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Abstract

Profilin-1 (Pfn-1) is a ubiquitously expressed actin-binding protein that is essential for normal cell proliferation and
migration. In breast cancer and several other adenocarcinomas, Pfn-1 expression is downregulated when compared to
normal tissues. Previous studies from our laboratory have shown that genetically modulating Pfn-1 expression significantly
impacts proliferation, migration, and invasion of breast cancer cells in vitro, and mammary tumor growth, dissemination,
and metastatic colonization in vivo. Therefore, small molecules that can modulate Pfn-1 expression could have therapeutic
potential in the treatment of metastatic breast cancer. The overall goal of this study was to perform a multiplexed
phenotypic screen to identify compounds that inhibit cell motility through upregulation of Pfn-1. Screening of a test
cassette of 1280 compounds with known biological activities on an OrisTM Pro 384 cell migration platform identified several
agents that increased Pfn-1 expression greater than two-fold over vehicle controls and exerted anti-migratory effects in the
absence of overt cytotoxicity in MDA-MB-231 human breast cancer cells. Concentration-response confirmation and
orthogonal follow-up assays identified two bona fide inducers of Pfn-1, purvalanol and tyrphostin A9, that confirmed in
single-cell motility assays and Western blot analyses. SiRNA-mediated knockdown of Pfn-1 abrogated the inhibitory effect of
tyrphostin A9 on cell migration, suggesting Pfn-1 is mechanistically linked to tyrphostin A99s anti-migratory activity. The
data illustrate the utility of the high-content cell motility assay to discover novel targeted anti-migratory agents by
integrating functional phenotypic analyses with target-specific readouts in a single assay platform.
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Introduction

Tumor metastasis is a complex series of events, during which

cells disseminate from the primary tumor, enter the circulation,

extravasate, and colonize target tissues [1]. Cell motility plays a

vital role in at least some of these events. Consequently, agents that

inhibit cell motility could be beneficial in the treatment of

metastatic cancers, and anti-migratory or anti-invasive activity is

usually viewed as a desired attribute for novel anticancer drugs [2].

The majority of contemporary drug discovery efforts are based

on high-throughput screening (HTS). The principal barrier to

performing HTS to discover anti-migratory agents is the lack of

assays that are robust, reproducible, and compatible with the

demands of HTS. Cell-based assays in 384-well plates are

commonly performed but none are formatted for cell migration

studies. Likewise, cell migration assays exist in many formats (for a

recent review see [3]) but they are either not suited for automation

(Boyden chambers), require manual processing steps [4–6], or do

not allow free and open access to wells for imaging (Roche

xCELLigence system), thereby eliminating the possibility to

perform simultaneous measurements of cell motility and associated

target- or pathway-specific biomarkers. Here we describe the HTS

implementation and validation of a novel, multiparametric cell

migration assay that does not require mechanical processing and

that is fully compatible with automated microscopy and high-

content screening (OrisTM Pro, Platypus Technologies) (Figure 1).

Using this platform, we screened a test cassette of small molecules

with known biological activities (Library of Pharmacologically
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Active Compounds, LOPAC) and identified six compounds that

selectively inhibited breast cancer cell migration, all of which had

targets associated with cell motility. The assay had a 83%

confirmation rate in concentration-response; two agents further

confirmed in single-cell motility studies.

We then exploited the assay’s imaging compatibility to identify

compounds that perturb expression of Pfn-1 in breast cancer cells.

Pfn-1 is a ubiquitously expressed actin-monomer binding protein

and an essential regulator of actin polymerization in cells, which

has been shown to be an obligatory molecular player for actin-

based cell motility in almost all physiological contexts [7–13].

Seemingly counter-intuitive to the essential role of Pfn-1 in cell

migration in physiological contexts, invasive and metastatic breast

cancer cells present with downregulation of Pfn-1 expression and

in fact, Pfn-1 depletion can promote migration and invasion of

metastatic human breast cancer cell lines in vitro and escape from

the primary tumor in vivo [14]. Conversely, overexpression of Pfn-1

inhibits proliferation, migration, and invasion of breast cancer cells

in vitro and suppresses tumor growth in vivo [15–18]. Agents that

induce Pfn-1 would thus be expected to exert an anti-migratory

phenotype. The multiplexed motility assay identified two com-

pounds that induced Pfn-1 greater than two-fold over vehicle-

treated controls and elicited anti-migratory activity in human

breast cancer cells, and one of these agents further showed

functional involvement of Pfn-1 in its anti-migratory action,

providing biological validation of the analytical approach. The

data illustrate the utility and flexibility of the OrisTM Pro cell

migration assay as a unique and versatile tool to discover anti-

migratory agents with defined cellular target activities.

Results

HTS assay development and implementation
The OrisTM Pro 384 cell migration assay was optimized and

validated according to universally accepted performance and

reproducibility criteria [19]. We chose MDA-MB-231 as a model

for human breast cancer cells because this metastatic cell line

exhibits highly motile characteristics in culture. Preliminary

experiments documented a plating volume of 15 ml and a

migration time of 48 h to be optimal for this cell line (data not

shown). Figure 2A shows that under these conditions, gap closure

was most robust at 15,000 cells/well without signs of overcrowding

or ‘‘break-through’’ of cells into the exclusion zone during cell

attachment. Using the number of cells in the exclusion zone at the

beginning (‘‘pre-migration’’) and the end of the study (‘‘2-day

migration’’), preliminary assay performance measurements indi-

cated signal-to-background ratios of .10 and Z-factors above 0.6

(data not shown). Based on these results, a seeding density of

15,000 cells was chosen for all further development studies. The

assay tolerated up to 0.6% DMSO, after which assay performance

decreased due to cellular toxicity (Figure 2B). We then

implemented the assay on HTS equipment for multi-day

variability studies. Two full 384-well microplates of minimum

(pre-migration) and maximum (2-day migration) controls were

Figure 1. A high-throughput cell motility assay that enables multiplexed image-based analysis of cell migration and associated
pharmacodynamic markers. A. Schematic of OrisTM Pro 384 Cell Migration Assay. Cells are seeded and allowed to adhere in an annular monolayer
surrounding a Biocompatible Gel (BCG). The BCG dissolves to reveal a cell-free Detection Zone into which cells migrate. B. Wells are imaged via
microscopy or High Content Imagers, and images analyzed for cell migration as well as phenotypic changes. C. Quantitation of readouts enables
assembly of compound activity profiles including multiparameter toxicity (left panel), cell morphology, and pharmacodynamic markers of compound
activity (right panel), exemplified by the actin-depolymerizing agent, cytochalasin D. All readouts are correlated with the primary functional
phenotypic readout (cell migration).
doi:10.1371/journal.pone.0088350.g001
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prepared on three consecutive days, and intra-plate and inter-plate

variability assessed as previously described [20]. Figure 2C
documents HTS performance on all three days. There were no

process errors on day 1 and 2; Z-factors were 0.74 and 0.71,

respectively. The repeating pattern of lower cell numbers in some

wells on day 3 was a result of a partially obstructed dispense

manifold on the automated liquid handler that did not affect assay

performance (Z-factor 0.57). Inter-plate and intra-plate variability

was ,10% for the maximum controls. The higher CVs seen with

the pre-migration controls are an artifact that is common with very

low values [19]; this did not affect HTS performance. IC50s of the

control inhibitor, cytochalasin D, were identical on three

consecutive days; multiparametric measurements of cell migration

and cytotoxicity confirmed selective inhibition of cell motility in

the absence of overt toxicity (Figure 2D). Thus, the assay met

universally accepted HTS criteria and was moved into HTS

validation studies.

Assay validation
We screened the 1280 member Library of Pharmacologically

Active Compounds (LOPAC) for inhibition of cell migration

under optimized assay conditions, using image acquisition and

analysis on the ArrayScan II as described earlier [21] and detailed

in Materials and Methods. The library screen consisted of four

plates run in duplicate; the primary hit selection parameter was the

number of cells that migrated into the exclusion zone. Figure 3A
shows that negative (DMSO, green) and positive (1 mM cytocha-

lasin D, red) intra-plate controls were well separated; the average

Z-factor for all eight plates was 0.72. Data followed a normal

distribution. As expected, the screen identified a number of

compounds that reduced cell migration (Figure 3B). A hit

criterion was set as z-score (migrated cells),23, which selected a

total of 47 compounds (a 3.7% hit rate) (Table S1).

Hit confirmation
The main confounding factor in bulk cell migration assays is

cellular toxicity. Therefore, we imaged cells in an area of the well

not affected by cell migration (see image acquisition scheme in

Figure 1), which permitted measurements of cell loss and changes

in nuclear morphology during the primary screen. The initial set

of 47 agents that inhibited cell migration with z-scores,23 was

enriched for known cytotoxic agents and nuisance compounds

(Table S1, marked in yellow). While it is likely that some of

those agents also possess anti-migratory properties, their overt

toxicity obscured motility measurements, and we therefore focused

on a subset of compounds with low to moderate toxicity (#40%

cell loss compared to vehicle control). This primary hit selection

paradigm identified nine compounds that selectively inhibited cell

migration. Two compounds (indatraline and bromoacetyl alpren-

olol menthane) did not repeat with the same level of statistical

significance in both runs. Six compounds were commercially

available and were repurchased for concentration-response

confirmation. All had cellular targets associated with cell migration

(Table 1).

Concentration-response confirmation
The six repurchased agents were tested in ten-point, two-fold

concentration-response studies for inhibition of cell migration and

cytotoxicity using the primary assay. Three (GW5074, tyrphostin

AG879, and 7-cyclopentyl-5-(4-phenoxy)phenyl-7H-pyrrolo[2,3-

d]pyrimidin-4-ylamine)) confirmed in concentration-response and

showed selective inhibition of cell migration (Figure 4A). Two

(GR127935 and dichlorobenzamil) showed concentration-depen-

dent inhibition of cell migration but also nonselective toxicity.

Only one agent (dihydrouabain) did not confirm. None of the

agents tested had elevated numbers of cells with condensed nuclei.

Single-cell motility analysis confirmed the anti-migratory activities

of two compounds, GW5074 and 7-cyclopentyl-5-(4-phenoxy)-

phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine) (Figure 4B and
4C). Thus, the concentration-response studies validated the ability

of the OrisTM Pro assay to discover agents with bona fide anti-

migratory activity and to distinguish anti-migratory from antipro-

liferative or apoptotic activities.

HCS extension of cell migration screen
We then took advantage of the assay’s compatibility with

automated imaging and high-content analysis and interrogated the

LOPAC library for compounds that increase Pfn-1 expression.

The identical plates from the primary migration screen were

immunostained with an anti-Pfn-1 antibody, and average Pfn-1

staining intensity per cell was quantified and correlated to anti-

migratory activity. Because the Pfn-1 expression data set was not

normally distributed and lacked a validated small molecule

positive control (Figure S1), we chose a controls-based hit

selection criterion. We identified 32 agents (2.5%) that elevated

Pfn-1 more than 2-fold over vehicle controls. As was the case for

the cell migration screen, this set was enriched for known cytotoxic

substances, including many clinically used antineoplastic agents,

which were eliminated based on cell density measurements as for

the cell migration screen. Of the 12 remaining compounds, four

(purvalanol, tyrphostin A9, 5-azacytidine, and indirubin-3-oxime)

were selected for concentration-response confirmation because

they repeated in both runs and appeared to have elevated levels of

Pfn-1 based on visual inspection of archived scan images (Figure
S1). All four had anti-migratory activities in the primary cell

migration screen and targets associated with cell motility (Table
S1).

Hit confirmation
All four positives from the Pfn-1 screen were tested in ten-point,

two-fold concentration-response assays using a multiparametric

assay design encompassing cell migration, toxicity, nuclear

morphology, and Pfn-1 expression. All primary positives except

indirubin-3-oxime inhibited cell migration in the absence of overt

cytotoxicity (Figure 5A).

Whereas all four positives from the Pfn-1 induction screen

appeared to have visibly increased Pfn-1 expression (Figure S1),

only tyrphostin A9 and purvalanol showed robust, concentration-

dependent increases in Pfn-1 expression when analyzed by high-

content analysis (Figure 5B). These results were confirmed by

Western blot analysis where tyrphostin A9 and purvalanol

increased Pfn-1, whereas 5-azacytidine and indirubin-3-oxime

did not (Figure 5C). Selected fluorescence micrographs of

purvalanol or tyrphostin A9 treated cells at intermediate

(1.25 mM for tyrphostin A9 and 12.5 mM for purvalanol) and

maximal antimigratory concentrations (9.4 mM for tyrphostin A9

and 25 mM for purvalanol) confirmed a mild but discernible

increase in Pfn-1 immunoreactivity (Figure 5D). Cytochalasin D

also showed concentration-response by immunofluorescence, but

did not confirm by Western blot (data not shown). This suggests

that the assay is sensitive to morphological artifacts, necessitating

the need for non-image-based confirmatory assays. Because the

assay scores cell migration based on number of cells, which could

be confounded by cell cycle arrest, we performed both cell cycle

analysis and single-cell motility assays to validate the compounds’

anti-migratory activities. For cell cycle analysis, DNA content was

measured in 4,000 individual cells imaged on the Arrayscan II.

The only agent that appreciably changed cell cycle distribution

Profilin-1 Inducers from HCS Cell Migration Screen
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Figure 2. HTS assay development. MDA-MB-231 cells were plated in OrisTM Pro 384 plates and allowed to attach for 2 h. Plates were stained with
Hoechst 33342 immediately thereafter (pre-migration) or after 2 days in culture (2-day migration), and imaged on the ArrayScan II. A. Seeding
density. Optimal gap closure with minimal background was obtained at 15,000 cells/well. B. DMSO tolerance. 16 wells each of minimum (pre-
migration) and maximum (two-day migration) controls were treated with a ten-point, two-fold gradient of vehicle (DMSO) and numbers of cells that
had migrated into the exclusion zone were enumerated. Assay performance decreased at concentrations above 0.6% DMSO due to toxicity. C.
Three-day variability. Two full microplates of minimum and maximum controls were treated with vehicle (0.1% DMSO) on three consecutive days
using equipment to be used in HTS. Intra-plate and inter-plate variability parameters were calculated (Table). SD, standard deviation; CV, coefficient of
variance; PL to PL, plate to plate comparison; S:B ratio, signal-to-background ratio. Scatter plots illustrate day to day performance; the lower Z-factor
on day 3 was a result of a partially obstructed dispense manifold. D. Control inhibitor studies. Using optimized assay conditions, identical IC50

curves for cytochalasin D were obtained in three independent runs (left panel). Multiparametric profiling of cell migration, toxicity (cell density), and

Profilin-1 Inducers from HCS Cell Migration Screen
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was purvalanol, which increased the number of cells in G2/M

(Figure S2), consistent with its ability to inhibit CDK activity. In

contrast, tyrphostin A9 and cytochalasin D did not appreciably

alter cell cycle distribution compared with vehicle control.

We next confirmed the anti-migratory phenotypes of purvalanol

and tyrphostin A9 in a single-cell motility assay and found that at

the concentration used in the primary screen, both agents

significantly reduced cell motility compared with vehicle control

(Figure 6). Based on our previous findings of Pfn-19s inhibitory

effect on collagen invasiveness of MDA-MB-231 cells [14,15], we

also confirmed that both purvalanol and tyrphostin A9 signifi-

cantly reduced collagen invasiveness of MDA-MB-231 cells

(Figure S3). Finally, we asked whether Pfn-1 was functionally

involved in the anti-migratory activities of purvalanol and

tyrphostin A9. If their anti-migratory effects involved the action

of Pfn-1, one would expect that their activity should be abrogated

or at least substantially diminished upon Pfn-1 depletion. We

therefore performed single-cell motility assays to compare the

effects of tyrphostin A9 and purvalanol on cell motility in Pfn-1-

proficient vs. -depleted conditions. Figure 7 shows that in the

presence of control siRNA, both purvalanol and tyrphostin A9

significantly reduced cell motility, as expected. When Pfn-1 was

knocked down, DMSO-treated cells migrated faster, consistent

with our previously published data [22,23]. Importantly, knock-

down of Pfn-1 abolished the anti-migratory activity of tyrphostin

A9 but not of purvalanol (Figure 7). Western blots confirmed

elevated levels of Pfn-1 after compound treatments with control

siRNA but not Pfn-1 siRNA (Figure 7C). Taken together, the

results suggest Pfn-1 is mechanistically linked to cell migration

inhibition by tyrphostin A9, providing biological validation to the

analytical approach.

Discussion

Cancer metastasis represents a dire unmet medical need. Ninety

percent of cancer-related deaths occur by metastasis, but effective

therapies are lacking. Cell motility plays a critical role in the

metastatic process; therefore agents that inhibit cell motility could

find application as novel antimetastatic agents. The discovery of

such agents is critically dependent on cellular assays that are high-

throughput and recapitulate at least some aspects of the metastatic

cascade. In this report, we have developed and HTS implemented

an innovative cell-based migration assay that is compatible with

automated microscopy, thereby enabling the correlation of a

biological endpoint with cellular toxicity and specific target

activities.

The assay, which does not require mechanical processing steps,

was implemented on laboratory automation equipment and

satisfied universally accepted HTS performance criteria. Multi-

parametric screening of a library of compounds with known

biological activities revealed many agents that inhibited cell

migration. All primary hits had targets associated with cell

motility, and some of the positives (i.e., purvalanol and indiru-

bin-3-oxime) had been found in a prior cell invasion screen [24].

We decided to prioritize and pursue compounds that selectively

inhibited cell migration in the absence of overt toxicity. While this

strategy was chosen to document the assay’s ability to distinguish

between the two biological activities, in a discovery screen this

could result in a large number of false negatives, as many of the

cytotoxic agents could be selective inhibitors of cell migration at

lower concentrations. This could be overcome by rescreening the

library at a lower concentration. Alternatively, the hit criterion

could be altered to include cytotoxics into the primary hit

identification scheme and to determine their selectivity in

concentration-dependence, follow-up assays.

nuclear morphology (brightness and area) document selective inhibition of cell migration in the absence of overt cytotoxicity (right panel).
doi:10.1371/journal.pone.0088350.g002

Figure 3. LOPAC library screening for inhibitors of cell migration. Cells were treated in duplicate OrisTM Pro 384 plates with vehicle (green),
1 mM cytochalasin D (red), 0.1 mM cytochalasin D (pink), or 10 mM of compounds (blue) for 2 days. Cells that migrated into the exclusion zone were
enumerated by high-content analysis on the ArrayScan II. A. Histograms show that positive and negative controls were well separated and data
largely followed a normal distribution. B. Trellis plots. Z-scores were calculated for each data point based on plate average and plotted against well
number. Data are from one replicate run; the y-axis shows z-scores of migrated cells.
doi:10.1371/journal.pone.0088350.g003
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Whereas the assay had a good confirmation rate in concentra-

tion-response, some compounds did not repeat in orthogonal

assays, such as Western blots and single-cell motility assays. This is

likely a result of the imaging assay being sensitive to morphological

changes, and underscores the need for non-fluorescence-based

counter-assays as critical components of a secondary screening

paradigm.

A subset of the anti-migratory hits induced the expression of the

small actin–binding protein, Pfn-1. Pfn-1 modulates breast cancer

aggressiveness, and genetic overexpression of Pfn-1 reduces tumor

formation in vivo, and reduces cell migration and invasion in breast

cancer cells [14]. Two compounds, purvalanol and tyrphostin A9

(also known as tyrphostin RG 50872 [25]), were confirmed by

Western blot and in single-cell motility assays. Both compounds

had previously been found to inhibit cell motility [24,26]. siRNA

knockdown experiments revealed that one of them (tyrphostin A9)

lost anti-migratory activity in Pfn-1 depleted cells, indicating a

functional involvement of Pfn-1 in its anti-migratory activity.

In summary, the multiparametric high-content screen identified

two bona fide inducers of Pfn-1 with anti-migratory activities, and

for at least one of the agents, Pfn-1 appears to be mechanistically

linked to anti-migratory activity. The data highlight the utility of

the OrisTM Pro high-content cell motility assay to integrate

functional phenotypic analyses with target-specific readouts in a

single assay, adding a novel, validated tool to our armamentarium

to discover potential antimetastatic agents. A three-dimensional

version of the OrisTM Pro assay is currently being validated.

Materials and Methods

Cell culture
The MDA-MB-231 breast cancer cell line was from the

American Type Culture Collection (ATCC, Manassas, VA) and

maintained as described [27]. The identity of the line was

confirmed by The Research Animal Diagnostic Laboratory

(RADIL) at the University of Missouri, Columbia, MO (http://

www.radil.missouri.edu), using a PCR based method that detects 9

short tandem repeat (STR) loci, followed by comparison of results

to the ATCC STR database. A cell bank of defined passage was

established and cells were propagated for no more than ten

passages in culture.

Compound treatment and sample processing
The Library of Pharmacologically Active Compounds (LOPAC,

Sigma-Aldrich) was maintained in assay ready format in a

Matrical Ministore under temperature and humidity-controlled

conditions. Assays were conducted in collagen-coated OrisTM Pro

384-well microplates (Platypus Technologies, Madison, WI, cat #

PRO384CMACC5). The assay uses an innovative design where a

biocompatible gel (BCG) is precisely positioned in the center of the

wells of a 384-well microplate (Figure 1A). Upon cell seeding, the

BCG dissolves and reveals an exclusion zone into which cells can

migrate. Cell migration can be followed visually or by time lapse

microscopy, enabling real-time kinetic measurements. At the end

of the migration period, cells can be stained with fluorescent

probes or antibody conjugates, and analyzed on high content

readers (Figure 1B). The multiparametric nature of the assay

format permits simultaneous, quantitative measurements of targets

and pathways that are correlated to a functional phenotypic

readout (Figure 1C). Cells were seeded at a density of 1.56104 in

15 ml complete growth medium and plates centrifuged for 1 min

at 506g. After a 2 h incubation period, medium was removed and

cells were washed once with PBS. For compound treatments,

plates containing aliquots of compound stock solutions in 100%

DMSO were reconstituted to 30 mM in growth medium on the

day of experiment. Fifteen ml of 30 mM compound solutions were

transferred to assay plates using a Janus MDT automated

workstation (PerkinElmer). Each plate contained 32 wells of

negative controls (0.1% DMSO), 24 wells of positive controls

(1 mM cytochalasin D), and 8 wells of an intermediate concentra-

tion of positive control (100 nM cytochalasin D). Forty-eight hours

after treatment, cells were fixed with formaldehyde (4%) and

stained with Hoechst 33342 (Invitrogen, H1399) at 10 mg/ml in

PBS. After a 30 min incubation at room temperature, plates were

washed three times with PBS, sealed, and stored at 4uC until

imaging. For experiments involving pre-migration controls, plates

were fixed and stained immediately after compound treatment. All

processing steps except compound treatment were done with a

Titertek MAP-C2. For confirmatory studies, compounds were

repurchased from Sigma-Aldrich and dissolved in DMSO.

Imaging and analysis
For the primary cell migration assay, two separate scans were

performed on the ArrayScan II (Thermo Fisher Cellomics) at a

single wavelength of 350/461 nm (DAPI, Hoechst) using a 56
objective. For cell migration measurements, a single image

positioned in the center of the well was acquired; for cell density

measurements, a second field was acquired at the edge of the well.

Nuclei were detected and quantified by the Target Activation

Bioapplication (Thermo Fisher Cellomics), as described [28]. To

select hits, data from both runs were averaged and z-scores

calculated for each data point. Compounds with z-scores,-3 in

the migration screen were selected as primary positives. Percent

cell loss was calculated as % toxicity = 1-((cell densitycompound/cell

densityDMSO controls)*100). Positives were assayed for concentra-

tion-response in three independent experiments, each using ten

Table 1. Prioritized cell migration inhibitors from the LOPAC screen.

Compound name Targetsa
References linking targets to
cell migration

GW5074 c-Raf1 [29]

Tyrphostin AG 879 TrkA, Her2 [30]

7-Cyclopentyl-5-(4-phenoxy)phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine src-family kinases [31]

GR 127935 hydrochloride 5-HT1B/1D receptors [32,33]

39,49-Dichlorobenzamil Na+/Ca2+ exchanger [34]

Dihydroouabain Na+/K+ ATPase [35]

aaccording to SIGMA-Aldrich LOPAC description.
doi:10.1371/journal.pone.0088350.t001
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point, two-fold concentration gradients of test agents in quadru-

plicate.

Cell cycle analysis was performed on archived images of

Hoechst 33342-stained nuclei. Two to three images, positioned

away from the exclusion zone but not touching the well edge were

acquired with a 1060.5 NA objective on the ArrayScan II (see

Figure S2 for an illustration). Total nuclear staining intensity in

an area defined by the nuclear mask, enlarged by 2 pixels, was

Figure 4. Confirmation of positives from the high-content cell migration screen. A. Multiparameter concentration-response
confirmation in the OrisTM Pro assay. MDA-MB-231 cells were treated for 48 h with ten point, two-fold concentration gradients of test agents.
Cells were stained with Hoechst 33342 and analyzed for cell migration, cell density, and condensed nuclei as described in Materials and Methods.
Data are the averages 6 SE from quadruplicate determinations and are from a single experiment that has been repeated twice. B. and C. Single-cell
motility assay. Agents that showed selective, concentration-dependent inhibition of cell migration in the primary assay format were tested in a single-
cell motility assay. Two compounds significantly reduced cell migration velocity compared with vehicle control. Box, 25th and 75th percentiles,
whiskers, 10th and 90th percentiles; line, median. Data are the combined values from two independent experiments, each comprising 28 individual
cells. Rose plots in C. illustrate motility patterns of individual cells. Each line represents the trajectory of a single cell over a period of 48 h.
doi:10.1371/journal.pone.0088350.g004
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Figure 5. Identification of agents that increase Pfn-1 expression. Compounds that emerged as positives from the Pfn-1 expression
counterscreen were treated with ten-point, two-fold concentration gradients of test agents and analyzed for cell migration, cytotoxicity, and Pfn-1
induction. A. Multiparametric analysis of antimigratory activity and toxicity. B. Pfn-1 expression. Concentration-response plates from A. were
immunostained with a Pfn-1/Cy5 secondary antibody pair (open squares) and analyzed for Pfn-1 levels by high-content analysis. Staining specificity
was determined in the absence of primary antibody (closed squares). Data in A. and B. are the averages 6 SE from quadruplicate determinations and
are from a single experiment that has been repeated twice. C. Western blot analysis confirming elevated Pfn-1 expression by purvalanol and
tyrphostin A9. D. Representative fluorescence micrographs of the two confirmed positives from the Pfn-1 induction screen in an area of the
well adjacent to the exclusion zone.
doi:10.1371/journal.pone.0088350.g005
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measured in a minimum of 1,000 individual cells per well.

ArrayScan tabular data from four pooled wells were converted to

flow cytometry format using Text2FCS software (Joseph Trotter,

Scripps Research Institute, La Jolla, CA). Cell cycle distributions

were estimated by the Dean-Jett-Fox modeling method using the

FlowJo software package (Tree Star, Inc., Ashley, OR).

For the Pfn-1 expression screen, microplates from the primary

screen were permeabilized for 5 min with 0.2% Triton X-100,

blocked with 1% BSA in PBS for 30 min., and incubated with a

Pfn-1 antibody (Novus, NBP1-9584) at a 1:800 dilution. Pfn-1

immunoreactivity was visualized by a Cy3-conjugated secondary

antibody (Jackson Immunoresearch, 1:400 dilution). Three image

fields, positioned away from the exclusion zone but not touching

the well edge, were acquired on an ArrayScan VTi using a 206
objective and a Cy3 compatible filter set (XF93, Omega Optical)

at excitation/emission wavelengths of 350/461 nm (Hoechst) and

556/573 nm (Cy3). A nuclear mask was generated based on

Hoechst signal. Pfn-1 expression was quantified by the Compart-

mental Analysis Bioapplication in an area defined by the nuclear

mask, enlarged by 3 pixels to capture cytoplasmic and nuclear Pfn-

1 expression. Each data point was normalized to Pfn-1 staining of

vehicle controls on a plate-by-plate basis. Agents that increased

Pfn-1 greater than two-fold over controls were selected as positives,

and assayed for concentration-response in three independent

experiments, each using ten point, two-fold concentration

gradients of test agents in quadruplicate.

Time-lapse cell motility assay
MDA-MB-231 cells were treated with each agent at 10 mM

working concentration. Twenty-four h following initial treatment,

cells were re-plated in collagen-coated 48-well plates for single-cell

motility assays, and were again treated with 10 mM compound.

The next day, cells were imaged for 3 h at 60 s time intervals

between successive image frames. During imaging, the culture

plate was placed in an incubation chamber (LiveCellTM System,

Pathology Devices Inc.) to maintain appropriate environmental

conditions (37uC/pH 7.4). Cell trajectory was generated by frame-

by-frame analysis of the centroid positions (x, y) of cell nuclei

(assumed to be the representations of cell bodies). 20-40 individual

cells were scored in each experiment. All images were acquired

and quantified using Metamorph and NIH ImageJ software,

respectively.

Statistics
Statistical analyses were performed using ANOVA, followed by

Tukey-Kramer post-hoc test for multiple comparisons. P-values

less than 0.001 were indicated as significant. Box and whisker plots

were used to represent experimental data (box: 25th and 75th

percentile; whisker: 10th and 90th percentile; line: median). All

statistical tests were performed with Stata/SE software (Stata-

Corp). 2011. Stata Statistical Software: Release 12. College

Station, TX: StataCorp LP.).

siRNA transfection
For single-cell motility assays and Western blots, positive hits

were repurchased from Sigma-Aldrich and diluted in DMSO at

Figure 6. Confirmation of anti-migratory activity by Pfn-1
inducing agents. Cells were treated with compounds for 48 h and
plated on collagen-1 coated cell culture dishes, replated and imaged by
time-lapse videomicroscopy. A. Trajectories of individual MDA-
MB-231 cells of different experimental groups in time-lapse motility

assay. Data are from a single experiment that has been repeated once
with identical results. B. Box and whisker plots representing the
average speed of migration of MDA-MB-231 cells treated with DMSO
(control) vs. 10 mM of either purvalanol or tyrphostin A9. Box, 25th and
75th percentiles; whiskers, 10th and 90th percentiles; line, median. Data
are pooled cell data from two independent experiments (n = 20 cells
per group; *p,0.001).
doi:10.1371/journal.pone.0088350.g006
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10 mM stock concentrations. Cells were transfected with either

non-targeting control or Pfn-1-specific siRNAs at 50 nM working

concentration as previously described [22]. Twenty-four hours

after transfection, cells were treated with either a LOPAC

compound or DMSO (control) for 48 hours before being analyzed

for single cell motility (see above) or Western blot analyses. Total

cell lysate was extracted with a modified RIPA buffer [50 mM

Tris-HCl (pH 7.5), 150 mM NaCl, 1% Nonidet P40, 0.5%

sodium deoxycholate, 0.3% SDS, 2 mM EDTA plus protease

and phosphatase inhibitors]. Proteins were separated by SDS-

PAGE and transferred to nitrocellulose membranes. For immu-

noblotting, antibodies specific for Pfn-1 (Novus, NBP1-95847) and

a-tubulin (Sigma, T5168) were used at 1:4000 and 1:2000,

respectively. Bands were visualized with horseradish peroxidase-

conjugated secondary antibodies (Jackson Immunoresearch) and

an enhanced chemiluminescence reagent.

Figure 7. Pfn-1 knockdown abolishes anti-migratory activity of tyrphostin A9 but not purvalanol. A. Trajectories of individual cells
treated with vehicle (DMSO), 10 mM purvalanol, or 10 mM tyrphostin A9. B. Box and whiskers plot documenting significant reduction in cell
motility by both agents and reversal of anti-migratory activity by Pfn-1 siRNA of tyrphostin A9 but not purvalanol. Data are pooled from two
independent experiments comprised of 28 cells each. *, p,0.0001. C. Western blot analysis of Pfn-1 expression in the presence or absence of Pfn-1
siRNA. Data are from a single experiment that has been repeated twice with identical results.
doi:10.1371/journal.pone.0088350.g007
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Supporting Information

Figure S1. Profilin-1 induction counterscreen. Micro-

plates from the primary migration screen were immunostained

with a Pfn-1 primary/Cy3 secondary antibody combination and

three images acquired on an Arrayscan VTI high content reader

using a 206 objective. Nuclei were counterstained with Hoechst

33342. An imaging mask was created based on Hoechst staining.

Mean Pfn-1 intensity per cell was measured in the Cy3 channel

using an area defined by the nuclear mask, enlarged by three

pixels (MEAN_CircAvgIntenCh2). A. Trellis plot illustrating

screening data from a single replicate run. Whereas no agents

caused loss of profilin-1, several compounds elevated profilin-1. B.
Normal quantiles plot of LOPAC-profilin-1 data. Positive hits

caused the data to deviate from normal distribution, necessitating

the use of a controls-based hit selection criterion. C. Selected scan

images illustrating visual appearance of wells with elevated Pfn-1.

D. Relative positioning of the three imaging fields during the

screen adjacent to the exclusion zone and away from the well edge.

The field in red represents the position of images shown in C.
(TIF)

Figure S2 Cell cycle profiles. Archived scan images (acquired

with a 10X, 0.5NA objective on the ArrayScan II) from

concentration-response confirmation plates were analyzed for

DNA content. Total Nuclear Hoechst 33342 fluorescence intensity

(representing DNA content) was measured in 4,000 individual cells

treated with the indicated concentrations of cytochalasin D

(CytD), purvalanol (Purv), or tyrphostin A9 (TyrA9). Graphs show

DNA content histograms assembled with the FlowJo software

package (Tree Star, Inc., Ashley, OR). The image in B. is a

montage of an entire well at 106magnification that illustrates the

positioning of imaging fields in relation to exclusion zone and well

edge. Data are from a single experiment that has been repeated

twice.

(TIF)

Figure S3 Random 3D collagen invasion assay. The

random collagen invasion assay was performed as described [14].

Briefly, MDA-MB-231 cells were treated with vehicle (DMSO) or

10 mM of either purvalanol or tyrphostin A9. 24 h following initial

treatment, cells were re-plated for collagen invasion assay.

Collagen-I (Type I Rat Tail; BD Biosciences, San Jose, CA),

106 M199 medium and cells were well mixed and poured into

duplicate wells of a 24-well plate. Final collagen and cell

concentrations were 2.5 mg/ml and 26106 cells/ml, respectively.

The collagen solution was allowed to polymerize for 30 minutes at

37uC and then overlaid with complete growth medium containing

50 ng/ml EGF and 50 ng/ml 12-O-tetradecanoylphorbol-13-

acetate (PMA). Real-time imaging of cells was performed at 10

minute intervals for a total duration of 30 hours. The average

invasion speed was scored by frame-by-frame analysis of the

centroid positions (x, y) of cell nuclei. 20-40 individual cells were

scored in each experiment. Both compounds significantly reduced

invasion speed compared with vehicle control. Box, 25th and 75th

percentiles; whiskers, 10th and 90th percentiles; line, median. Data

are the combined values from two independent experiments

comprising a total of 37 (DMSO), 38 (purvalanol) and 40

(tyrphostin A9) individual cells (*p,0.001).

(TIF)

Table S1 Combined hits from multiparametric cell
migration/profilin induction screen.

(TIF)
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