facilitate γδTc migration out of 
vessels and infiltration into tumors (16). A known receptor for the 
basement membrane protein collagen IV, α1β1 has been observed 
on IL-2-activated T cells invading tumors (42–47). While rest-
ing peripheral blood T cells expressed little α1β1, its expression 
increased over time in culture; γδTc clones expressed higher α1β1 
than polyclonal T cells (16), corroborating observed α1β1 expres-
sion on long-term activated T  cells (48). Anti-α1β1 inhibited 
CD8+ γδTc interaction with collagen IV, but not FN or collagen 
I, in a concentration-dependent manner. Cellular morphology 
was impacted, as Mg2+ cation-dependent spreading of long-term 
cultured CD8+ α1β1high αβTc or γδTc on collagen IV-coated slides 
was inhibited by anti-α1β1 antibodies (16).

Compared to αβTc, γδTc derived from patient blood bound 
squamous carcinoma (SCC) and fibroblast cells more tightly (49), 
confirming previous results (9). While CD11a/CD18 played a role in 
both cases, SCC binding was mediated via l-selectin and CD44v6; 
fibroblast binding was achieved though α4β1 and α5β1 (49).

Vδ1 predominance has been reported in tumor infiltrat-
ing lymphocytes from lung (50), colon (51), renal carcinoma 
(52), and esophageal tumors (49). Preferential extravasation, 
infiltration, and retention of Vδ1 cells in esophageal tumors was 
attributed to higher expression and a greater variety of integrins 
such as CD11a/CD18, α4β1, α5β1, and αΕβ7 on Vδ1 compared to 
Vδ2. In particular, Vδ1 used αΕβ7 to bind SCC. Since esophageal 
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tumors also express E-cadherin, αΕβ7 expression may provide a 
mechanism of lymphocyte retention in tumors (49).

CYTOTOXiCiTY

CD11a/CD18 facilitates effector-target cell conjugation (53). This 
interaction, integral to γδTc cytotoxicity, has been confirmed in 
binding assays with K562 leukemia (54), and blocking assays 
with Burkitt Lymphoma (55), prostate cancer (56, 57), and 
Daudi B cell lymphoma cells (58). We have observed significant 
γδTc apoptosis induced by anti-γδTCR (59) antibodies; thus, 
this may also occur with antibodies blocking CD18 and should 
be considered when designing controls and interpreting results 
from blocking assays using such antibodies. Activation of αβTCR 
changes CD11a/CD18 avidity from low to high transiently, to 
allow adhesion, but then also de-adhesion of T cells, promoting 
continued serial killing (11). If this holds true for the γδTCR, 
then this mechanism greatly contributes to γδTc cytotoxicity and 
could be therapeutically relevant.

SUSCePTibiliTY TO viRAl inFeCTiOn

In the absence of CD4, high α4 and β7 levels on IPP-expanded 
Vδ2 cells formed a complex with high levels of CCR5 (fivefold 
higher than αβTc); this inferred HIV envelope glycoprotein sus-
ceptibility resulting in CD4− Vδ2 cells’ demise (60). While Vδ1 
express as much α4β7 as Vδ2, they do not express CCR5, thus 
rendering Vδ1 immune to HIV-envelope-mediated killing (61).

iMMUnOlOGiCAl MeMORY

CD11b (complement receptor 3, Mac-1) expression on peripheral 
blood T cells increased with age, leveling out later in life. γδTc 
expressed more CD11b than αβTc across all ages; and while not 
shown, CD11b was thought important for migration to spleen 
and liver, and to indicate antigen-specific memory T cells (62). 
Later studies suggested roles associated with T cell immunoregu-
lation, proliferation, and homing (63, 64), but the significance 
of CD11b on human γδTc remains unknown. Increased αβTc 
integrin levels and adherence have been associated with memory 
CD4+ T  cells (10, 65), but the only study addressing this with 
respect to γδTc equated Vδ1 with naïve and Vδ2 with memory 
cells, then compared Vδ1 to Vδ2 expression of CD11a, α4β1, and 
α5β1 (not CD11b), finding no correlation between adhesion/
integrin levels and maturation (9). A longitudinal study follow-
ing integrin expression and function during the course of γδTc 
maturation would be more appropriate to address this question, 
keeping in mind the influence of in vitro culture.

OF RODenTS AnD RUMinAnTS in 
HeAlTH AnD DiSeASe…

β1 integrins
In mice, β1 integrins play an important role in thymocyte differ-
entiation into CD4+ and CD8+ αβTc; however, their role in γδTc 
development remains unknown (66).

β2 integrins
While not found on thymocytes in adult wild-type mice, transient 
co-expression of CD11b and CD11d on fetal thymocytes suggests 
an important role for β2 integrins in early differentiation (67).

In the context of experimental autoimmune encephalitis 
(EAE), murine γδTc differentially expressed β2 integrins and 
produced more IFNγ and tumor necrosis factor α in lymph 
nodes, spleen, and spinal cord compared to αβTc (22). At base-
line, most γδTc expressed CD11a, b, and d. Both γδTc frequency 
and upregulation of β2 integrins, including CD11c, were noted 
after EAE induction; γδTc infiltration of the central nervous sys-
tem (CNS) followed that of αβTc, but was more rapid (22). Thus, 
β2 integrin expression on γδTc affected their trafficking into the 
CNS, thereby impacting EAE development kinetics (22). In a 
follow-up study, EAE disease severity was similar in γδTc−/− mice 
reconstituted with γδTc lacking CD11a, b, or c suggesting that 
β2 integrins were not important for CNS trafficking; however, 
CD11d was still present on γδTc, pointing to this integrin’s 
potential role in trafficking. CD11a/CD18−/− γδTc displayed 
reduced CNS retention and expansion during EAE, suggesting 
CD11a involvement in both retention and co-stimulation (68). 
While not specific to γδTc, it is interesting that CD3 expres-
sion was reduced in CD11b−/− and CD11d−/− mice compared 
to wildtype. Furthermore, CD11b and CD11d seem important 
for proliferation of murine T  cells stimulated with PHA and 
Concanavalin A or superantigen, but not for their response to 
PMA (67). Indeed, β2 integrin expression seems concomitant 
with T  cell expansion, in line with observations of increased 
CD11d expression on human γδTc expanded under higher IL-2 
levels (23). In a murine spontaneous psoriasis model, reduced 
CD18 resulted in loss of Vγ5+ skin-resident γδTc and expansion 
of lymph node derived skin-homing Vγ4+ γδTc contributing 
to disease initiation and progression. CD18low γδTc expressed 
higher IL-7Rα levels and increased IL-7-induced proliferation 
generating inflammatory memory CD44+CD27− capable of 
IL-17 production (34). Adoptive transfer experiments confirmed 
that low levels of CD18 did not impair γδTc trafficking to the skin 
in healthy mice (34). Itgax, the gene encoding integrin CD11c, 
is common to γδTc and NK cells, yet, differentiates γδTc from 
iNKT and αβTc in the mouse (69). Murine CD11c was identi-
fied on γδTc in the blood and genital tract, most predominantly 
on γδTc co-expressing NK1.1. Vaginal Chlamydia infection 
expanded circulating CD11c+ γδTc (20).

The vitronectin Receptor (vnR)
An integrin later identified as the VNR, or αvβ3, was found on 
murine dendritic epidermal T cell lines (DETC); its expression on 
splenic T cells was only observed after a minimum of 1 week of 
stimulation (70). VNR expression was soon further confirmed on 
autoreactive DETC-derived cell lines (6, 71, 72). A subset of these 
γδTc (Vγ1.1/Cγ4-Vδ6/Cδ1) secreted IL-4 in a VNR-dependent 
manner (71). In a follow-up report using a TCR−/− hybridoma 
line transfected with CD3ζ fusion proteins, VNR- but not TCR-
engagement by ligand was required in conjunction with CD3ζ 
chain signaling for IL-2 production (73). VNR recognizes the 
adhesive peptide sequence RGD in ECM proteins (74). While 
human αβTc can be induced to express VNR upon stimulation 
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with PHA and/or PMA (75), VNR has not been found on poly-
clonal or clonal human γδTc (15).

α4β7 and αeβ7
High levels of α4β7 were associated with gut-tropism of murine 
γδTc trafficking from adult thymus to the small intestine 
epithelium, whereupon reaching their destination, α4β7 was 
subsequently downregulated, through interaction with its counter-
receptor mucosal addressin cell adhesion molecule 1 (MadCAM) 
on the lamina propria (76). In a model of allergic reaction, IL-17+ 
γδTc expressed α4β7 that enabled their mobilization by CCL25 
in inflamed tissue, which in turn modulated IL-17 levels (77). 
Blocking α4β7 in vivo prevented the migration of IL-17+ γδTc but 
not αβTc into mouse pleura, and also blocked transmigration of 
γδTc across VCAM-1- and MadCAM-1-expressing endothelium 
toward CCL25 or cell-free pleural washes from mice in whom an 
allergic reaction had been induced (77). Bovine peripheral blood-
derived CD8+ γδTc accumulated in MAdCAM-1-expressing tis-
sues in a dose-dependent manner. CD8+ γδTc expressed 1.5-fold 
more α4β7 than CD8– γδTc but similar β1 and β2 levels. While 
adding CXCL12 increased MAdCAM binding of all γδTc, CCL21 
activated integrins and increased CD8+ γδTc binding to recom-
binant MAdCAM1 more so than CD8− γδTc. Circulating human 
CD8− and CD8+ γδTc migrated similarly in response to CCL21, 
and expressed comparable α4β7; this species-specific discrepancy 
was attributed to CD8 chain usage differences in humans (αα) 
versus cows (αβ) (7).

Prevalence of “inflammatory” γδTc (iγδTc) co-expressing 
high levels of gut-homing α4β7 and αEβ7 correlated with disease 
severity in both spontaneous and induced murine colitis models. 
Cytotoxicity, cytokine production, and NK  cell receptor genes 
were upregulated on iγδTc compared to other γδTc subsets 
(expressing α4β7 or αEβ7) isolated from mesenteric lymph nodes 
in induced colitis, suggesting profound functional relevance of 
integrin co-expression on these cells (78).

In αEβ7-knockout mice, γδTc IEL migration within the 
intraepithelial compartment was enhanced (79) and remained 
so when challenged with Salmonella typhimurium or Toxoplasma 
gondii, drastically reducing pathogen translocation and empha-
sizing the ability of αEβ7 to limit γδTc IEL migration and impact 
host defense against infection (80). In a study on suckling Lewis 

rats, probiotics significantly increased both CD62L-positive and 
negative CD4−CD8− T cells expressing αEβ7 in mesenteric lymph 
nodes; in IEL, significantly increased CD62L− αEβ7-expressing 
CD4−CD8− cells were observed, hypothesized to result from 
enhanced homing and retention, respectively (81).

COnClUDinG ReMARKS

T  cells use classical cell biological pathways in new ways (82). 
Thus, understanding integrin functions on other cell types, 
including αβTc, suggests but does not dictate their roles on γδTc. 
Some roles suspected in human γδTc have been confirmed in 
other species, whereas interspecies variation also exists. Some 
integrin functions are expected and others surprising, such as 
HIV-induced Vδ2 demise enabled by α4β7 complexed with 
CCR5 (60). This review describes the tip of the iceberg with 
respect to integrins on γδTc; some have yet to be explored at all, 
and others are worthy of further study. Understanding integrin 
contributions to γδTc activation, proliferation, and cytotoxic-
ity could inform better expansion protocols and improve γδTc 
immunotherapy for a variety of indications. We have much to 
learn about integrin involvement in the myriad functions of these 
fascinating cells.
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