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Abstract 

Background:  microRNAs (miRNAs) have been shown to play essential roles in a wide 
range of biological processes. Many computational methods have been developed to 
identify targets of miRNAs. However, the majority of these methods depend on pre-
defined features that require considerable efforts and resources to compute and often 
prove suboptimal at predicting miRNA targets.

Results:  We developed a novel hybrid deep learning-based (DL-based) approach that 
is capable of predicting miRNA targets at a higher accuracy. This approach integrates 
convolutional neural networks (CNNs) that excel in learning spatial features and recur‑
rent neural networks (RNNs) that discern sequential features. Therefore, our approach 
has the advantages of learning both the intrinsic spatial and sequential features of 
miRNA:target. The inputs for our approach are raw sequences of miRNAs and genes 
that can be obtained effortlessly. We applied our approach on two human datasets 
from recently miRNA target prediction studies and trained two models. We demon‑
strated that the two models consistently outperform the previous methods accord‑
ing to evaluation metrics on test datasets. Comparing our approach with currently 
available alternatives on independent datasets shows that our approach delivers 
substantial improvements in performance. We also show with multiple evidences that 
our approach is more robust than other methods on small datasets. Our study is the 
first study to perform comparisons across multiple existing DL-based approaches on 
miRNA target prediction. Furthermore, we examined the contribution of a Max pooling 
layer in between the CNN and RNN and demonstrated that it improves the perfor‑
mance of all our models. Finally, a unified model was developed that is robust on fitting 
different input datasets.

Conclusions:  We present a new DL-based approach for predicting miRNA targets and 
demonstrate that our approach outperforms the current alternatives. We supplied an 
easy-to-use tool, miTAR, at https​://githu​b.com/tjgu/miTAR​. Furthermore, our analysis 
results support that Max Pooling generally benefits the hybrid models and potentially 
prevents overfitting for hybrid models.
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Background
microRNAs (miRNAs) are small regulatory RNAs that are ~ 22 nucleotides (nts) in 
length [1]. They typically form complementary hybrid sequences with their targets and 
act to repress gene expression or cleave mRNAs at the post-transcriptional level [1, 2]. 
It has been reported that miRNAs play key roles in a variety of biological processes and 
human diseases [3], including cell differentiation and development, metabolism, prolif-
eration and apoptosis, viral infection, tumorigenesis, diabetes, macro- or micro-vascu-
lar complications, and neurological diseases. Thus, it is important to find the targets of 
miRNAs to better understand the function and regulation of miRNAs.

Advances in understanding of the interactions between miRNAs and their targets have 
led to the development of many computational methods/tools to predict miRNA targets. 
The majority of these tools are based on common features of the miRNA:target interac-
tion. Four features are widely used: sequence complement (especially in the seed region 
that is generally defined as a 6 or 7 nts sequence starting at the second or third nucleo-
tide (nt) of the miRNA sequence), thermodynamic stability, target site accessibility, and 
sequence conservation among species [4]. Several widely used tools have been devel-
oped based on these features. For example, miRanda [5] relies on sequence complemen-
tarity and binding energy; TargetScanS [6] relies on sequence complementarity in seed 
region; while PITA [7] relies on target site accessibility. However, miRNA targets pre-
dicted by different methods and tools are inconsistent with one another. Furthermore, 
using known features limits the ability to predict novel or non-canonical miRNA targets, 
which have been determined to be prevalent [8].

Recently, several deep learning (DL) methods were developed to handle unknown 
features and to improve the accuracy of prediction. MiRTDL [9] uses a convolutional 
neural network (CNN) to capture training sets features. Although CNNs can automati-
cally assess feature importance, miRTDL is still based on known features. MiRTDL used 
20 features from three categories: three conservative features, nine complementary 
features, and eight accessibility features. Consequently, information outside these sev-
eral features cannot be captured. DeepTarget [10] uses deep recurrent neural network 
(RNN) based autoencoders to learn sequence features for miRNAs and genes separately, 
and then uses a stacked RNN to learn the sequence-to-sequence interactions between 
miRNA and their targets. It supplies a way to predict the target of miRNAs without 
using any pre-defined features. However, RNN may not be efficient in learning spatial 
features that exist in miRNA:target interactions. In 2018, two new DL methods were 
developed: DeepMirTar [11] and miRAW [12]. DeepMirTar collects a set of 750 features 
and uses stacked denoising auto-encoders for miRNA target prediction. Although Deep-
MirTar significantly increases the number of features, it still depends on features derived 
from the four major feature types mentioned previously. MiRAW includes three major 
steps: two filter steps were used before and after a deep feed forward neural network 
step. The input for miRAW are the sequences of the concatenated miRNA and its target, 
which avoids pre-definition of the features. However, a feed forward neural network may 
not be efficient to capture the spatial and sequential features of the hybrid sequences of 
miRNA:target [13].

Encouraged by the better accuracy and large training datasets collected from recent 
DL studies, we developed a novel DL-based approach that integrates two major types 
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of neural networks, CNNs and RNNs, to predict miRNA targets. CNNs are designed 
to learn spatial features and RNN are designed to learn sequential features [13, 14]. By 
combining CNNs and RNNs, our approach has the advantages of learning both the 
intrinsic spatial and sequential features of miRNA:target. Recent studies in functional 
DNA sequence discovery have demonstrated that hybrid architectures outperform mod-
els utilizing solely CNNs or RNNs [15–17]. The inputs for our models are the primary 
sequences of miRNAs and genes. We trained two models on two datasets obtained from 
the studies of DeepMirTar and miRAW. We demonstrated that our models achieved 
higher accuracies relative to those reported in the DeepMirTar and miRAW stud-
ies. In addition, we obtained substantially better performance than the two studies on 
independent datasets. Thirty six of the 48 independent positive miRNA:target pairs 
were identified by our model, while DeepMirTar detected only 24 of the 48. Our model 
achieved an accuracy at 0.966 and specificity at 0.976, while miRAW achieved an accu-
racy at 0.913 and specificity at 0.363. We further compared our models with two earlier 
studies on smaller datasets, resulting in an overall better performance. In the end, a uni-
fied model was developed that can fit both DeepMirTar and miRAW datasets.

Besides model development, we examined the function of a Max pooling layer in 
hybrid models. Our results demonstrated that a Max pooling layer can improve the per-
formance for all our models.

Methods
Datasets

We obtained two datasets that contain sequences of human miRNAs and genes from 
the studies of DeepMirTar and miRAW [11, 12]. The first dataset was downloaded from 
the Additional file tables of the DeepMirTar study, which contains 3915 positive pairs 
of miRNA:target and 3905 negative pairs of miRNA:target. The positive pairs in the 
DeepMirTar dataset were obtained from two resources: mirMark data [18] and CLASH 
data [19]. And only the target sites located in 3′UTRs, and the target sites with canoni-
cal seeds (exact W–C pairing of 2–7 or 3–8 nts of the miRNA) and non-canonical seeds 
(pairing at positions 2–7 or 3–8, allowing G–U pairs and up to one bulged or mis-
matched nucleotide) were included. The negative pairs were generated by shuffling the 
real mature miRNAs. Details on generating the datasets are in the DeepMirTar study 
[11]. We first evaluated the dataset by examing whether the miRNA sequences are con-
sistent with the latest miRBase (release 22) (http://mirba​se.org/ftp.shtml​). We removed 
the miRNAs that cannot be found from the current version of miRBase. Finally, a total 
of 3908 positive pairs and 3898 negative pairs were kept. The data were termed Deep-
MirTar (Table 1). In the DeepMirTar study, an independent dataset was collected from 
PAR-CLIP experiment (48 positive miRNA:target pairs), which was also used as an inde-
pendent dataset in our study [20]. This set was termed DeepMirTarIn (Table 1).

In the miRAW study, Albert Pla et  al. [12] collected a large amount of verified data 
that included both canonical and non-canonical miRNA:target pairs. The experimentally 
validated positive and negative miRNA:target pairs were collected from two resources: 
Diana TarBase [21] and MirTarBase [22], and the target site sequences were obtained 
by cross-referencing with PAR-CLIP [23], CLASH [19], and TargetScanHuman 7.1 [8]. 
In total, 32,726 positive and 31,992 negative pairs were collected. We also removed the 

http://mirbase.org/ftp.shtml
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miRNAs that are not consistent with the current version of miRBase. Finally, a total of 
32,660 positive and 31,993 negative pairs were retained. In the miRAW study, a subset of 
the data was kept as an independent dataset that have no intersections with the training, 
test and validation datasets. Similarly, we randomly selected 2000 pairs and removed 
any data that were overlapped with the training, test and validation datasets, resulting 
929 positive and 890 negative pairs as an independent test dataset. This set was labelled 
miRAWIn. The remaining pairs were labeled miRAW (Table 1).

In addition, we combined ~ 33% of miRAW data (20,790 pairs) and ~ 90% of DeepMir-
Tar data (6930 pairs) into one dataset (termed MirTarRAW) for training a unified model. 
Because miRAW contains eight folds more data than the DeepMirTar, we included the 
majority of DeepMirTar (90%) in MirTarRAW while kept 10% for examining the per-
formance of the unified model. To prevent the miRAW data dominating the combined 
dataset, we limited the number of miRAW to be not more than three folds of Deep-
MirTar, which resulted in ~ 33% of the miRAW to be included. The remaining data from 
DeepMirTar were taken as a test dataset and labelled DeepMirTarLeft; the remaining 
data from miRAW were also taken as a test dataset and labelled miRAWLeft (Table1).

For each dataset, we concatenated the sequences of miRNAs from 3′ to > 5′ with their 
target sequences from 5′ to > 3′. To keep all the miRNA sequences the same length, those 
miRNA sequences with length less than the longest miRNA (26 nts across both datasets) 
were padded with ‘N’s. The same padding was done for the target sequences, which had 
targets sites of up to 53 nts. All the target sites in the miRAW dataset were trimmed 
to the same length by Albert Pla et al. [12], which is 40 nts. After padding, the miRNA 
sequence and the target sequence were concatenated directly. Thus, the length of the 
sequences after concatenation for the DeepMirTar dataset is 79, and 66 for the miRAW 
dataset.

Overview of the hybrid DL‑based approach for predicting miRNA targets

Six layers were used for miRNA target prediction (Fig.  1). Although our model is a 
hybrid model, it contains less layers than the models used in DeepMirTar (seven lay-
ers) and miRAW (eight layers). The first layer is an embedding layer. The embedding 
layer converts the input data into a five-dimensional dense vector that can be initialized 

Table 1  The number of  miRNA:target pairs  in each dataset used in  training, validating 
and testing the proposed approach

Blank box means not applicable. NA represents the data do not exist
a  Dataset generated by combining the DeepMirTar and the miRAW dataset. Details are in “Methods” section
b  Independent test dataset for evaluating different methods/models
c  The surplus dataset from DeepMirTar and miRAW combining the two datasets. Details are in “Methods” section

Datasets Positive pairs Negative pairs Training set Validation set Test set

DeepMirTar dataset 3908 3850 4964 1241 1552

miRAW dataset 31,660 30,993 40,096 10,025 12,531

MirTarRAW dataseta 13,860 13,860 17,740 4435 5544

DeepMirTarIn datasetb 48 NA

miRAWIn datasetb 929 890

DeepMirTarLeft datasetc 443 385

miRAWLeft datasetc 21,265 20,598
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randomly and trained with the other five layers. The second layer is a 1D-convolutional 
layer, which aims to learn the spatial features between miRNA:target. The third layer is a 
max pooling layer that normally follows the CNN layer to reduce the dimensionality of 
the input data. The fourth layer is a bi-directional RNN (BiRNN). The BiRNN can learn 
the sequential features of miRNA:target from the forward and reverse directions. The 
fifth and sixth layer are dense layers that were used to calculate the final classification. To 
reduce the probability of overfitting and to make the approach more generalized for pre-
dicting future cases, a dropout was added following the second layer (Fig. 1). The major 
elements of the approach are described below.

The embedding layer

The one-hot encoding technique is widely used to transform the input sequences into 
numeric vectors. However, one-hot encoding normally generates sparse high-dimen-
sional vectors that may affect the performance of the model [24]. The embedding layer 
can not only transform the sequences into dense vectors, but also can be updated along 
with all the other layers throughout the training process. It is reported that the embed-
ding layer performs better than one-hot encoding [25]. Normally the size of the vector 
equals the vocabulary size. Since five different letters, {A, U, G, C, N}, were in our data-
sets, we transformed our input sequences into five-dimensional vectors with one vector 
for one letter in one input sequence. An example was shown in Fig. 1, for instance, for a 
sequence with length of ten, ten dense vectors are generated and the length for each vec-
tor is five.

The CNN layer

CNN is a neural network that uses filters/kernels to scan the input data in order to capture 
the embedding spatial information [13, 14]. It has been widely used in image processing and 
recently also been applied in many biological and clinical data analyses. The parameters in 
a filter/kernel can be shared while scanning different regions of input data. Thus, the model 
parameters can be greatly reduced, which is one of the advantages to use CNN. In our 
model, a CNN layer was added following the first embedding layer. The number of kernels 
was set at 320 with the kernel size of 12. The nonlinear activation function, rectified linear 

Fig. 1  Overview of the proposed DL-based approach for predicting miRNA targets. As inputs of the 
approach, miRNA sequences and gene sequences are padded separately and then concatenated directly. The 
approach contains one embedding, CNN, Max pooling, and BiRNN layer, and two dense layers. To prevent 
overfitting, a dropout is added following CNN, Max pooling, BiRNN and between the two Dense layers
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unit (ReLU), was chosen in the CNN layer, which is more robust to gradient vanishing or 
gradient explosion. Specifically, the formula for calculating the output of the CNN layer is:

where w is the kernel, x is the encoded input sequence, m is the index of the output 
position, n is the index of the kernel, i = 0,…,I − 1, is the index of the kernel  position, 
j = 0,…,J − 1, is the index of the input channel, I and J are the size of the kernel (12 in our 
study) and the number of the channel (five in our study) respectively. The · operator rep-
resents the element-wise product.

The RNN layer

RNN is a type of neural networks used widely in natural language processing, speech 
and image recognition [13, 14]. In recent years, RNN has been applied in various biologi-
cal fields. The design of RNN naturally fits sequential or time-series data and can model 
sequences of various length. The hidden layers of an RNN accept not only the input data 
from previous layers but also the output from the latest time point. A simple RNN can be 
expanded along the time series into a complicated network. Consequently, a simple RNN 
is prone to problems like gradient vanishing in the training process and it can be difficult 
to learn long term dependencies. A few advanced RNNs including long short-term mem-
ory (LSTM) and gated recurrent unit have been developed to solve these problems. Both 
approaches use memory based hidden units rather than simple perceptron hidden units, 
which greatly improve the performance. In our approach, we used the LSTM layer to learn 
the dependencies between miRNA:target. Since it is possible that the dependencies may 
exist in the order of target:miRNA, we used bidirectional LSTM (BiLSTM) to learn the 
sequential information from both directions. The size for the hidden units was set at 32. We 
also used the ReLU as the activation function for the BiLSTM. For each LSTM unit at time 
step t, the following operations were performed:

where it , ft , ot represent the three gates used in LSTM respectively: input gate, forget 
gate and output gate. W and V represent the weights for the input and the previous 
cell output. b is the bias term. σ represents the sigmoid function. c∼t  represents the new 

Convolution(X)nm = wn
· x = ReLU





I−1
�

i=0

J−1
�

j=0

wn
i,j ∗ xm+i,j



,

it = σ(Wixt + Viht−1 + bi),

c∼t = tanh (Wcxt + Vcht−1 + bc),

ft = σ
(

Wf xt + Vf ht−1 + bf
)

,

ct = ft · ct−1 + it · c
∼

t ,

ot = σ(Woxt + Voht−1 + bo),

ht = ot · tanh(ct),
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values that can be added to the memory cell. ht represents the output. The · operator 
represents the element-wise product.

Dropout

Overfitting is a major problem that DL methods face. Dropout is one method to prevent 
overfitting [14] and was used in our model. It discards some neuron units from the net-
work according to a certain probability. A variety of probabilities were tested in model 
selection process. We applied a dropout following every layer, except the first embed-
ding and the last layer.

Evaluation metrics

We used the following metrics to evaluate the performance of our models: accuracy, sen-
sitivity, specificity, F-measure (or F-score), positive predictive value (PPV), negative pre-
dictive value (NPV), and Brier Score. Accuracy examines how close the measured values 
to the true value. It is calculated as: accuracy = (TP + TN)/(TP + TN + FP + FN), where 
TP, TN, FP and FN represent the number of true positives, true negatives, false posi-
tives and false negatives, respectively. Sensitivity and specificity measure the power of 
the model for detecting true positives and true negatives, respectively. They were calcu-
lated as: sensitivity = TP/(TP + FN), specificity = TN/(TN + FP). PPV and NPV measure 
the precision of the model on correctly predicting the true positives and true negatives, 
respectively. They were calculated as: PPV = TP/(TP + FP), NPV = TN/(TN + FN). 
F-score is the harmonic mean of PPV (precision) and sensitivity (recall), which can be 
used as a parameter that integrates precision and recall and is more informative for 
measuring the performance of models. Brier Score measures the accuracy of probabilis-
tic predictions. Rather than using the discrete prediction outcomes, Brier Score uses the 
prediction probability that is assigned to each outcome. It calculates the mean squared 
difference between the prediction probabilities and the true values. The 95% confidence 
intervals (CIs) for the metrics were calculated based on the 2.5% and 97.5% percentiles 
of the respective parameter.

Code implementation and availability

Implementation of the approach was done in Python v3.6.5 using Keras with Tensor-
Flow as the backend. Source codes are available at https​://githu​b.com/tjgu/miTAR​. It 
takes about six hours to perform one-time training on the miRAW dataset on a desk-
top with four cores and 16 GB memory (Intel(R) Core(TM) i5-9500 CPU @3.00 GHz) 
and one and half hour on the DeepMirTar dataset. Thus, depending on the size of 
the dataset and the times of training, computational time varies significantly. We 
also supplied tools for predicting the targets of one or multiple miRNAs using our 
trained models, which only takes a few minutes to compute. The inputs for our tools 
are sequences of miRNAs and genes that are ordered from 5′ to > 3′. Our tool re-
orders the miRNA sequence automatically from 5′ to > 3′ to 3′ to > 5′ to fit the model 
requirement. To assist the usage, we integrated codes to automatically split long gene 
sequences into overlapped short sequences that can fit the input of our different mod-
els. Furthermore, a few parameters can be adjusted based on the goal of the users’ 
work. For example, the probability for determining whether a short sequence is the 

https://github.com/tjgu/miTAR
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binding site of a miRNA, and the number of target sites in a gene for determining 
whether the gene is a target gene. The outputs are saved as a fasta file containing the 
sequences of the targeted sites.

Results
Two models were trained on the DeepMirTar and miRAW datasets separately

We first trained our model on the two datasets separately, DeepMirTar and miRAW. 
To obtain the optimal model parameters, a wide range for each parameter was tested: 
the learning rates at 0.2, 0.1, 0.05, 0.01, 0.005, and 0.001; the dropout rates at 0.1, 0.2, 
0.3, 0.4, and 0.5; and the batch sizes at 10, 30, 50, 100, and 200. The size of epoch was 
set at 1000. To prevent overfitting, we employed early stopping in addition to drop-
out. The program stops training when the accuracy of the model does not improve by 
0.1% in 100 epochs.

We split DeepMirTar and miRAW datasets into three sets separately: 20% were 
used as a test dataset, 64% were used as a training dataset and 16% were used for a 
validation dataset (Table  1). For the DeepMirTar dataset, the parameters generated 
the highest accuracy are learning rate at 0.005, dropout at 0.2 and batch size at 30, 
which were chosen in the downstream analysis. The model trained with this set of 
parameters was labelled as miTAR1. Then we randomly split the DeepMirTar data-
set 30 times into training, validation and test sets and ran the same model structure 
30 times. We obtained an average accuracy of 97.9% (Table 2). The set of parameters 
that produced the highest accuracy for the miRAW dataset is learning rate at 0.1, 
dropout rate at 0.4 and batch size at 200. We randomly split the miRAW datasets 30 
times similarly as the DeepMirTar dataset and obtained an average accuracy of 96.5% 
(Table 2). We labelled this model as miTAR2.

Table 2  Performance evaluation metrics for miTAR1 and miTAR2

NA represents the value is not reported in the corresponding study
a  DeepMirTarRaw and miRAWRaw present the dataset used in the DeepMirTar and the miRAW study. The best performance 
values are selected for the performance metrics if multiple values are reported in the respective study for different 
conditions
b  Evaluation was done by randomly running on the DeepMirTar and the miRAW datasets 30 times. The average value and 
the 95% confidence interval (given in []) were reported here. Details are in “Results” section
c  PPV represents positive predictive value; NPV presents negative predictive value

Model: dataset Accuracy Sensitivity Specificity F-score PPVc NPVc Brier score

DeepMirTar: 
DeepMirTarRawa

0.9348 NA NA 0.9348 NA NA NA

miTAR1: DeepMir‑
Tar Test set

0.9781 0.9648 0.9921 0.9783 0.9922 0.9641 0.0214

miTAR1: DeepMir‑
Tar (30 times)b 
[95% CI]

0.9787 
[0.9714–
0.9836]

0.9717 
[0.9615–
0.9801]

0.9857 
[0.9759–
0.9921]

0.9786 
[0.9717–
0.9837]

0.9858 
[0.9756–
0.9922]

0.9719 
[0.9610–
0.9807]

0.0193 
[0.0144–
0.0265]

miRAW: 
miRAWRawa

0.935 0.935 0.938 0.935 NA NA NA

miTAR2: miRAW 
Test set

0.9654 0.9609 0.9697 0.9652 0.9695 0.9613 0.0283

miTAR2: miRAW (30 
times)b [95% CI]

0.9649 
[0.9601–
0.9686]

0.9616 
[0.9562–
0.9678]

0.9683 
[0.9618–
0.9740]

0.9651 
[0.9604–
0.9693]

0.9687 
[0.9623–
0.9742]

0.9610 
[0.9558–
0.9676]

0.0271 
[0.0246–
0.0296]
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Performance comparison with the two studies of DeepMirTar and miRAW using test 

datasets

We compared the performance of miTAR1 and miTAR2 with the two studies, DeepMir-
Tar [11] and miRAW [12]. Our datasets, DeepMirTar and miRAW, were obtained from 
the same studies and they were split at a similar proportion: 60% and 66.7% of the data 
were used as the training datasets in the DeepMirTar and miRAW studies respectively, 
while 64% were used in our study. Therefore, it is worthy to note that we did not re-run 
DeepMirTar and miRAW for the comparison. We selected the best overall performance 
(also the best accuracy) reported in the two studies for comparison with miTAR1 and 
miTAR2. Our models achieved higher accuracies than the DeepMirTar (97.9% vs 93.5%) 
and miRAW (96.5% vs 93.5%) studies. The results were shown in Table 2.

In addition to the accuracy, additional metrics also showed better performance of our 
models than the models reported in the DeepMirTar and miRAW studies, and detailed 
results of sensitivity, specificity, F-measure (or F-score), PPV, NPV, and Brier Score are 
present in Table 2.

Performance comparison with the two studies of DeepMirTar and miRAW using 

independent datasets

Furthermore, we compared our results using the independent test datasets with the 
studies of DeepMirTar and miRAW. The positive pairs (48 pairs) in the independent 
dataset (DeepMirTarIn) are the same as the dataset used in the DeepMirTar study, which 
was obtained from an independent source. We identified 36 of 48 positive miRNA:target 
pairs, which is 50% more than the 24 reported in the DeepMirTar study (Table 3). To 
compare with the miRAW study, 929 positive and 890 negative pairs from the miRAW 
dataset were excluded from the training dataset and taken as an independent dataset 
(miRAWIn). They were obtained in the same way as the miRAW study but balanced 
between the positive pairs and negative pairs. We obtained an accuracy of 96.9 on the 
dataset of miRAWIn, which is higher than the accuracy of 91.3 reported in miRAW 
(Table 4). The miRAW study also reported the sensitivity (93.1%), specificity (36.3%) and 
F-score (95.4%) for the test on the independent dataset, which are all lower than our 
model (sensitivity: 96.0%; specificity: 97.9%; and F-score: 96.9%), especially for the speci-
ficity (Table 4).

Performance comparison with earlier studies using small datasets

Beside DeepMirTar and miRAW, we compared our approach to two other published 
DL methods: deepTarget and miRTDL [9, 10]. They were developed earlier, hence, 
the training datasets they used were smaller. 507 target site-level and 2891 gene-level 

Table 3  Performance comparison between  miTAR1 and  DeepMirTar on  an  independent 
dataset

The positive pairs for both models are the same set of pairs

Model: dataset Identified positive miRNA:targets/
Total number of positive pairs (%)

DeepMirTar: DeepMirTar Independent test set 24/48 (50%)

miTAR1: DeepMirTarIn 36/48 (75%)
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miRNA:target pairs from mirMark repository [18] were taken as the positive training 
dataset in the deepTarget study. The negative pairs (507 site-level and 3133 gene-level) 
were generated by shuffling the real miRNA seed sequences [9]. mirMark repository was 
part of the DeepMirTar dataset, subsequently, we randomly extracted the same account 
of data from DeepMirTar dataset to train a model for comparing with deepTarget. 2891 
positive and 3133 negative pairs from DeepMirTar dataset were used. The process for 
training the model is the same as miTAR1 and miTAR2. The trained model is labelled 
miTAR3. Although deepTarget performs better on NPV (97.6% vs 98.5%), our model 
outperforms the deepTarget model on accuracy, sensitivity, specificity, F-score, and 
PPV, especially the PPV (98.4% vs 88.5%) and F-score (97.9% vs 91.1%) (Additional file 1: 
Table S1), indicating miTAR1 is much more effective on miRNA target prediction than 
deepTarget.

miRTDL extracted 1297 positive and 309 negative miRNA and gene pairs from Tar-
Base [21] database as the starting point to obtain 19,000 positive and negative site-level 
miRNA:target pairs for training their model [10]. The TarBase is one of the sources for 
generating the miRAW dataset. Accordingly, we trained a model using the same amount 
of data from miRAW dataset to compare with miRTDL. The process is the same as train-
ing miTAR1, miTAR2 and miTAR3, and the new model is labelled miTAR4. miRTDL 
only reported their results for accuracy, sensitivity and specificity. Although miRTDL 
outperforms on sensitivity (95.5% vs 96.4%) slightly, our model performs better on accu-
racy (96.0% vs 90.0%) and specificity (96.5% vs 88.4%) (Additional file  1: Table  S2). In 
summary, the results support that our approach is more robust on small dataset than 
deepTarget and miRTDL.

Performance evaluation of the unified model, miTAR​

Since the length of the input sequences from DeepMirTar (79 nts) and miRAW (66 nts) 
datasets is different, miTAR1 cannot be fit by miRAW dataset, and miTAR2 cannot be fit 
by DeepMirTar dataset. To build a unified model that is more robust to handle different 
length of the input sequences and to save the users’ effort on choosing a model, we com-
bined the two datasets and trained a new model that can fit both datasets. Due to much 
more pairs of miRNA:target in the miRAW dataset, we only randomly extracted ~ 33% 
of miRAW data, which contains 10,395 positive and negative data respectively. The 
majority of the DeepMirTar data were extracted (90%), which contained 3,465 positive 
and negative data separately (Details are in “Methods” section). We labelled the com-
bined dataset as MirTarRAW (Table  1). The MirTarRAW dataset were then split into 

Table 4  Performance comparison between  miTAR2 and  miRAW on  an  independent test 
dataset

NA represents the value is not reported in the corresponding study
a  miRAWRaw presents the dataset used in the miRAW study. The best performance values were selected from the reports of 
the miRAW study under different conditions
b  PPV represents positive predictive value; NPV represents negative predictive value

Model:dataset Accuracy Sensitivity Specificity F-score PPVb NPVb Brier score

miRAW: miRAWRawa 0.913 0.931 0.363 0.954 NA NA NA

miTAR2: miRAWIn 0.966 0.957 0.976 0.967 0.977 0.956 0.028
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three sets: 20% for testing, 64% for training, and 16% for validation. The remaining data 
from the DeepMirTar were labelled as DeepMirTarLeft; and the remaining data from 
the miRAW were labelled as miRAWLeft, which were used as additional test datasets. 
The best model parameters for the combined dataset, MirTarRAW, are learning rate at 
0.005, dropout rate at 0.2, and batch size at 100. We randomly split the dataset 30 times 
and obtained an average accuracy of 95.5%, which is higher than the accuracies reported 
in the DeepMirTar (93.5%) study and the miRAW (93.5%) study. We further tested the 
model using the two additional datasets: DeepMirTarLeft and miRAWLeft. The accura-
cies obtained from both datasets are higher than the reports from either DeepMirTar or 
miRAW (Table 5). Lastly, we examined the performance of miTAR using the two inde-
pendent datasets, DeepMirTarIn and miRAWIn. Substantial better performances were 
obtained: 93.8% (miTAR) vs 50.0% (DeepMirTar); 95.1% (miTAR) vs 91.3% (miRAW) 
(Table 5). We also observed consistent better results for all the other metrics, including 
sensitivity, specificity, and F-Score (Table 5). We labelled this model as miTAR.

Max pooling layer improves the performances of all our trained models

It is still not clear whether a pooling layer is beneficial in hybrid models in biological 
studies. Some of the previous hybrid models connected CNNs directly with RNNs [15, 
17]. In our model, we included a Max pooling layer in between a CNN and an RNN 
with the reasoning to potentially reduce overfitting. To test whether the Max pooling 
layer benefits our models, we removed the Max pooling layer from the three models 
and tested 30 times to obtain a confident performance evaluation (miTAR1, miTAR2 
and miTAR). We found that the average accuracy for all the models were reduced and 
the reduction was larger for a smaller dataset (Additional file 1: Table S3). DeepMirTar 
dataset was used to train miTAR1 model, which was the dataset with the least number 

Table 5  Performance evaluation metrics for  the  unified model, miTAR, using MirTarRAW 
test datasets and two independent test datasets

a  Evaluation was done by randomly running on the MirTarRAW datasets 30 times. The average value and the 95% 
confidence interval (given in []) are reported here. Details are in “Results” section
b  Because DeepMirTarIn only contains positive miRNA:target pairs, the specificity, F-Score, PPV and NPV cannot be 
calculated. NA represents the value is not available

Model: 
dataset

Accuracy Sensitivity Specificity F-score PPV NPV Brier score

miTAR: 
MirTarRAW 
Test set

0.9627 0.9591 0.9663 0.9627 0.9664 0.9589 0.0321

miTAR: 
MirTarRAW 
(30 times)a 
[95% CI]

0.9549 
[0.9496–
0.9610]

0.9538 
[0.9418–
0.9629]

0.9560 
[0.9428–
0.9657]

0.9548 
[0.9489–
0.9610]

0.9559 
[0.9443–
0.9662]

0.9540 
[0.9424–
0.9623]

0.0393 
[0.0340–
0.0438]

miTAR: 
DeepMir‑
TarLeft

0.9770 0.9706 0.9844 0.9783 0.9862 0.9668 0.0200

miTAR: 
miRAWLeft

0.9476 0.9500 0.9452 0.9485 0.9471 0.9482 0.0440

miTAR: 
DeepMir‑
TarIn

0.9375 0.9375 NAb NAb NAb NAb 0.9254

miTAR: 
miRAWIn

0.9505 0.9494 0.9517 0.9514 0.9535 0.9474 0.0416
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of miRNA:target pairs (7758). After removing the Max pooling layer, the accuracy for 
miTAR1 reduced from 97.9 to 88.8% (~ 9.1% reduction). miTAR was trained using Mir-
TarRAW dataset, which contained 27,720 miRNA:target pairs. The accuracy for miTAR 
was reduced from 95.5 to 91.4% (~ 4.1% reduction) after excluding the Max pooling 
layer. miTAR2 was trained by the largest dataset, miRAW (62,653), and received the 
least reduction in accuracy (~ 1.2%) from 96.5 to 95.3%. Our results indicate that a Max 
pooling layer can generally increase the accuracy of DL models, especially for models 
trained on smaller datasets.

In addition, we performed the same set of parameter selection for the models without 
a max pooling layer: the learning rates at 0.2, 0.1, 0.05, 0.01, 0.005, and 0.001; the drop-
out rates at 0.1, 0.2, 0.3, 0.4, and 0.5; and the batch sizes at 10, 30, 50, 100, and 200. The 
parameter selection process is the same as we did for training the models of miTAR1, 
miTAR2 and miTAR. The model trained on the DeepMirTar was labelled miTAR1_
noMP, the model trained on the miRAW dataset was labelled miTAR2_noMP and the 
model trained on MirTarRAW was labelled miTAR_noMP. The parameters generated 
the highest accuracy for the miTAR1_noMP model are learning rate at 0.1, dropout rate 
at 0.3 and batch size at 100; for the miTAR2_noMP model are learning rate at 0.01, drop-
out rate 0.3 and batch size at 200; and for the miTAR_noMP are learning rate at 0.005, 
dropout rate at 0.2 and batch size at 30. We also performed 30 times’ training as we did 
for miTAR, miTAR1 and miTAR2. The average accuracies for miTAR_noMP (91.2%), 
miTAR1_noMP (97.5%), and miTAR2_noMP (94.3%) are all lower than the accuracies 
for miTAR, miTAR1, and miTAR2 (Additional file 1: Table S4). Furthermore, we added 
the max pooling layer back to the miTAR_noMP, miTAR1_noMP, and miTAR2_noMP 
at the same parameter setting and evaluated the performance by running 30 times’ train-
ing. We obtained higher accuracies for all the three models with a max pooling layer 
than without the max pooling layer (miTAR1_noMP: 97.9% vs 97.5%; miTAR2_noMP: 
96.5% vs 94.3%; miTAR_noMP: 96.5% vs 91.2%) (Additional file 1: Table S4). The higher 
accuracies for all the models indicate that the max pooling in hybrid models generally 
benefits the performance.

Discussion
We developed a hybrid DL-based approach that integrated two major types of neural 
networks, CNN and RNN, to predict the targets of miRNAs at a substantially higher 
accuracy than previous methods/tools on independent datasets. Using multiple model 
evaluation metrics, we demonstrated that our hybrid method significantly outperforms 
the latest DL methods, DeepMirTar and miRAW. Another advantage of our method is 
that the models do not require pre-defined features, which can save users’ efforts from 
calculating a large number of features. We also supplied a unified model that is more 
flexible on input datasets. Furthermore, we examined the contribution of a Max pooling 
layer in hybrid models and demonstrated that a Max pooling can significantly improve 
the performance for all of our models.

Our study is also the first study to perform comparisons across multiple DL-based 
approaches. We used the highest accuracy or the best overall performance reported from 
the respective DL studies to compare with the average performance of our models. We 
attempted to run the software from respective studies using the datasets we obtained, 
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however, neither the software is available, nor the methods fit our datasets. We cannot 
obtain the miRTDL software from the website listed in the miRTDL study (http://nclab​
.hit.edu.cn/ccrm) [9]. deepTarget did not supply the source code for training the model 
(http://data.snu.ac.kr/pub/deepT​arget​) [10]. Nevertheless, the datasets used for miRTDL 
and deepTarget are theoretically subsets of miRAW and DeepMirTar. Thus, we trained 
two models with the same amount of data from miRAW and DeepMirTar. We demon-
strate that our approach supplies an overall better performance than miRTDL and deep-
Target, indicating our approach is more robust on small datasets. DeepMirTar used 750 
features to train their model, but the 750 features were not supplied (https​://githu​b.com/
Bjoux​2/DeepM​irTar​_SdA) [11]. Regardless, we used a similar amount of data as the 
DeepMirTar study for training: 64% were used for training our model while 60% were 
used in the DeepMirTar study. In addition, we used the same independent dataset as the 
DeepMirTar study for comparison and we identified 50% more correct pairs (Table 3). 
We used miRAW dataset in a similar way as the original study: 64% were used for train-
ing in our study, while 66.67% were used in the miRAW study; we did 30 times’ training 
as the miRAW study did [12]. We selected the best value of all miRAW’ tests to compare 
with the average value of our model. Therefore, our results are comparable to the results 
reported in studies of DeepMirTar and miRAW. We demonstrate that our approach out-
performs DeepMirTar and miRAW substantially on independent datasets.

The four DL studies (DeepMirTar, miRAW, deepTarget and miRTDL) we illustrated 
earlier did not perform comparisons across the DL studies, but conducted comparisons 
with non-DL methods [9–12]. They demonstrate the DL-based approaches outperform 
the non-DL methods. deepTarget compared with MBSTAR, miRanda, PITA, RNA22, 
TargetScan and TargetSpy, and proves that deepTarget delivers an unprecedented 
increase on accuracy [10]. Similarly, miRTDL shows that the non-DL methods (MiR-
Tif and NBmiRTar) are far less accurate than miRTDL [9]. In addition to test dataset, 
DeepMirTar collected an independent dataset and presents that DeepMirTar is the best 
approach on identifying the correct pairs of miRNA:target than miRanda, RNAhybrid, 
PITA, TargetScan v7.0, and TarPmiR [11]. Similarly, miRAW demonstrates that it gen-
erally significantly outperforms the non-DL methods (TargetScan v7.1, PITA, mirSVR, 
mirDB, microT, Paccmit, and mirza-G) on an independent dataset using multiple evalu-
ation metrics except specificity [12]. In summary, the four studies deliver that the DL-
based approaches supply substantial improvements on performance than the non-DL 
methods. Although we did not compare directly with non-DL methods, our approach 
outperforms the four DL-based approaches, indicating our approach has a high prob-
ability to outperform the non-DL methods.

When miRNAs bind to the genes, they form hybrid secondary structures. Spatial fea-
tures exist in miRNA:target. The CNN is designed to capture the spatial features. There-
fore, theoretically, models with a CNN perform better. We did a simple test to examine 
this. We removed the steps that associated with CNN, for example, the CNN and max 
pooling layers. After removing the two layers and the associated dropouts, we observed 
poorer performance for all our models. For example, the accuracy dropped from 95.5 
to 85.5% for the miTAR model (Additional file 1: Table S3). Although performance may 
increase significantly by changing other parameters, for example, the batch size and the 
number of units in the remaining layers, our results support the importance of spatial 

http://nclab.hit.edu.cn/ccrm
http://nclab.hit.edu.cn/ccrm
http://data.snu.ac.kr/pub/deepTarget
https://github.com/Bjoux2/DeepMirTar_SdA
https://github.com/Bjoux2/DeepMirTar_SdA
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features in miRNA target prediction. One previous study, the miRTDL study, applied 
CNN in miRNA target prediction, however, the authors only used CNN as a classifier 
[9]. The miTAR model is the first to use CNN to capture the potential spatial features 
directly from the sequences of miRNAs and genes.

In addition to CNN, we tested whether other layers contribute positively to the per-
formance of our model, including the fourth layer (RNN), the fifth layer (dense layer), 
and all the dropouts. We removed one type of the layers each time while keep all the 
other parts the same. The results were shown in Additional file 1: Table S5. The accura-
cies for the miTAR, miTAR1 and miTAR2 models from the three tests were reduced: 
the accuracy for the dropouts reduced most; the dense layer reduced least; and the 
RNN layer lies in between. Our results support that all the layers positively contribute 
to the performance of our models. Comparing to the same tests on the CNN layer and 
the max pooling layer (Additional file 1: Table S3), the CNN and the max pooling layer 
affect the accuracy of the models most, indicating spatial features play important roles in 
miRNA:target interactions.

The accuracy for all our models was higher than 95.5%, which indicates that our mod-
els can learn the intrinsic features between miRNA:target. However, understanding the 
features from the millions of parameters of the model is complicated, especially for our 
models with input of sequences. Unlike the models using pre-defined features, we can-
not alter one of the pre-defined features to test the importance of each feature. Even 
so, many known features were reported that are important for a miRNA recognizing its 
target genes. We can correlate the known features with the output of each layer and vali-
date the importance of the known features. In addition, by scrutinizing the sequences 
of miRNAs and genes from the positive and negative datasets, new features may be 
revealed. Attempts to decode the information learned from DL models are emerging and 
will be considered in our future work.

Although the performance of our models is higher than existing DL-based methods, 
one way we can improve is to quantitatively measure the effects of miRNAs on their 
targets. We plan to integrate the features learned from our models and gene expressions 
from a specific tissue/disease to supply quantitative measurements on miRNA’s targets. 
For example, rank the targets of miRNAs from the most function or diseases related to 
the least related. We believe the quantitative measurements can better assist the under-
standing of miRNA’ s function and further benefit the development of treatment on 
diseases.

Conclusions
miRNAs modulate a broad range of essential cellular processes linked to human health 
and diseases, thus, identifying miRNA targets is critical for understanding miRNA’s 
function and treating miRNA associated diseases. Here we developed a new DL-based 
approach for miRNA target prediction. With multiple evidences and evaluation metrics, 
we prove that our approach outperforms other state-of-the-art DL methods. We sup-
plied an easy-to-use tool for predicting miRNA target at https​://githu​b.com/tjgu/miTAR​
, which will benefit the research on studying miRNA function.

https://github.com/tjgu/miTAR
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