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Abstract

Transcriptome-wide association studies (TWAS) have been widely used to integrate tran-

scriptomic and genetic data to study complex human diseases. Within a test dataset lacking

transcriptomic data, traditional two-stage TWAS methods first impute gene expression by

creating a weighted sum that aggregates SNPs with their corresponding cis-eQTL effects

on reference transcriptome. Traditional TWAS methods then employ a linear regression

model to assess the association between imputed gene expression and test phenotype,

thereby assuming the effect of a cis-eQTL SNP on test phenotype is a linear function of the

eQTL’s estimated effect on reference transcriptome. To increase TWAS robustness to this

assumption, we propose a novel Variance-Component TWAS procedure (VC-TWAS) that

assumes the effects of cis-eQTL SNPs on phenotype are random (with variance propor-

tional to corresponding reference cis-eQTL effects) rather than fixed. VC-TWAS is applica-

ble to both continuous and dichotomous phenotypes, as well as individual-level and

summary-level GWAS data. Using simulated data, we show VC-TWAS is more powerful

than traditional TWAS methods based on a two-stage Burden test, especially when eQTL

genetic effects on test phenotype are no longer a linear function of their eQTL genetic

effects on reference transcriptome. We further applied VC-TWAS to both individual-level (N

= ~3.4K) and summary-level (N = ~54K) GWAS data to study Alzheimer’s dementia (AD).

With the individual-level data, we detected 13 significant risk genes including 6 known

GWAS risk genes such as TOMM40 that were missed by traditional TWAS methods. With

the summary-level data, we detected 57 significant risk genes considering only cis-SNPs

and 71 significant genes considering both cis- and trans- SNPs, which also validated our

findings with the individual-level GWAS data. Our VC-TWAS method is implemented in the

TIGAR tool for public use.
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Author summary

Traditional Transcriptome-wide association studies (TWAS) tools make strong assump-

tions about the relationships among genetic variants, transcriptome, and phenotype that

may be violated in practice, thereby substantially reducing the power. Here, we propose a

Variance-Component TWAS method (VC-TWAS) that relaxes these assumptions and

can be implemented with both individual-level and summary-level GWAS data, which is

suitable for studying both continuous and dichotomous phenotypes. Our simulation stud-

ies showed that VC-TWAS achieved higher power compared to traditional TWAS meth-

ods based on a two-stage Burden test, when the underlying assumptions required by

traditional TWAS tools were violated. We further applied VC-TWAS to both individual-

level (N = ~3.4K) and summary-level (N = ~54K) GWAS data to study Alzheimer’s

dementia (AD). With individual-level data, we detected 13 significant risk genes including

6 known GWAS risk genes such as TOMM40 that were missed by traditional TWAS

methods. Interestingly, 5 of these genes were shown to possess significant pleiotropic

effects on AD pathology phenotypes, revealing possible biological mechanisms. With

summary-level data of a larger sample size, we detected 57 significant risk genes consider-

ing only cis-SNPs and 71 significant genes considering both cis- and trans- SNPs, which

also validated our findings with the individual-level GWAS data. In conclusion, VC-

TWAS provides an important analytic tool for identifying risk genes whose effects on phe-

notypes might be mediated through transcriptomes.

Introduction

Genome-wide association studies (GWAS) have succeeded in identifying thousands of genetic

loci associated with complex traits and diseases [1–3]. However, for the most part the molecu-

lar mechanisms linking these genes with these complex traits and diseases remain unexplained

[4]. Studies have shown that gene expression plays a key role in the phenotypic manifestation

of human diseases [5]. Many common genetic variants associated with the phenotypes mani-

fested by human diseases are highly likely to be expression quantitative trait loci (eQTL) [6,7].

Therefore, integrating gene expression data together with genetic data from GWAS is expected

to help identify novel risk genes as well as elucidate the mechanisms underlying the associa-

tions of genetic loci with complex traits and disease phenotypes.

The transcriptome-wide association study (TWAS) is an innovative strategy to leverage the

enhanced power of integrating gene expression of the transcriptome together with genetic

data from GWAS [8] for gene-based association studies of complex traits. Using a reference

transcriptomic panel like Genotype-Tissues Expression (GTEx) [9], traditional TWAS meth-

ods first train a regression model that treat gene expression as the outcome and SNP genotype

data (generally cis-SNPs nearby the test gene) as predictors, which can be viewed as a gene

expression imputation model. traditional two-stage TWAS tools such as PrediXcan [10],

FUSION [11], and TIGAR [8] employ different regression methods to fit such gene expression

imputation models, where corresponding cis-eQTL effect sizes are derived. For example, Pre-

diXcan method [10] implements the Elastic-Net penalized regression method [12] while

TIGAR [8] implements the nonparametric Bayesian Dirichlet process regression (DPR) [13]

method. Regardless of technique, these existing two-stage TWAS methods produce a set of

estimates of cis-eQTL effects on reference transcriptome. Within a GWAS lacking transcrip-

tomic data, existing two-stage TWAS tools then imputes genetically-regulated gene expression
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(GReX) by weighted summing cis-eQTL SNP data from the GWAS with corresponding esti-

mates of cis-eQTL effects on reference transcriptome. Once created, existing two-stage TWAS

tools test for association between the imputed GReX and traits of interest using GWAS data,

where the test is based on a single variant linear regression model. TWAS methods have been

deployed widely since their inception and have had substantial success in improving our

understanding the genetic regulation of various complex traits [14].

Since existing two-stage TWAS tools derive GReX as the summation of eQTL SNP genotypes

weighted by their corresponding effects on reference transcriptome, they essentially conduct

weighted burden tests [8] to evaluate the association between GReX and outcome (referred to as

Burden-TWAS in this paper). Burden-TWAS methods assume the effects of eQTL SNPs on phe-

notype is a linear function of their corresponding estimated effects on reference transcriptome

(see Methods), which may not be true in practice. In particular, the effect of eQTL SNP on phe-

notype may be a non-linear, rather than a linear, function of the eQTL effect on reference tran-

scriptome. Moreover, the assumed eQTL effects on transcriptome in the test dataset could be

mis-specified due to ancestral differences between the test and reference datasets. For example,

recent studies show that gene-expression prediction models trained in one population perform

poorly when applied to a different population [15]. The non-linearity assumption about the

effects of eQTL SNPs on the phenotype of interest does not affect the validity of TWAS but it

can reduce the power of these traditional two-stage Burden-TWAS methods.

Here, we derive a Variance-Component TWAS (VC-TWAS) method that relaxes the lin-

earity assumption of Burden-TWAS. This modification makes this method more robust to

misspecification of eQTL effect size estimates derived from the reference transcriptome, thus

improving its power compared to the Burden-TWAS methods. VC-TWAS is a TWAS ana-

logue of the Sequence Kernel Association Test (SKAT) [16–19] used for gene-based associa-

tion studies. Unlike Burden-TWAS methods, our VC-TWAS aggregates genetic information

across test SNPs using a kernel similarity function that allows upweighting or downweighing

of specific variants in the similarity score based on eQTL effect size magnitudes (which can be

derived using DPR methods in TIGAR or Elastic-Net penalized regression methods imple-

mented in PrediXcan). The test statistic can be thought of as a Variance-Component score sta-

tistic based on a mixed model where each test variant has a random effect whose variance is a

linear function of the squared values of corresponding eQTL effect size.

By modeling variants with random effects, the technique relaxes the main assumption of

Burden-TWAS and is robust to misspecification of eQTL effect size estimates derived from the

reference transcriptome (in terms of the direction and magnitude). The variance component

score test employed by VC-TWAS also enjoys efficient computation and flexibility for study-

ing both quantitative and dichotomous phenotypes, which enables VC-TWAS to consider

both cis- and trans- eQTL SNPs. VC-TWAS is further applicable to both individual-level and

summary-level GWAS data.

We note that VC-TWAS is not the first TWAS method developed that relaxes the linearity

assumption of Burden-TWAS. A recently derived collaborative mixed model (CoMM) [20,21]

likewise accounts for the uncertainty of eQTL effect size estimates from reference transcrip-

tome data by jointly modeling reference and test data within a linear mixed-model framework.

The PMR-Egger [22] and moPMR-Egger [23] also take the approach of jointly modeling refer-

ence and test data to address the uncertainty of eQTL effect size estimates from the reference

data. However, these methods that are based on the maximum likelihood inference framework

and implement likelihood ratio tests, are derived only for quantitative phenotypes and could

suffer computation burden for testing thousands of cis-SNPs per gene, which often happens in

practice particularly when considering imputed SNP data or whole-genome sequencing data

for TWAS. In this study, we show that the likelihood ratio test approach used by CoMM and
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PMR-Egger is computationally more expensive to run than VC-TWAS in practice when there

are thousands of test SNPs such as using imputed or Whole Genome Sequencing (WGS) geno-

type data.

This manuscript is as organized as follows. First, we provide an overview of traditional two-

stage Burden-TWAS as well as existing techniques for estimating cis-eQTL SNP effects from

reference transcriptome data. We then derive VC-TWAS approach for using both individual-

level and summary-level GWAS data and compare its performance with Burden-TWAS using

simulated data generated under different eQTL model assumptions. We then apply VC-TWAS

to individual-level GWAS data from Religious Order Study and Memory Aging Project (ROS/

MAP) [24–27] and Mayo Clinic Late-Onsite Alzheimer’s disease (LOAD) [28,29] cohorts, as

well as the summary-level GWAS data from the International Genomics of Alzheimer’s Project

(IGAP) [3], for studying Alzheimer’s dementia (AD). By considering only cis-eQTL effect

sizes, VC-TWAS identified both novel and known risk genes for AD within 2MB of the well-

known major risk gene APOE of AD, including the known risk gene TOMM40 and APOE.

Considering both cis- and trans- eQTL effect sizes estimated by the Bayesian Genome-wide

TWAS (BGW-TWAS) method [30], VC-TWAS detected 71 risk genes for AD which comple-

mented existing TWAS results using only cis-eQTL SNP data. After describing the results, we

provide a brief discussion summarizing our findings and describing implementation of

VC-TWAS into our previously developed software tool TIGAR [8] for public use.

Methods

Ethics statement

Real ROS/MAP and Mayo Clinic GWAS data analyzed in this study were generated under the

improvement by the Institutional Review Board (IRB) of Rush University Medical Center,

Chicago, IL and Mayo Clinic, respectively. All samples analyzed in this study were de-identi-

fied and all analyses were approved by the IRB of Emory University School of Medicine.

Traditional Two-Stage TWAS procedure

Two-stage TWAS first fits gene expression imputation models by taking genotype data as pre-

dictors and assuming the following additive genetic model for expression quantitative traits,

Eg ¼ Gw þ ε; ε � Nð0; s2

�
IÞ: ð1Þ

Here, G is the genotype matrix for all considered SNP genotypes (encoded as the number of

minor alleles or genotype dosages of SNPs within 1MB of the target gene region), w is the

eQTL effect size vector, and Eg is the profiled gene expression levels for the target gene g.

Given the eQTL effect size estimates bw from reference data, GReX will be imputed by the fol-

lowing equation

dGReX ¼ Gnewbw; ð2Þ

where Gnew is the genotype matrix for the test cohort.

The general test framework of Burden-TWAS [8,10,11] that test for association between

dGReX and the phenotype of interest can be written as:

E½gðYjGnewÞ� ¼ b
dGReX þ α0Z ¼ bðGnewbwÞ þ α0Z; ð3Þ

where Y denotes the phenotype of interest, g(.) denotes a link function, dGReX is imputed gene

expression levels, and α0 denotes the coefficient vector for other non-genomic covariates Z.
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Basically, Burden-TWAS tests the null hypothesis of H0: β = 0, where eQTL effect size esti-

mates (bw) are taken as variant weights and SNP effect sizes on phenotype (bbw) are assumed to

be a linear function of bw [8,10,11]. As noted above this linear relationship between eQTL effect

sizes on reference transcriptome and the SNP effect sizes on test phenotype may not be true

when analyzing human data and limits the power of the existing two-stage Burden-TWAS

methods.

Estimation of eQTL effect sizes

Different methods can be used to estimate eQTL effect sizes w from Eq (1). In this study, we

applied PrediXcan (Elastic-Net penalized regression) and TIGAR (nonparametric Bayesian

DPR methods) [8,10] to estimate w that only consider cis-eQTL. PrediXcan TWAS method

[10] employs Elastic-Net penalized regression method [12] to estimate cis-eQTL effect sizes w
from Eq (1) (S1A Text). TIGAR8 provides a more flexible approach to nonparametrically esti-

mate cis-eQTL effect sizes by a Bayesian DPR method [13] (S1B Text). Additionally, we also

considered modeling gene expression using both cis- and trans- eQTL effect sizes estimated by

the recently proposed Bayesian genome-wide TWAS (BGW-TWAS) method [30].

VC-TWAS with individual-level GWAS data

Here, we propose a powerful VC-TWAS method that is analogous to the previously proposed

SKAT method for SNP-set based association studies [16]. Similar to SKAT, the general test

framework of VC-TWAS can be written as

Yi ¼ β0Gi þ α0Zi þ εi; b
0

j � Nð0;w2

j tÞ; εi � Nð0; s2

�
Þ;

for continuous quantitative traits, and

logitðProbðYi ¼ 1ÞÞ ¼ β0Gi þ α0Zi þ εi; b
0

j � Nð0;w2

j tÞ; εi � Nð0; s2

�
Þ;

for dichotomous traits of sample i. Here, β is the genetic effect size vector, G is the genotype

matrix for all test SNPs with respect to the test gene, Z is the non-genomic covariate matrix,

and ε is the error term. VC-TWAS will testH0: τ = 0, which is equivalent to testing H0: β = 0.

The Variance-Component score statistic used by VC-TWAS is given by

Q ¼ ðY � bμÞ0KðY � bμÞ;K ¼ GWG0; ð4Þ

where bμ is the estimated phenotype mean under H0 and W ¼ diagðw2
j ; . . .Þ with weight wj for

the jth variant.

In contrast to SKAT methods, VC-TWAS takes eQTL effect size estimates from Eq (1) as

variant weights (wj). That is, the variances (tw2
j ) of SNP effect sizes on phenotype are assumed

to be a linear function of eQTL effect size estimates, which is robust to both direction and mag-

nitude of eQTL effect size estimates. Since the Variance-Component score statistic Q (Eq (4))

follows a mixture of chi-square distributions under the null hypothesis [31,32], p-value can be

conveniently obtained from several approximation and exact methods like the Davies exact

method [33].

We note that our VC-TWAS method is computationally more expensive than standard

Burden-TWAS given the need to perform eigen-decomposition of the kernel matrix K in Eq 4

to obtain an analytic p-value (S1C Text). Such eigen-decomposition has computational com-

plexity O(m3) for considering m SNPs with non-zero eQTL effect sizes. As DPR method pro-

duces non-zero cis-eQTL effect size estimates for almost all test SNPs (with most cis-eQTL

effect size estimates being close to zero [8]), we explored an alternate VC-TWAS that
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considered a reduced set of SNPs by filtering out those with cis-eQTL effect size estimates

smaller than the median cis-eQTL effect size estimate per gene. As we show using simulated

data, we can reduce up to 80% computation time while having negligible impact on perfor-

mance relative to using all SNPs with non-zero cis-eQTL effect size estimates.

Compared to Burden-TWAS, VC-TWAS is based on a random effect model and test for if

the variation of random effects differs from 0. That is, the variance component score statistic

(Eq (4)) used by VC-TWAS does not directly model the directions of cis-eQTL effect sizes (wj)
and is robust for mis-specifications of cis-eQTL effect sizes.

VC-TWAS with summary-level GWAS data

Since summary-level GWAS data generally provide SNP effect sizes on phenotype and corre-

sponding standard errors based on single variant tests (often meta-analysis), it is reasonable to

assume that the test phenotypes were adjusted for the confounding covariates. That is, in the Q
statistic used by VC-TWAS as in Eq (4), we can assume the phenotype mean bμ under H0 is 0.

This leads to a simplified formula [34,35]

Q ¼
Pm

j¼1
w2

j s
2

j ; ð5Þ

where sj ¼ G0
�jY=csY

2 is the single variant score statistic of the jth variant,csY
2 is the estimated

phenotype variance.

As derived in the previous studies [36], we can estimate phenotype variance and then the

score statistics by using only GWAS summary statistics including the single variant effect size

estimate bb j and corresponding standard error bsj for jth SNP, sample size n, and a reference LD

covariance matrix S of all test SNPs (S1C Text). That is, the numerator and denominator of

the score statistic can be estimated by,

G0
�jY ¼ ðn � 1ÞbbjSj;j;csY

2 ¼ medianðSj;j
bs2
j ðn � 1Þ þ Sj;j

bb j
2

; j ¼ 1; . . . ;mÞ: ð6Þ

ROS/MAP data

In this study we used clinical and postmortem data from older adults participating in two

ongoing community-based cohorts studies the Religious Orders Study (ROS) and Rush Mem-

ory and Aging Project (MAP) [24–27] which document risk factors and chronic conditions of

aging including dementia. Participants are senior adults without known dementia, who agree

to annual clinical evaluation and brain autopsy at the time of death. All participants signed an

informed consent and Anatomic Gift Act, and the studies are approved by an Institutional

Review Board of Rush University Medical Center, Chicago, IL. All participants in this study

also signed a repository consent to allow their data to be re-purposed.

Currently, we have microarray genotype data generated for 2,093 European-decent subjects

from ROS/MAP [24–27], which are further imputed to the 1000 Genome Project Phase 3 [37]

in our analysis [38]. Post-mortem brain samples (gray matter of the dorsolateral prefrontal

cortex) from ~30% these ROS/MAP participants with assayed genotype data are also profiled

for transcriptomic data by next-generation RNA-sequencing [39], which are used as reference

data to train GReX prediction models in our application studies.

Using ROS/MAP data, we conducted TWAS for clinical diagnosis of late on-site Alzhei-

mer’s dementia (LOAD) as well as three pathology indices of AD including quantified β-amy-

loid load and PHFtau tangle density as well as a summary measure of AD pathology burden

(S1D Text) [24,25,27].
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Mayo Clinic LOAD GWAS data

Mayo Clinic LOAD GWAS data contain samples from two clinical AD Case-Control series:

Mayo Clinic Jacksonville (MCJ: 353 AD cases and 331 Controls), Mayo Clinic Rochester

(MCR: 245 AD cases and 701 Controls) and a neuropathological series of autopsy-confirmed

subjects from the Mayo Clinic Brain Bank (MCBB: 246 AD cases and 223 non-AD Controls)

[28,29]. In total, we have 844 cases with LOAD and 1,255 controls without a dementia diagno-

sis. Mayo Clinic LOAD GWAS data have microarray genotype data profiled for 2,099 Euro-

pean-decent samples that are further imputed to the 1000 Genome Project Phase 3 [37] in our

analysis [38]. This cohort only profiles the phenotype of clinical diagnosis of AD.

IGAP GWAS summary statistics of AD

We used the GWAS summary statistics of AD generated from the stage 1 of the International

Genomics of Alzheimer’s Project (IGAP) with individuals of all European ancestry [3]. This

summary-level GWAS data was generated by meta-analysis (N = ~54K) of four previously-

published GWAS datasets consisting of 17,008 Alzheimer’s disease cases and 37,154 controls

(The European Alzheimer’s disease Initiative–EADI the Alzheimer Disease Genetics Consor-

tium–ADGC The Cohorts for Heart and Aging Research in Genomic Epidemiology consor-

tium–CHARGE The Genetic and Environmental Risk in AD consortium–GERAD).

Simulation study design

The purpose of this simulation study is to compare the performance of Burden-TWAS and

VC-TWAS with variant weights estimated by PrediXcan and DPR methods, as well as validate

the VC-TWAS approach of using only summary-level GWAS data. We used the real genotype

data from ROS/MAP [40] participants to simulate quantitative gene expression and phenotype

traits, where the genotype data were of 2,799 cis-SNPs (with MAF>5% and Hardy Weinberg

p-value >10−5) of the arbitrarily chosen gene ABCA7.

Specifically, quantitative gene expression traits are generated by the following equation

Eg ¼ Gw þ εE; ð7Þ

where G denotes the genotype matrix of randomly selected true causal eQTL based on a target

proportion of causal eQTL (pcausal) within the test gene, w denotes cis-eQTL effect sizes gener-

ated from Nð0; s2
wIÞ with variance s2

w chosen to ensure a target gene expression heritability

(h2
e ), and εE is the error term generated from Nð0; ð1 � h2

eÞIÞ.
Phenotype data are generated based on two models to mimic two different genetic architec-

tures of complex traits that may be encountered with human data:

Model I: The genetic effects on the phenotype of interest are completely driven by geneti-

cally regulated gene expression (GReX), where SNP effect sizes are of a linear function of their

corresponding cis-eQTL effect sizes as assumed by Burden-TWAS methods [8,10,11]. Pheno-

type data are generated from the following equation

Y ¼ �Eg þ εY ¼ rðGw þ εEÞ þ εY ; εY � Nð0; ð1 � h2

pÞIÞ; ð8Þ

where Eg is the gene expression generated from Eq (7) and r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
p=VarðEgÞ

q
is a scalar chosen

to ensure a target phenotype variation proportion due to gene expression (h2
p).

Model II: The magnitudes of SNP effect sizes on the phenotype are no longer a linear func-

tion of corresponding cis-eQTL effect sizes as in Model I, but rather are derived randomly

from a distribution whose variance is a linear function of the squares of such effects. By doing
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this, the SNP effect sizes on phenotype are a function of cis-eQTL effect sizes but the assump-

tion of a linear relationship between the two (assumed by Burden-TWAS) is relaxed. Pheno-

type data are generated from the following equation

Y ¼ Gβþ εY ; εY � Nð0; ð1 � h2

pÞIÞ; ð9Þ

where G denotes the genotype matrix of randomly selected true causal SNPs that are also true

causal cis-eQTL as in Eq (7), respective SNP effect sizes are generated from βi� Nð0; rw2
i Þ

with corresponding cis-eQTL effect size wi as used in Eq (7) and r chosen to ensure a pheno-

type heritability h2
p.

We considered scenarios with various proportions of causal cis-eQTL/SNPs pcausal = (0.001,

0.01, 0.1, 0.2) for the test gene, and various combinations of expression heritability (h2
e ) and

phenotype variance proportion/heritability (h2
p) that were chosen to ensure TWAS power fall-

ing within the range of (25%, 90%). The values of pcausal and h2
p were taken as ðpcausal; h2

pÞ ¼

ðð0:001; 0:2Þ; ð0:01; 0:3Þ; ð0:1; 0:4Þ; ð0:2; 0:5ÞÞ for simulating phenotypes from Model I, while

taken as ðpcausal; h2
pÞ ¼ ðð0:001; 0:1Þ; ð0:01; 0:1Þ; ð0:1; 0:15Þ; ð0:2; 0:15ÞÞ for simulating pheno-

types from Model II.

We used 499 ROS/MAP samples as training data that were also used as training data in our

application studies, and randomly selected 1,232 ROS/MAP samples as test data. To show the

power performance with respect to test sample size, we considered different test sample sizes

(400, 800, 1232) under the scenario with pcausal = 0.2.

We estimated cis-eQTL effect sizes from training data by using PrediXcan and TIGAR

DPR methods and then conducted Burden-TWAS and VC-TWAS with individual-level and

summary-level test GWAS data. We note that Burden-TWAS using PrediXcan weights is

equivalent to the PrediXcan method [10] while Burden-TWAS using DPR weights is equiva-

lent to the TIGAR method [8]. We also compared Burden-TWAS and VC-TWAS with the

CoMM method under simulation settings with pcausal = 0.2 (we did not consider additional

simulation settings because of the computational demands of CoMM).

For each scenario, we repeated simulations for 1,000 times and obtained the power as the

proportion of simulations that had test p-value <2.5×10−6 (genome-wide significance thresh-

old for gene-based test). Additionally, we simulated phenotype under the null hypothesis Y~N
(0,1) for 106 times and evaluated type I errors of Burden-TWAS and VC-TWAS, using variant

weights derived from PrediXcan and DPR methods.

For each scenario with VC-TWAS, we considered both the original form of the test as well

as the alternate computationally-efficient form that considered only the filtered set of variants

with cis-eQTL effect size estimates greater than the median effect size value in each simulation

(about 50% SNPs).

Results

Simulation results

We compared the performance of VC-TWAS and Burden-TWAS using PrediXcan weights (cis-

eQTL effect size estimates by Elastic-Net penalized regression) and DPR weights (cis-eQTL effect

size estimates by DPR) under various scenarios. We also evaluated the performance of VC-TWAS

and Burden-TWAS using filtered DPR weights as described in Methods. Under the scenario with

pcausal = 0.2, we considered different test sample sizes (400, 800, 1232), and compared VC-TWAS

with CoMM using both individual-level and summary level test data with 1232 test samples.

First, we compared TWAS power for studying phenotypes simulated from Model I that

assumed SNP effect sizes on phenotypes were of a linear function of their corresponding cis-
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eQTL effect sizes. When pcausal = (0.001, 0.01) with sparse true causal signals (S1A Fig),

VC-TWAS had comparable power with Burden-TWAS and both TWAS methods using Pre-

diXcan weights achieved higher power compared to using DPR weights. When pcausal>0.01,

we observed that both TWAS methods using DPR weights achieved higher power compared

to using PrediXcan weights. These results are consistent with the previous TIGAR paper [8].

This is because DPR method is preferred for modeling quantitative gene expression traits

when a gene harbors a considerable proportion of true cis-eQTL with relatively smaller effect

sizes, e.g., scenarios with pcausal>0.01 in our simulation studies. As expected, with pcausal>0.01

(S1A Fig, Fig 1A), Burden-TWAS methods outperformed VC-TWAS under Model I which

meets the assumptions by Burden-TWAS methods. Across all considered scenarios, all TWAS

methods using filtered DPR weights had similar performance as using complete DPR.

Fig 1. Power comparison of Burden-TWAS and VC-TWAS methods under simulation scenarios with 20% true

causal eQTL for gene expression (i.e., pcausal = 0.2) in the test gene. Phenotypes simulated from Model I (A, C, E)

and Model II (B, D, F) were considered. Various gene expression heritability and various types of SNP weights were

considered, including those derived from PrediXcan method, DPR method, and filtered DPR weights in panel (A, B).

Various test sample sizes (400, 800, 1232) were considered in panel (B, D). The VC-TWAS approach of using only

summary-level GWAS data were validated in panel (E, F).

https://doi.org/10.1371/journal.pgen.1009482.g001

PLOS GENETICS Novel Variance-Component TWAS method for studying complex traits

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009482 April 2, 2021 9 / 25

https://doi.org/10.1371/journal.pgen.1009482.g001
https://doi.org/10.1371/journal.pgen.1009482


Second, we compared TWAS power for studying phenotypes simulated from Model II that

assumes variances of SNP effect sizes on phenotype were of a linear function of the squared

values of their corresponding cis-eQTL effect sizes. As shown in Figs 1B and S1B, we found

that the VC-TWAS obtained higher power than Burden-TWAS across all scenarios. Especially,

with pcausal�0.01, the power by VC-TWAS using DPR weights was double of that using Pre-

diXcan weights on average (88.99% vs. 38.45%), while the power of Burden-TWAS using DPR

weights was comparable with using PrediXcan weights except when pcausal = 0.001. When pcau-
sal = 0.001 and h2

e 2 ð0:1; 0:2Þ (S1B Fig), both TWAS approaches using PrediXcan weights per-

formed better than using DPR weights. Again, across all considered scenarios, TWAS using

filtered DPR weights had similar performance to that using complete DPR.

Third, we compared VC-TWAS and Burden-TWAS with different test sample sizes (400,

800, 1232) under the scenarios with (pcausal ¼ 0:2; h2
e ¼ 0:2). As shown in Figs 1C and 1D, the

power of VC-TWAS and Burden-TWAS increased with respect to the test sample size in both

simulation models. Interestingly, for model II, the magnitude of the power difference between

VC-TWAS and Burden-TWAS became more pronounced with increasing sample size.

Fourth, to validate the VC-TWAS approach for using only summary-level GWAS data, we

compared VC-TWAS with DPR weights by using individual-level and summary-level GWAS

data, under the scenarios with pcausal = 0.2. As shown in Figs 1E and 1F, VC-TWAS using sum-

mary-level GWAS data (VC-TWAS-SS) performed equivalent as using individual-level data

under both simulation models. Additionally, VC-TWAS using filtered DPR weights and sum-

mary-level GWAS data (VC-TWAS_f) still had similar performance to that using complete

DPR weights.

Fifth, we also compared VC-TWAS with CoMM [20,21] using individual-level and

CoMM-SS using summary-level GWAS data under the scenarios with pcausal = 0.2 (S2 Fig).

Although CoMM and CoMM-SS outperformed VC-TWAS, CoMM costed up to 600x more

computation time and CoMM-SS costed up to 250x more computation time than VC-TWAS

for testing a gene with ~5K test SNPs (S1 Table). Take typical genes with ~2K-5K test SNPs as

examples, VC-TWAS costed ~20s versus ~38,037s by CoMM using individual-level GWAS

data, and VC-TWAS costed ~3s versus ~373s by CoMM-SS using summary-level GWAS data,

by a single-thread computation with 4 cores (32GB memory) on a 2.10GHZ CPU (16-node

Intel Xeon node). As the number of the SNPs in a gene increases, the difference in computa-

tion run times between VC-TWAS and CoMM/CoMM-SS become even more pronounced.

Last but not least, to evaluate type I error of Burden-TWAS and VC-TWAS, we conducted

106 times simulations under the null hypothesis where phenotypes were not associated with

genetic data of the test gene. Without loss of generality, we used gene expression data simu-

lated with pcausal ¼ 0:2; h2
e ¼ 0:1 and generated phenotypes randomly from a N(0,1) distribu-

tion. We evaluated type I errors (Table 1) with multiple significant levels (10−2, 10−4,

2.5×10−6), demonstrating that both TWAS approaches had type I errors well controlled across

all considered significance levels. We also presented the quantile-quantile (QQ) plots of p-val-

ues by all methods in S4 Fig.

Table 1. Type I errors under null simulation studies for Burden-TWAS and VC-TWAS with pcausal = 0.2, h2
e = 0.1, using variant weights given by DPR, filtered

DPR, and PrediXcan.

Significance Level Burden-TWAS VC-TWAS

DPR Filtered DPR PrediXcan DPR Filtered DPR PrediXcan

1.00×10−2 9.82×10−3 9.86×10−3 9.27×10−3 9.43×10−3 9.46×10−3 9.23×10−3

1.00×10−4 8.64×10−5 8.44×10−5 9.95×10−5 8.64×10−5 9.05×10−5 8.24×10−5

2.50×10−6 2.00×10−6 2.00×10−6 2.00×10−6 2.00×10−6 1.00×10−6 6.00×10−6

https://doi.org/10.1371/journal.pgen.1009482.t001
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To summarize, VC-TWAS performed similarly to Burden-TWAS for studying phenotypes

simulated from Model I with sparse true causal eQTL, but outperformed Burden-TWAS for

studying phenotypes simulated from model II. This is because the genetic architecture

assumed under Model I is the one assumed by Burden-TWAS with linear relationship between

SNP effect sizes on phenotype and cis-eQTL effect sizes. Whereas, Model II assumes a genetic

architecture that is a function of cis-eQTL effect sizes but not explicitly a linear relationship

(leading to more general models of effect). Generally, TWAS methods using DPR weights

achieved higher power than using PrediXcan weights when pcausal�0.01, which is consistent

with previous studies [8]. Additionally, VC-TWAS using filtered DPR weights achieved similar

power as using complete DPR weights, while saving up to 80% of computation time.

Application studies of AD with individual-level GWAS data

We applied VC-TWAS to the individual-level GWAS data of ROS/MAP and Mayo Clinic

LOAD cohorts, using SNP weights (i.e., cis-eQTL effect sizes) generated by PrediXcan and fil-

tered DPR methods with 499 ROS/MAP training samples that had both transcriptomic and

genetic data profiled [8]. As suggested by previous studies [10,41], our TWAS results included

genes with 5-fold cross validation (CV) R2>0.005 for predicting quantitative gene expression

traits by either PrediXcan or DPR. We obtained VC-TWAS p-values for 5,710 genes using Pre-

diXcan weights and 12,650 genes using filtered DPR weights. Here, we roughly chose the

threshold 10−4 to filter DPR weights in our VC-TWAS such that on average the variance com-

ponent test considered ~50% SNPs from the test gene region. Specifically, the median number

of SNPs considered by VC-TWAS per gene is 2,872 for using filtered DPR weights and 6,632

for using complete DPR weights (S3 Fig).

Leveraging the clinical and postmortem AD data available in ROS/MAP, we were able to apply

VC-TWAS to four clinical and pathologic AD phenotypes (S1D Text). We examined final cogni-

tive status diagnosis of 1,436 decedents (AD Dementia (N = 609) versus No Dementia (N = 827)),

as well as three postmortem AD phenotypes including: continuous outcomes of β-amyloid load

(N = 1,294), PHFtau tangle density (tangles, N = 1,303), and a global AD pathology (N = 1,329).

In the VC-TWAS of all four AD phenotypes, we adjusted for covariates of age, smoking status,

sex, study group (ROS or MAP), education, and the top three principal components of ancestry.

With Mayo Clinic cohort, we conducted VC-TWAS for AD clinical diagnosis with 844

cases diagnosed with LOAD and 1,255 controls showed no signal of dementia, while adjusting

for covariates age, sex, and top three principal components of ancestry. Since only the pheno-

type of AD clinical diagnosis was profiled by both ROS/MAP and Mayo Clinic cohorts (under

different diagnosis criteria) and different sets of covariates were adjusted in VC-TWAS, we

conducted meta-analysis with VC-TWAS summary statistics for each study by using Fisher’s

method (meta VC-TWAS) [42] to increase power with a larger sample size.

By meta VC-TWAS, we detected 13 significant risk genes with FDR < 0.05 that were

located within ~2MB region around the well-known AD risk gene APOE on chromosome 19

(Fig 2A; Table 2). Seven of those significant genes were known risk genes of AD by previous

GWAS (CLASRP, TOMM40, MARK4, CLPTM1, CEACAM19, RELB) [43,44] and Burden-

TWAS using DPR weights (TRAPPC6A) [8].

As clinical AD diagnosis can be associated with AD related pathologies, in further analyses

we investigated whether the genes found to be associated with clinical AD diagnosis (Table 2)

were also associated with pathologic AD phenotypes. We examined the VC-TWAS p-values of

these significant genes with respect to AD pathology phenotypes (β-amyloid, tangles and

global AD pathology) (S2 Table; Fig 2B; S5 and S6 Figs). Interestingly, 5 out of these 13 genes

had at least one VC-TWAS p-value<0.0013 (Bonferroni correction with respect to 13 genes
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and 3 AD pathology phenotypes) for one of the three AD pathology phenotypes. Particularly,

genes ZNF234 and CLASRP have VC-TWAS p-value <0.0013 for all three AD pathology phe-

notypes, which are likely to be involved in the biological mechanisms of both β-amyloid and

tangles. The other three genes (TRAPPC6A, TOMM40, CEACAM19) have VC-TWAS p-value

<0.0013 for β-amyloid and global AD pathology, which are likely to be involved only in the

biological mechanism of β-amyloid.

For example, the top significant gene ZNF234 (with FDR = 1.40×10−12) by meta VC-TWAS

of AD clinical diagnosis is also the top significant gene (p-value = 2.10×10−4) by VC-TWAS of

β-amyloid, the second most significant gene (p-value = 6.39×10−5) by VC-TWAS of global AD

pathology, and has p-value = 1.06×10−3 by VC-TWAS of tangles. These results showed that the

genetic factor of gene ZNF234 on AD could be potentially mediated through its gene expres-

sion, and the expression of this gene could be also potentially involved in the mechanisms of

both AD pathology indices of β-amyloid and tangles. Besides AD, gene ZNF234 is also a

known risk gene for lipid traits [45]. The genetically regulated gene expression of this gene

might also affect lipid traits, thus leading to a pleiotropy phenomenon of AD and lipid traits

[46]. Additionally, ZNF234 is known to be involved in the super pathway of gene expression

Fig 2. Manhattan plots of meta VC-TWAS for AD clinical diagnosis (A) and VC-TWAS of global AD pathology

(B) with filtered DPR weights. Genes with FDR< 0.05 are colored in (A), with red for novel risk genes and blue for

known AD risk genes. Genes with FDR< 0.05 in meta VC-TWAS of AD clinical diagnosis and p-value< 0.0013 in

VC-TWAS of global AD pathology are colored in red in (B).

https://doi.org/10.1371/journal.pgen.1009482.g002
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and is annotated with the Gene Ontology term of nucleic acid binding and DNA-binding tran-

scription factor activity [47].

Another significant gene of interest is TOMM40, which has FDR = 2.86×10−9 by meta

VC-TWAS for AD dementia and VC-TWAS p-values = (4.44×10−4, 6.95×10−2, 1.91×10−4) for

β-amyloid, tangles, and global AD pathology, respectively. These findings suggest that the asso-

ciation of this well-known AD risk gene TOMM40 [48] could be mediated through its gene

expression via β-amyloid but not tangles.

For all SNPs considered by meta VC-TWAS of genes ZNF234 and TOMM40 for studying

AD clinical diagnosis, we colocalized the meta GWAS results for AD clinical diagnosis with

ROS/MAP and Mayo Clinic cohorts and the corresponding DPR weight (i.e., cis-eQTL effect

size) magnitude. Interestingly, we found that the VC-TWAS association of these two genes

were likely to be driven by SNPs around APOE/TOMM40 loci that also possessed major cis-

eQTL effect size magnitudes (S7 Fig).

In addition, our VC-TWAS identified a significant gene HSPBAP1 (FDR = 0.058) for tan-

gles (S5B Fig). As shown by previous studies, mRNA of gene HSPBAP1 was abnormally

expressed in the anterior temporal neocortex of patients with intractable epilepsy [49]. Based

on our VC-TWAS results, gene HSPBAP1might not have a significant genetic effect on AD

dementia, but might have a significant effect on tangle pathology (p-value = 4.57×10−6) and

may account for the increasing recognition of non-cognitive AD phenotypes [50]. This pro-

vides support about that gene HSPBAP1 could be involved in the mechanism of brain pathol-

ogy tangles and other neurological diseases such as intractable epilepsy [49,51].

We also applied VC-TWAS with PrediXcan weights, but no significant genes were identi-

fied with FDR<0.05 (S8, S9 and S10 Figs), neither the genes with smallest p-values were proxi-

mal to APOE. In contrast, our results by VC-TWAS with filtered DPR weights provided

potential biological interpretations for several known AD risk genes via gene expression and

for their associations with both clinical and pathologic AD phenotype.

Application studies of AD with summary-level GWAS data

Next, we applied VC-TWAS to the stage1 summary-level GWAS data of AD from IGAP [3],

which has a much larger sample size (~54K with 17,008 AD cases and 37,154 controls). We

Table 2. Significant genes for phenotype AD clinical diagnosis by meta VC-TWAS with filtered DPR weights. Significant genes have FDR< 0.05 by meta-TWAS

with ROS/MAP and Mayo Clinic cohorts. AD risk genes identified by previous GWAS are shaded in grey.

Gene name CHR Start End P-value FDR

ZNF234a 19 44,645,710 44,664,462 1.11×10−16 1.40×10−12

CLASRP a 19 45,542,298 45,574,214 4.44×10−16 2.81×10−12

TRAPPC6A a 19 45,666,187 45,681,485 3.60×10−14 1.52×10−10

TOMM40 a 19 45,394,477 45,406,935 9.05×10−13 2.86×10−9

MARK4 19 45,754,550 45,808,541 4.62×10−16 1.17×10−8

PPP1R13L 19 45,882,892 45,909,607 1.82×10−10 3.84×10−7

CLPTM1 19 45,457,848 45,496,598 5.71×10−8 1.03×10−4

EML2 19 46,112,660 46,148,726 1.88×10−7 2.97×10−4

FBXO46 19 46,213,887 46,234,151 4.13×10−7 5.80×10−4

CEACAM19 a 19 45,174,724 45,187,631 3.93×10−6 4.68×10−3

GIPR 19 46,171,502 46,185,704 4.07×10−6 4.68×10−3

RELB 19 45,504,695 45,541,452 6.63×10−6 6.99×10−3

ZNF225 19 44,617,548 44,637,255 2.59×10−5 2.51×10−2

a: Genes with significant p-values <0.0013 (Bonferroni correction with respect to 13 genes and 3 phenotypes) for at least one AD pathology phenotype

https://doi.org/10.1371/journal.pgen.1009482.t002
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considered filtered cis-eQTL DPR weights as used in the above applications with individual-

level GWAS data, as well as the SNP weights of both cis- and trans- eQTL generated by the

BGW-TWAS method [30]. LD covariance matrices from ROS/MAP individual-level GWAS

data were used for implementing VC-TWAS with summary-level GWAS data.

Using filtered cis-eQTL DPR weights. By using the filtered cis-eQTL DPR weights, we

identified 57 significant risk genes with FDR<0.05 by VC-TWAS (Fig 3A; S3 Table and S11A

Fig), including the most well-known AD risk genes TOMM40 and APOE, along with 45 genes

Fig 3. Manhattan plots of VC-TWAS using IGAP summary data with filtered cis-eQTL DPR weights (A) and

TWAS locus zoom plots for the loci on chromosome 11 (B) and chromosome 19 (C). Significant genes with

FDR< 0.05 are colored, with red for significant ones only identified by using IGAP summary data and blue for the

ones replicating our VC-TWAS findings using the individual-level GWAS data of ROS/MAP and Mayo Clinic cohort.

Between gene R2 in (B, C) were calculated with respect to GReX values. The R2 in locus zoom plot denoted by various

colors for the dots is the squared correlation of GReX between the most significant gene and other neighborhood

genes. The heatmap is based on the squared correlation matrix of GReX.

https://doi.org/10.1371/journal.pgen.1009482.g003
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that were located within ~2MB region around those two risk genes. Other significant genes are

distributed on chromosome 6, 8, 11 and 20 (Fig 3A). Among these 57 significant genes, 20

genes were known risk genes by previous GWAS [43,44] (S3 Table). Genes detected by

VC-TWAS using the individual-level GWAS data of ROS/MAP and Mayo Clinic cohorts were

all replicated (S3 Table). Burden-TWAS using IGAP summary data and filtered cis-eQTL DPR

weights (S3 Table) also identified 22 out of 57 of these significant genes.

Since most significant genes are nearby genes on chromosome 11 and 19, we made analo-

gous TWAS locus zoom plots for these two major loci in Fig 3B and 3C, where the between

gene R2 were calculated with respect to the predicted GReX values using the individual-level

GWAS data of ROS/MAP and Mayo Clinic cohorts. We observed that most significant genes

do have highly correlated GReX values, showing that nearby significant TWAS associations

are likely to be not independent. For the locus on chromosome 19 (Fig 3C), we can see that the

R2 between geneMARK4 (and a few other genes shown in orange color) and the top significant

gene CLASRP is greater than 0.4. The significant genes in blue colors are likely to be indepen-

dent associations from the top significant gene CLASRP. For the locus on chromosome 11 (Fig

3B), significant genes TMEM132A, OSBP, STX3, and TMEM109 are highly correlated with the

top significant gene PRPF19, while gene ME3 tend to be another independent association.

Using cis- and trans- eQTL weights generated by BGW-TWAS. To provide a comple-

mentary list of significant genes by considering both cis- and trans- eQTL, we conducted

VC-TWAS with the IGAP summary data using the cis- and trans- eQTL weights generated by

the BGW-TWAS method [30]. We detected total 71 significant genes with FDR< 0.05 (Fig 4;

S4 Table; S11B Fig), among which 6 genes were identified by GWAS [44,52–55] and 22 genes

were shown to be related with AD or other neurological diseases by previous studies and

(Table 3).

For example, gene ARHGEF2 on chromosome 1(with FDR = 2.46×10−13) is shown to be

interact with all four members of the MARK family including MARK4 on chromosome 19

which has an emerging tole in the phosphorylation of MAPT/TAU in Alzheimer’s disease and

identified by VC-TWAS using cis-eQTL DPR weights [56]. Gene GAS5 (with FDR = 3.11×10−-

19) was shown to have a novel role in microglial polarization and the pathogenesis of demyelin-

ating diseases which suggested the potential therapeutic benefit of targeting GAS5 for the

Fig 4. Manhattan plot of VC-TWAS using IGAP summary data with BGW cis- and trans- eQTL weights.

Significant genes with FDR< 0.05 are colored.

https://doi.org/10.1371/journal.pgen.1009482.g004
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treatment of neurological disorders including AD [57]. Gene NCOA1 (with FDR 8.51×10−22)

was shown to have pivotal roles in memory and learning [58]. SNPs in Gene PDCD11 (with

FDR = 1.69×10−5) have been showed to be significantly associated with AD [59]. Gene APOC1
was detected by several GWASs [43,44], even when conditioning on APOE gene [60]. The

presence of gene ACHE (with FDR = 1.39×10−2) is a common feature in AD brain [61]. We

also detected genes NUP88 [62], ROBO4 [63], DLGAP2 [64], AHR [65], PPP1R3E [66], RFX3
[67] and NOS2 [68] that were shown to possess biological link with AD. Additional identified

genes USP30 [69], GRIN2A [70], SLC25A28 [71], HLA-DRB5 [72], ZMAT2 [73], SLC4A10
[74],MTFMT [75] and SETD6 [76] were shown to be related with neurological diseases by pre-

vious studies.

Overall, we show that VC-TWAS using BGW weights provide a complementary list of risk

genes to those previously identified by considering additional trans- eQTL information.

Discussion

In this paper, we propose a novel variance-component TWAS (VC-TWAS) method that lever-

ages eQTL effect sizes from reference transcriptome but does not assume a linear relationship

between SNP effect sizes on phenotypes and cis-eQTL effect sizes. VC-TWAS is applicable to

Table 3. Significant genes identified by VC-TWAS using IGAP summary statistics data with BGW cis- and trans- eQTL weights, which are either known GWAS

loci or shown to be related with AD or other neurological diseases by previous studies. AD risk genes identified by previous GWAS are shaded in grey.

Gene Name CHROM Start End P-value FDR

ARHGEF2a 1 155,916,644 155,966,129 1.75×10−16 2.46×10−13

GAS5 a 1 173,833,037 173,838,020 1.33×10−22 3.11×10−19

NCOA1 a 2 24,714,782 24,993,571 2.42×10−25 8.51×10−22

CENPO a 2 25,016,004 25,045,245 4.07×10−7 1.85×10−4

SLC4A10 a 2 162,280,842 162,841,792 8.80×10−6 2.58×10−3

MAN2A1 5 109,025,066 109,205,326 6.30×10−8 3.70×10−5

ZMAT2 a 5 140,079,746 140,086,266 1.83×10−6 6.43×10−4

HLA-DRB5 a 6 32,485,119 32,498,064 7.81×10−7 3.23×10−4

AHR a 7 17,338,245 17,385,776 2.11×10−5 5.62×10−3

JAZF1 7 27,870,191 28,220,362 7.49×10−8 4.22×10−5

ACHE a 7 100,487,614 100,494,594 5.93×10−5 1.39×10−2

DLGAP2 a 8 1,449,530 1,656,642 1.18×10−5 3.38×10−3

RFX3 a 9 3,218,296 3,526,004 4.69×10−5 1.16×10−2

SLC25A28 a 10 101,370,281 101,380,535 1.55×10−7 7.79×10−5

PDCD11 a 10 105,156,404 105,206,049 2.52×10−8 1.69×10−5

ROBO4 a 11 124,753,586 124,768,396 1.13×10−6 4.30×10−4

USP30 a 12 109,460,893 109,525,831 1.50×10−10 1.41×10−7

PPP1R3E a 14 23,765,111 23,772,057 2.11×10−5 5.62×10−3

MTFMT a 15 65,294,844 65,321,977 3.10×10−5 8.09×10−3

PARP6 15 72,533,521 72,565,340 6.77×10−6 2.07×10−3

GRIN2A a 16 9,852,375 10,276,611 2.22×10−8 1.56×10−5

SETD6 a 16 58,549,382 58,554,431 3.44×10−5 8.81×10−3

NUP88 a 17 5,264,257 5,323,480 2.65×10−7 1.24×10−4

NOS2 a 17 26,083,791 26,127,555 9.55×10−5 2.07×10−2

CEACAM19 19 45,174,723 45,187,631 1.46×10−5 4.03×10−3

APOC1 a 19 45,417,920 45,422,606 2.80×10−6 9.63×10−4

a: Genes shown to be related with AD or other neurological diseases by previous studies

https://doi.org/10.1371/journal.pgen.1009482.t003
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both quantitative and dichotomous outcomes and can further handle both individual-level

and summary-level GWAS data. By implementing this VC-TWAS with cis-eQTL effect sizes

estimated by DPR method [8,13], we created a powerful test statistic that had good perfor-

mance in simulation studies and obtained biologically meaningful TWAS results for both clin-

ical and pathologic AD phenotypes. In particular, with the individual-level GWAS data of

~3.4K samples, we detected 13 TWAS genes for AD dementia, including the well-known

GWAS risk gene TOMM40 and previously identified TWAS gene TRAPPC6A [8]. Moreover,

6 out of these 13 genes were identified by previous GWAS [43]. The pleiotropy effects of 5 of

these genes with respect to AD dementia and indices of AD pathology demonstrated the possi-

ble biological mechanisms linking AD risk genes via β-amyloid and tangles with AD dementia.

By applying VC-TWAS with summary-level GWAS data of AD with a much larger sample

size, we not only validated our findings with the individual-level GWAS data but also detected

additional novel risk genes. In particular, by applying VC-TWAS with both cis- and trans-

eQTL effect sizes estimated by the BGW-TWAS method, we identified a list of significant AD

risk genes that complement risk genes identified by considering only cis-eQTL information.

To help users conduct our VC-TWAS method conveniently and efficiently, we added this

method into our previously developed tool––Transcriptome Integrated Genetic Association

Resource (TIGAR) [8]. The user has the option of estimating cis-eQTL effect sizes by either

the PrediXcan method (i.e., Elastic-Net) [12] or nonparametric Bayesian DPR method [13], or

using eQTL weights generated by previous studies. The VC-TWAS function works for using

individual-level GWAS data to study continuous or dichotomous phenotypes, as well as using

summary-level GWAS data.

Since the variance component test statistic used by VC-TWAS involves calculating and per-

forming an eigen-decomposition of a genotypic kernel matrix, efficient computation is

required (even when filtering variants to include only those variants with relatively larger mag-

nitude of eQTL estimates) for obtaining the corresponding p-values in practice. Our TIGAR

tool implements multi-threaded computation to take advantage of high-performance cloud

computing clusters and enable practical computation for testing genome-wide genes with

respect to reference transcriptome data of multiple tissue types. A typical VC-TWAS with

~20K genes can be accomplished within ~80 hours by using a single thread with 1 CPU core

and 32 GB memory.

Of course, current TWAS methods including our VC-TWAS still have their limitations.

Because of genetic and transcriptomic heterogeneities across different ethnicities, one may

have difficulty in translating eQTL effect size estimates across cohorts with different ethnicities

[77]. That being said, VC-TWAS is likely more robust to this phenomenon than Burden-

TWAS given the former relaxes the assumption of the latter of a linear relationship between

the SNP effect size and eQTL effect in the transcriptome. Nevertheless, reference panels with

diverse ethnicities and multiple tissue types are certainly needed to enhance TWAS to study

complex diseases across different ancestral groups. We should note though that both ROS/

MAP and Mayo Clinic cohorts that we considered in this work have similar (European)

origins.

Compared to the alternative CoMM and PMR-Egger methods that jointly model both ref-

erence and test data, VC-TWAS might be less powerful when the eQTL effect sizes are homo-

geneous in both reference and test cohorts. However, CoMM and PMR-Egger methods are

derived for quantitative phenotypes and implement likelihood ratio tests under a maximum

likelihood reference framework that are computationally expensive when thousands of cis-

SNPs need to be tested per gene. Although one may apply CoMM and PMR-Egger methods to

dichotomous phenotypes by taking cases as 1’s and controls as 0’s, this may lead to inflated

type I errors when population stratification leads to violation of the constant-residual variance
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assumption. The recently published generalized linear mixed model association test

(GMMAT) method paper has shown this by both simulation and real studies and suggested

that a logistic mixed model would be more appropriate for analyzing dichotomous traits [78].

Thus, VC-TWAS would be preferred because of computational efficiency when imputed or

whole genome sequencing genotype data are considered for the reference panel, or when

dichotomous traits are analyzed. We provide a summary table for pros and cons of existing

popular TWAS methods in S5 Table.

Nevertheless, our novel technique allows a more flexible framework to account for the

unknown genetic architectures underlying the relationships between SNPs and the phenotype

of interest with efficient computation. Using simulated and real AD-related data, we show our

method VC-TWAS provides the public a useful tool for illustrating the genetic etiology of

complex diseases by providing a list of risk genes whose effects on phenotypes might be medi-

ated through transcriptomes.

Web resources

VC-TWAS, https://github.com/yanglab-emory/VC_TWAS

TIGAR, https://github.com/yanglab-emory/TIGAR

PrediXcan, https://github.com/hakyim/PrediXcan

RADC Research Resource Sharing Hub, http://www.radc.rush.edu/

ROS/MAP data, https://www.synapse.org/#!Synapse:syn3219045

MayoClinicLOAD data, https://www.synapse.org/#!Synapse:syn2910256

GWAS catalog, https://www.ebi.ac.uk/gwas/

BGW weights of brain frontal cortex tissue, https://www.synapse.org/#!Synapse:

syn22316792

Supporting information

S1 Text. Details about PrediXcan’s and TIGAR’s approach of estimating cis-eQTL effect sizes

(A, B), VC-TWAS approach with summary-level GWAS data (C), and ROS/MAP data (D).

(DOCX)

S1 Fig. TWAS power comparison for VC-TWAS and Burden-TWAS with phenotypes simu-

lated from Model I (A) and Model II (B). Various types of SNP weights were considered,

including those derived from PrediXcan method, DPR method, and filtered DPR weights. In

Model I, the combinations of causal probability and phenotype heritability are

ðpcausal; h2
pÞ ¼ ðð0:001; 0:2Þ; ð0:01; 0:3Þ; ð0:1; 0:4Þ; ð0:2; 0:5ÞÞ. In Model II, the combinations of

causal probability and phenotype heritability are

ðpcausal; h2
pÞ ¼ ðð0:001; 0:1Þ; ð0:01; 0:1Þ; ð0:1; 0:15Þ; ð0:2; 0:15ÞÞ.

(PDF)

S2 Fig. TWAS power comparison for VC-TWAS and CoMM with phenotypes simulated

from Model I (A) and Model II (B) using individual-level and summary-level data under the

scenarios with pcausal = 0.2.

(PDF)

S3 Fig. Box plot of the number of test SNPs considered by VC-TWAS of all genome-wide

genes in the application studies of AD, with complete DPR weights and filtered DPR

weights derived from the ROS/MAP training data.

(PDF)
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S4 Fig. Q-Q plots for VC-TWAS and Burden-TWAS with DPR weights, filtered DPR

weights, and PrediXcan weights under null hypothesis, where quantitative gene expression

traits were generated with pcausal = 0.2 and h2
e = 0.1.

(PDF)

S5 Fig. Manhattan plots of VC-TWAS results with filtered DPR weights for studying quantita-

tive AD pathology of β-Amyloid (A) and tangles (B). Genes with FDA < 0.05 by meta

VC-TWAS for studying AD clinical diagnosis are colored in red in (A) and top significant

gene for studying tangles phenotype with FDR = 0.058 is colored in red in (B).

(PDF)

S6 Fig. Q-Q plots of VC-TWAS results with filtered DPR weights for studying β-amyloid,

tangles, and global AD pathology with ROS/MAP cohort, as well as meta VC-TWAS

results with filtered DPR weights for studying AD clinical diagnosis with ROS/MAP and

Mayo Clinic cohorts.

(PDF)

S7 Fig. Locus zoom plots of GWAS results and the magnitude (i.e., absolute value) of cis-

eQTL effect size estimates by DPR method for SNPs that were considered by VC-TWAS of

genes TOMM40 (A, B) and ZNF2334 (C, D). Filtered test SNPs with the cis-eQTL effect size

magnitude > 10−4 were plotted here. SNPs with GWAS p-value <5×10−8 were colored in red

in (B,D), top significant SNPs by GWAS in (A,C) were shown as the blue triangle in (B,D).

(PDF)

S8 Fig. Manhattan plots of VC-TWAS results with PrediXcan weights for studying AD clinical

diagnosis (A) and global AD pathology (B).

(PDF)

S9 Fig. Manhattan plots of VC-TWAS results with PrediXcan weights for studying quantita-

tive AD pathology of β-Amyloid (A) and tangles (B).

(PDF)

S10 Fig. Q-Q plots of VC-TWAS results with PrediXcan weights for studying β-amyloid,

tangles, and global AD pathology with ROS/MAO cohort, as well as meta VC-TWAS

results with PrediXcan weights for studying AD clinical diagnosis with ROS/MAP and

Mayo Clinic cohorts.

(PDF)

S11 Fig. Q-Q plots of VC-TWAS results with cis-eQTL DPR filtered weights and BGW

weights on IGAP GWAS summary statistics.

(PDF)

S1 Table. Average computation time per gene (in the unit of second) by all methods with

individual and summary-level GWAS data by a single thread with 4 cores (32GB memory)

from a 2.10GHZ CPU 16-core Intel Xeon computation node, for example genes that have

test SNP numbers in respective range.

(DOCX)

S2 Table. Genes with VC-TWAS p-value <0.0013 with respect to at least one AD pathology

phenotype and FDR <0.05 by meta VC-TWAS of AD clinical diagnosis. AD risk genes

identified by previous GWAS are shaded in grey.

(DOCX)
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S3 Table. Significant genes identified by VC-TWAS using IGAP summary statistics with

filtered cis-eQTL DPR weights. Significant genes were identified with FDR < 0.05. AD risk

genes identified by previous GWAS are shaded in grey.

(DOCX)

S4 Table. Novel significant genes identified by VC-TWAS using summary statistics with

BGW weights on IGAP summary statistics.

(DOCX)

S5 Table. Pros and cons of existing popular TWAS methods.

(DOCX)

Acknowledgments

ROS/MAP study data were provided by the Rush Alzheimer’s Disease Center, Rush University

Medical Center, Chicago, IL. The MCADGC led by Dr. Nilüfer Ertekin-Taner and Dr. Steven
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