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Background
Adult soft-tissue sarcomas (STS) are rare mesen-
chymal malignancies which occur with a reported 
incidence of 50 per million per year and account 
for approximately 1% of solid adult cancers.1 
Sarcoma pathology comprises a diverse landscape 
of more than 100 entities that vary in their clinical 
behaviour and aggressiveness. These neoplasms 
are heterogeneous diseases classified based on the 
normal mesenchymal tissue type they closest 

resemble; however, based on next-generation 
sequencing (NGS), new tumour entities have been 
described, old ones reshaped, and others erased.1,2 
Even though surgery is the usual course of treat-
ment, independent variables such as histological 
subtype, tumour size (>5 cm), and grading were 
shown to be significantly associated with overall 
survival (OS) and the risk for distant metastases.1,3 
Stringent classifications are required for exact 
diagnosis, prediction of behaviour, prediction of 
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Abstract
Background: Molecular diagnosis has become an established tool in the characterisation of 
adult soft-tissue sarcomas (STS). FoundationOne® Heme analyses somatic gene alterations in 
sarcomas via DNA and RNA-hotspot sequencing of tumour-associated genes.
Methods: We evaluated FoundationOne® Heme testing in 81 localised STS including 35 
translocation-associated and 46 complex-karyotyped cases from a single institution.
Results: Although FoundationOne® Heme achieved broad patient coverage and identified at 
least five genetic alterations in each sample, the sensitivity for fusion detection was rather 
low, at 42.4%. Nevertheless, potential targets for STS treatment were detected using the 
FoundationOne® Heme assay: complex-karyotyped sarcomas frequently displayed copy-
number alterations of common tumour-suppressor genes, particularly deletions in TP53, NF1, 
ATRX, and CDKN2A. A subset of myxofibrosarcomas (MFS) was amplified for HGF (n = 3) and 
MET (n = 1). PIK3CA was mutated in 7/15 cases of myxoid liposarcoma (MLS; 46.7%). Epigenetic 
regulators (e.g. MLL2 and MLL3) were frequently mutated.
Conclusions: In summary, FoundationOne® Heme detected a broad range of genetic 
alterations and potential therapeutic targets in STS (e.g. HGF/MET in a subset of MFS, or 
PIK3CA in MLS). The assay’s sensitivity for fusion detection was low in our sample and needs 
to be re-evaluated in a larger cohort.
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OS, better treatment selection, and identification 
of potential treatment targets, as well as prediction 
of response. The World Health Organization 
(WHO)’s 2020 Classification of Soft Tissue and 
Bone Tumours1 therefore underlines the signifi-
cance of conventional morphology and immuno-
histochemistry in the diagnosis of STS, and 
integrates molecular genetics as a powerful diag-
nostic tool. Thus, efforts need to be undertaken to 
move forward with individualised treatment con-
cepts considering the diversities of the disease that 
result in differences in individual prognoses. Even 
though histology-tailored chemotherapeutic regi-
mens have not yielded results superior to those of 
standard chemotherapy in an international, ran-
domised trial,4 a growing body of evidence sug-
gests that different therapeutic approaches must be 
undertaken for molecularly distinct sarcoma sub-
types.5 To compare data obtained from different 
study collectives, the histologic diagnosis of STS 
should be based on the recent WHO classification, 
and the diagnosis needs to be confirmed by molec-
ular methods if the underlying genetic mechanism 
is known. The necessity of molecular subtyping of 
sarcomas is emphasised, in particular, by the recent 
recognition of NTRK fusions in a broader spec-
trum of soft-tissue tumours6 and the achievement 
of phenomenal treatment responses with TRK 
inhibitors.7 The improvement and increasing avail-
ability of NGS technologies, as well as novel trial 
designs such as basket trials, further nourish the 
current trend towards a molecular characterisation 
of mesenchymal neoplasms.5 In view of these 
developments, reliable NGS technologies are 
desirable for routine clinical use, to support patho-
logical diagnosis and to help assign patients with 
potentially druggable targets to biomarker-based 
therapies. To provide individualised treatment 
modalities for patients with STS in a clinical obser-
vation-driven approach, we analysed a sample of 
81 primary localised STS of a single institution via 
FoundationOne® Heme DNA- and RNA-hotspot 
sequencing.

Materials and methods

Subjects
Eighty-one patients with histologically confirmed 
STS, who underwent surgery between October 
1998 and June 2016 at the Department of 
Orthopaedics and Trauma, Medical University of 
Graz, were enrolled in this retrospective study. 
All patients were included in the routine follow-
up programme until December. A total of 2018 

follow-up examinations were conducted in regu-
lar intervals (3 months in years 1–3, 6 months in 
years 4–5, and 12 months in years 6–15 after diag-
nosis). Follow-up investigations included clinical 
check-ups and radiological analyses (computed 
tomography, magnetic resonance imaging, 
abdominal ultrasound and chest X-ray). 
Clinicopathological data, histopathological diag-
nosis, and tumour grade were retrospectively 
obtained from the patient’s histories. Histological 
specimens were centrally re-reviewed by an expe-
rienced soft-tissue pathologist (BL-A) prior to 
their inclusion in this study. All sarcomas were 
diagnosed according to the WHO Classification 
of Tumours of Soft Tissue and Bone8 and graded 
according to the French Federation of Cancer 
Centres Sarcoma Group (FNCLCC);9 or tumour 
grade was defined by tumour entity. Malignant 
fibrous histiocytomas have been re-classified 
according to the current diagnostic criteria.10 
This study has been approved by the Institutional 
Review Board (IRB) of the Medical University of 
Graz, Graz, Austria (29-205 ex 16/17).

FoundationOne® Heme
FoundationOne® Heme is an integrated genomic 
test that analyses and interprets sequence infor-
mation for somatically altered genes in human 
haematologic malignancies and sarcomas. Genes 
included in this assay encode known or likely tar-
gets of therapies, either approved or in clinical tri-
als, or otherwise known drivers of oncogenesis. 
This assay analyses the complete coding DNA 
sequences of 406 genes, as well as selected introns 
of 31 genes involved in rearrangements. 
FoundationOne® Heme also interrogates the 
RNA sequence (complementary DNA, cDNA) of 
265 commonly rearranged genes to better identify 
gene fusions (gene list used in this project: https://
assets.ctfassets.net/vhribv12lmne/zBxaQC12cSc
qgsEk8seMO/1ef755665cc0dfa7134df9b158e2d
b4c/F1H_TechSpecs_v02-05_sph.pdf).

DNA and RNA were extracted from formalin-
fixed and paraffin-embedded (FFPE) material. 
From each FFPE specimen, a 5 μm section was 
stained using haematoxylin and eosin (H&E) and 
was then reviewed by a pathologist to confirm 
⩾20% tumour nuclei and a tissue volume of 
⩾2 mm3. If required, macro-dissection of samples 
was performed to enrich tumour content. DNA 
and RNA were extracted from 40 μm of unstained 
FFPE sections (16 unstained FFPE slides) for 
each sample as previously described.11 All 
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analyses were performed by Foundation Medicine 
Inc., Cambridge, MA, USA.

Archer FusionPlex Sarcoma Panel
Archer FusionPlex Sarcoma Panel (AFPSP) is an 
alternative targeted RNA-sequencing NGS 
panel.12 For the current analysis, the following 
genes were used for fusion/rearrangement/trans-
location detection, with the application of unidi-
rectional gene-specific PCR and NGS-sequencing: 
ALK, BCOR, BRAF, CAMTA1, CCNB3, 
CHMP2a, CIC, EPC1, EWSR1, FOSB, FOXO1, 
FUS, GLI1, HMGA2, JAZF1, MEAF6, MKL2, 
NCOA2, NTRK1, NTRK2, NTRK3, PAX3, 
PDGFB, PLAG1, RAB7a, ROS1, SS18 (SYT), 
STAT6, TAF15, TCF12, TFE3, TFG, USP6, 
VCP, and YWHAE. For each sample, 5–8 × 10 μm 
FFPE sections were cut from a representative 
block, and macro-dissection was performed with 
a scalpel to enrich tumour content. According to 
the manufacturer’s instructions, RNA was iso-
lated using the Maxwell RSC RNA FFPE kit. 
RNA was quantified by ribogreen fluorescence, 
and 250 ng total RNA was used for the Archer 
Fusion Plex Sarcoma Kit. NGS libraries were 
sequenced on Ion Torrent Proton using the Ion 
PI Hi-Q Sequencing 200 kit (Thermo Fisher 
Scientific, Waltham, MA, USA). The analysis 
was performed with ArcherDX Analysis software 
version 5.1.3. All analyses were performed at the 
Institute of Pathology, Medical University of 
Graz, Graz, Austria. All tests for diagnostic pur-
poses performed at the Institute of Pathology 
(including the AFPSP) were subject to EN ISO 
15189 validation. Tests were validated for perfor-
mance characteristics, such as accuracy, sensitiv-
ity (true positive rate), specificity (true negative 
rate) and precision.

FISH, rt-PCR
Fluorescence in situ hybridisation (FISH) and 
real-time polymerase chain reaction (rt-PCR) 
were performed on FFPE tissue as described pre-
viously.13,14 For rt-PCR detection of SYT-SSX as 
illustrated in Figure 4(c), 1 µg total RNA was 
reversely transcribed using the SuperScript™ III 
first-strand synthesis system (Thermo Fisher) 
according to the manufacturer’s instructions. 
PCR was performed in a 20 μl reaction containing 
2 μl of the reverse-transcription reaction, 1X 
HotStarTaq master mix (Qiagen, Hilden, 
Germany), and 0.4 µmol/l of each primer. The 
SYT-SSX2 product was amplified using primers 

for SYT (SYT-FP: 5′ CCA GCA GAG GCC 
TTA TGG ATA 3′) and SSX18 (SSX2-RP: 5′ 
GCA CAG CTC TTT CCC ATC 3′). After an 
initial incubation step at 95°C for 15 min, the 
samples were amplified by running 40 cycles at 
94°C for 50 s, 58°C for 30 s, and 72°C for 1 min, 
followed by 1 cycle at 72°C for 10 min and cool-
ing down to 4°C. The PCR products were ana-
lysed by gel electrophoresis on a 3% agarose gel. 
A control rt-PCR reaction for porphobilinogen 
deaminase (PBG-D) was used to check for the 
presence of amplifiable RNA in the samples (data 
not shown).

Plot generation
Plots were generated in R, version 3.5.1, and 
GraphPad Prism v9. We used the maftools R/
Bioconductor package for visualisation and sum-
marisation of mutation-annotation-file format 
files from this study.15 For the analyses, synovial 
sarcomas (SS) with SS18-SSX1 and SS18-SSX2 
rearrangements and myxoid liposarcomas (MLS) 
with DDIT3-FUS and DDIT3-EWSR1 rearrange-
ments were pooled together.

Statistical analysis of clinical data
Variables are described as measures of central 
tendencies (e.g. proportion, mean, median), as 
appropriate. OS was defined as the time from sur-
gery date to death of any cause or last follow up. 
Recurrence-free survival (RFS) was defined as 
the time from surgery to the date of local recur-
rence, date of distant metastases or last follow up. 
The 5- and 10-year estimates of OS and RFS and 
the corresponding 95% confidence intervals are 
reported. Survival analysis was carried out with 
the statistical program Stata/MP 13.0 (StataCorp, 
College Station, TX, USA).

Results

Patients’ characteristics
Our cohort included 81 patients (51 males, 30 
females; Table 1, Figure 1) with a median age at 
the time of surgery of 63.1 years (range 19.7–
94.7 years). A total of 46 patients (56.8%) were 
diagnosed with STS with a complex karyotype 
and 35 patients (43.2%) with translocation-asso-
ciated STS. The median follow-up time was 
50.3 months (range 3.7–218.0 months). During 
the follow-up period, 10 (12.4%) and 38 (46.9%) 
patients developed local recurrences and distant 
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Table 1. Patient characteristics and histotypes.

Variable All (n = 81)

Age in years Median 63.1 (range 19.7–94.7)

 Age <40 (%) 14 (17.3)

 Age 40–59 (%) 23 (28.4)

 Age ⩾60 (%) 44 (54.3)

Sex (%)

 Male 51 (63.0)

 Female 30 (37.0)

Tumour location (%)

 Head/neck 3 (3.7)

 Thoracic/trunk 5 (6.2)

 Retro/intra-abdominal 1 (1.2)

 Upper extremity 9 (11.1)

 Lower extremity 63 (77.8)

Tumour size in cm Median 9 (range 1–25)

Tumour size, categories (%)

 <5 cm 20 (24.7)

 5–10 cm 33 (40.7)

 >10 cm 28 (34.6)

Tumour depth (%)

 Superficial 24 (29.6)

 Deep 51 (63.0)

 Superficial and deep 6 (7.4)

Tumour grading (%)

 G1 9 (11.1)

 G2 20 (24.7)

 G3 52 (64.2)

Histological group (%)

 Specific translocation 35 (43.2)

 Complex karyotype 46 (56.8)

Histological subtype (%)

 Myxofibrosarcoma (MFS) 25 (30.9)

 Undifferentiated pleomorphic sarcoma (UPS) 11 (13.6)

(continued)
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metastases, respectively. Both local recurrence 
and distant metastases developed in seven (8.6%) 
patients. The 5- and 10-year OS rates were 73.3% 
[95% confidence interval (CI) 61.3–82.3] and 
60.5% (95% CI 44.0–73.5), respectively, and the 
5- and 10-year RFS rate was 54.5% (95% CI 
42.5–65.1) and 36.0% (95% CI 19.3–53.1), 
respectively. Of the 26 patients (32.1%) who 
died, 22 (27.2%) had deaths attributable to STS, 
and 4 (4.9%) died of other causes. The patients’ 
characteristics are summarised in Table 1 and 
Figure 1.

Molecular profiling using the  
FoundationOne® Heme test
All samples were centrally analysed using the 
FoundationOne® Heme platform, an NGS-based 
test covering the entire coding region of 406 
genes. Moreover, selected introns of 31 genes 
involved in the rearrangements and RNA 

sequences of 265 commonly rearranged genes 
were interrogated to identify translocations. 
FoundationOne® Heme detects all classes of 
genomic alterations, including base substitutions, 
insertion-and-deletions (indels) and copy-num-
ber alterations (CNAs). Taken together, 
FoundationOne® Heme revealed a total of 678 
genetic alterations in 386 genes, of which 148 
were mutated only in a single sample. Overall, 58 
genes were affected by a genetic alteration in at 
least five samples (6% of the overall cohort) 
[Figure 2(a)]. A median of 13 (range 5–49) 
genetic alterations was detected in 46 STS with a 
complex karyotype [Figure 2(b) and (c)]. The 
median number of genetic alterations identified 
in 35 translocation-associated STS was signifi-
cantly lower, with a count of 10 [range 5–29, 
Mann–Whitney U test p < 0.0001; Figure 2(c)]. 
Consistent with previous reports, the most com-
monly affected genes for STS with a complex 
karyotype included TP53, RB1 and ATRX, while 

Variable All (n = 81)

 Leiomyosarcoma (LMS) 10 (12.4)

 Myxoid liposarcoma (MLS) 15 (18.5)

 Synovial sarcoma (SS) 11 (13.6)

 Dermatofibrosarcoma protuberans (DFSP) 4 (4.9)

 Low-grade fibromyxoid sarcoma (LGFMS) 3 (3.7)

 Extraskeletal myxoid chondrosarcoma (EMC) 1 (1.2)

 Clear-cell sarcoma (CCS) 1 (1.2)

Resection margins (%)

 R0 80 (98.8)

 R1 1 (1.2)

Radiation (RTX; %)

 Neoadjuvant 3 (3.7)

 Adjuvant 48 (59.3)

 No radiation 30 (37.0)

Chemotherapy (CTX; %)

 Neoadjuvant 4 (4.9)

 Adjuvant 7 (8.6)

 No chemotherapy 70 (86.4)

Table 1. (continued)
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gene fusions such as DDIT3-FUS or DDIT3-
EWSR1 in MLS, or SS18-SSX (including SS18-
SSX1 and SS18-SSX2) in SS were the main 
drivers for translocation-associated sarcomas 
(Figures 3 and 4, Supplemental Figure S1),2,16,17

FoundationOne® Heme detected translocations 
with low sensitivity in translocation-associated 
STS
Initially, 35 of 81 (43%) tumours were classified 
as translocation-associated sarcomas during rou-
tine workup based on morphology and immuno-
histochemistry (IHC). Translocations were 
confirmed in all tumours during routine workup 
by FISH (n = 11), rt-PCR (n = 7) or by the AFPSP 
(n = 15; Figure 4). The fusions detected by the 
AFPSP comprised three SS18-SSX1 and one 
SS18-SSX2 translocations in four cases of syno-
vial sarcoma (SS), five FUS-DDIT3 fusions and 
one EWSR1-DDIT3 fusion in six myxoid liposar-
comas (MLS), one FUS-CREB3L1 and two 
FUS-CREB3L2 fusions in three low-grade fibro-
myxoid sarcomas (LGFMS) and two COL1A1-
PDGFB fusions in two cases of 
dermatofibrosarcoma protuberans (DFSP). 
However, in two other cases of DFSP (Table 2), 
diagnosis was solely based on H&E and IHC, as 
in one case, no translocation was detected by the 
AFPSP, and in the other case the material quality 
of the sample was not sufficient to conduct either 

FISH, rt-PCR or the AFPSP (Supplemental 
Figure S2). Therefore, the latter case was not 
considered for further sensitivity and specificity 
calculations. Taken together, fusions were identi-
fied in 33/34 (97%) cases with FISH, rt-PCR or 
the AFPSP.

Using the FoundationOne® Heme test, true posi-
tive fusions were detected in 14/33 (42.4%) cases. 
These included six FUS-DDIT3 fusions, one 
EWSR1-DDIT3 fusion and one MYC rearrange-
ment in MLS, three SS18-SSX1 translocations 
and one SS18-SSX2 fusion in SS, one EWSR1-
CREB1 fusion in a clear-cell sarcoma (CCS) and 
one EWSR1-NR4A3 fusion in an extraskeletal 
mesenchymal chondrosarcoma (EMS; Table 2). 
The case of DFSP, in which neither 
FoundationOne® Heme nor the AFPSP detected 
any translocation, was considered a truly negative 
test result. False-negative testing with the 
FoundationOne® Heme assay occurred in 19/33 
(57.6%) cases in which translocations had been 
verified by other methods, as outlined above.

Thus, if only those n = 33 cases were considered, 
in which fusions were detected with other diag-
nostic methods, the detection rates for fusion 
events in STS by FoundationOne® Heme (n = 14) 
resulted in a specificity of 100% and a compara-
tively low sensitivity of 42.4% for this assay 
(Supplemental Table S2).

Figure 1. Heatmap summarising clinical data of the study cohort (n = 81).
Plotted are sex, age at diagnosis in three categories, classification into sarcomas with nonspecific complex karyotypes and translocation-associated 
sarcomas, tumour grading based on differentiation, mitotic count, and tumour necrosis, tumour size and depth, surgical resection margins (R0: 
microscopically margin-negative resection; R1: removal of all macroscopic disease, but with positive microscopic margins for tumour), treatment 
regimen [neoadjuvant versus adjuvant radiotherapy (RTX) and chemotherapy (CTX)], local recurrence, the presence of distant metastases and 
whether the patient was deceased. A detailed summary of clinical data and patient characteristics is given in Table 1.
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Figure 2. Comparison of genetic alterations in STS with a complex karyotype versus translocation-associated STS.
(a) Bar plot indicating genes that were altered in at least 5 out of 81 samples (6% of the overall cohort). Bars indicate the number (X axis) and subtype 
(different colour) of samples harbouring any type of alteration in the respective gene. Confirming previous reports, the most frequently mutated 
genes were TP53, RB1 and LRP1B. (b) Summary of rearrangements, single-nucleotide variants (SNVs), insertion-and-deletions (indels) and copy-
number alterations (CNAs) for each patient. (c) Distribution of short variants (SNVs and indels), CNAs and rearrangements in complex-karyotyped 
versus translocation-associated STS. While there was no significant difference in the number of short variants, and only borderline significance for 
rearrangements, CNAs were significantly more common in complex-karyotyped compared with translocation-associated sarcomas [77.6% (28/46) 
versus 22.5% (11/35), Mann–Whitney U, p = 0.0093]. Moreover, STS with a complex karyotype had a significantly higher number of genetic alterations 
(Mann–Whitney U test p < 0.0001).

https://journals.sagepub.com/home/tam
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Figure 3. Oncoplot of genes altered in at least 9% of the analysed tumours.
The figure illustrates the mutational landscape of (a) sarcomas with nonspecific complex karyotypes and (b) translocation-associated sarcomas. Each 
column represents a sample, and each row, a different gene. Coloured squares show altered genes, while white squares indicate a wild-type status 
for the respective gene. Variant types are displayed in various colours. Genes annotated as ‘Multi Hit’ have more than one alteration in the same 
sample. The barplot at the top shows the number of mutated genes for each patient, coloured according to the mutation type. The barplot on the 
right reports the number of mutated patients for each gene, coloured according to the mutation type. The sample designation indicates the subtype: 
leiomyosarcoma (LMS), myxofibrosarcoma (MFS), undifferentiated pleomorphic sarcoma (UPS), myxoid liposarcoma (MLS), synovial sarcoma (SS), 
low-grade fibromyxoid sarcoma (LGFMS), extraskeletal myxoid chondrosarcoma (EMC), dermatofibrosarcoma protuberans (DFSP) and clear-cell 
sarcoma (CCS).

https://journals.sagepub.com/home/tam
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Mutations in translocation-associated STS: 
PIK3CA is frequently mutated in MLS
In addition to gene rearrangements in transloca-
tion-associated sarcomas, the most commonly 
mutated genes were PIK3CA and SPEN, which 
were affected by missense mutations in 20% of 
cases. The most common PIK3CA variants were 
known ‘hotspot’ mutations H1047R (n = 3) and 
H1047L (n = 2) localised in exon 20 [Figure 3(b), 
Supplemental Table S1]. Interestingly, PIK3CA 
mutations were restricted to MLS and detected in 
7 of 15 MLS cases (46.7%), while SPEN was 
altered in a variety of fusion-driven sarcomas 
including MLS, DFSP, LGFMS, SS and EMC 
[Figure 3(b), Supplemental Table S1]. Other fre-
quently mutated genes included FAT3, FLYWCH1, 
LRP1B, NCOR and PCLO. Moreover, mutations 
in genes involved in chromatin organisation such as 
lysine methyltransferases or histone deacetylases 

were commonly found. MLL2 was altered in five 
sarcomas (14%; MLS: n = 3; SS: n = 1; LGFMS: 
n = 1); MLL3 showed five mutations in four sar-
coma samples (11%; MLS: n = 3; SS: n = 1; DFS: 
n = 1). Histone deacetylase 7 (HDAC7) was altered 
five times in four sarcomas (11%; SS: n = 3; MLS: 
n = 1; LGFMS: n = 1). Interestingly, in two cases 
(LGFMS: n = 1; SS: n = 1), MLL2 mutations coex-
isted with HDAC7 alterations, whereas one patient 
with SS showed (coexisting) mutations in the genes 
MLL2 and MLL3. In contrast, CNAs were less 
common. Deletions were detected in CDKN2B 
(n = 2, DFSP, SS) and PTEN (n = 1, MLS). 
Amplifications were present in CD36 (n = 2, MLS), 
NBN (n = 2, MLS, CCS) and RAD21 (n = 2, MLS, 
CCS). Furthermore, individual cases were ampli-
fied for LRP1B (n = 1, EMC), GPR124 (n = 1, 
MLS), NF2 (n = 1, DFSP), PRKDC (n = 1, MLS) 
and RNF43 (n = 1, DFSP).

Figure 4. Validation of a SS18-SSX2 fusion demonstrated by the ArcherFusion Plex Sarcoma Panel using alternative methods for 
fusion detection.
(a1) H&E morphology of a monophasic synovial sarcoma with a SS18-SSX2 fusion detected by the AFPSP. (a2) IHC demonstrates a strong nuclear 
staining with a SS18-SSX fusion specific antibody (clone E9X9V; cat# 72364; Cell Signaling Technology, Danvers, MA, USA). (a3) IHC shows strong 
nuclear staining with an SSX-specific antibody (clone E5A2C; cat# 23855; Cell Signaling Technology). (b) FISH demonstrating a SS18 rearrangement 
using the Zyto Light SPEC SS18 Dual Color Break Apart Probe (Zytovision, Bremerhaven, Bremen, Germany). (c) Gel electrophoresis image 
illustrating the rt-PCR results with confirmation of the SYT-SSX2 fusion product.
AFPSP, ArcherFusion Plex Sarcoma Panel; FISH, fluorescence in situ hybridisation; H&E, haematoxylin and eosin; IHC, immunohistochemistry; rt-
PCR, real-time polymerase chain reaction.
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Complex karyotype STS are mainly driven by 
alterations in recurrently mutated tumour 
suppressors and CNA
A total of 46 sarcomas of a complex karyotype, 
including 25 myxofibrosarcomas (MFS; 54%), 11 
undifferentiated pleomorphic sarcomas (UPS; 
24%) and 10 leiomyosarcomas (LMS; 22%), were 
profiled using the FoundationOne® Heme assay. 
In contrast to the translocation-associated sarco-
mas, these tumours were characterised by highly 
recurrently mutated genes [Figures 2(b) and (c), 
3(a)]. Moreover, CNAs were significantly more 
common compared with translocation-associated 
sarcomas [77.6% (28/46) versus 22.5% (11/35), 
Fisher’s exact test, p = 0.0093; Figure 2(c)]. The 
most commonly altered gene was TP53, which 
was affected by both mutations and CNAs in 74% 
of cases. Genetic alterations, mostly deletions, in 
RB1 were detected in 39% of cases, followed by 
ATRX and CDKN2A, which were altered in 22% 
of cases [Figure 3(a)]. In general, deletions were 
mainly observed in MFS. Unsurprisingly, dele-
tions were mostly observed in well-characterised 
tumour suppressors, such as TP53, RB1, ATRX, 
CDKN2A, CDKN2B, NF1 and PTEN. Recurrent 
amplifications were detected in EPHA3 (UPS: 
n = 1; MFS: n = 3), NCOR1 (MFS: n = 2; LMS: 
n = 1; UPS: n = 1), C17orf39 (MFS: n = 3; UPS: 
n = 1) and CD36 (MFS: n = 3) [Figure 3(a), 
Supplemental Table S1].

The axis of hepatocyte growth factor (HGF) and 
its receptor (HGF receptor, MET) was affected in 

five cases (MFS: n = 4; UPS: n = 1), of which the 
majority displayed amplifications. HGF was 
amplified in three cases of MFS; one of these 
cases was additionally amplified for MET. 
Occasionally, amplifications were also seen in 
genes encoding for other cell-surface receptors, 
such as KDR (n = 1, MFS), AXL (n = 2, MFS and 
LMS) or IGF1R (n = 2, MFS and LMS). Apart 
from cell-surface receptors, relevant downstream 
effectors were also affected by amplifications in 
individual cases; these included MAP3K1 (n = 1, 
MFS) and ISR2 (n = 2, MFS and UPS).

Apart from TP53, mutations at the nucleotide 
level were mostly observed in LRP1B (n = 9; 
20%), MAP3K6 (n = 8; 15%) and the histone 
methyltransferases MLL2 and MLL3, which were 
mutated in 15% of cases. MLL2 and MLL3 muta-
tions mainly occurred in MFS (n = 7) and UPS 
(n = 6); LMS was affected only once (MLL2). 
Notably, mutations in these genes were also com-
monly observed in translocation-associated 
sarcomas.

Discussion
Genetic profiling of STS has become an essential 
part of the diagnostic routine as a confirmation of 
H&E and IHC.2,18 Characteristic genetic altera-
tions now enable better definition and distinction 
of different histological mesenchymal tumour 
(sub)types.16 Several novel entities have recently 
entered the updated 2020 WHO Classification of 

Table 2. Summary of all translocations that were detected with FISH, rt-PCR, Archer Fusion Plex Sarcoma Panel (AFPSP) and 
FoundationOne® Heme.

Histological subtype FISH rt-PCR AFPSP FoundationOne® 
Heme

Synovial sarcoma (SS; n = 11) SS18 SSX1 or SSX2 
(formerly SYT-SSX; n = 7)

SS18 SSX1 or SSX2 (n = 4) SS18 SSX1 or SSX2 
(n = 4)

Myxoid liposarcoma (MLS; n = 15) FUS-DDIT3 or EWSR1 
(formerly CHOP; n = 9)

FUS-DDIT3 or EWSR1 (n = 6) FUS-DDIT3 or 
EWSR1 (n = 7); MYC 
rearrangement (n = 1)

Extraskeletal mesenchymal 
chondrosarcoma (EMS; n = 1)

NR4A3 (n = 1) EWSR1-NR4A3 (n = 1)

Clear cell sarcoma (CCS; n = 1) EWSR1 (n = 1) EWSR1-CREB1 (n = 1)

Low grade fibromyxoid sarcoma 
(LGFMS; n = 3)

FUS-CREB3L2 (n = 2);
FUS-CREB3L1 (n = 1)

 

Dermatofibrosarcoma protuberans 
(DFSP; n = 4)

COL1A1-PDGFB (n = 2); 
insufficient material (n = 1)

 

FISH, fluorescence in situ hybridisation; rt-PCR, real-time polymerase chain reaction.
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Bone and Soft-tissue Tumours, including CIC-, 
BCOR- and NTRK-rearranged sarcomas.6,19–21 
Tyrosine kinase fusions including ALK, ROS2, 
RET, BRAF and recently, NTRK, are useful 
actionable targets in STS.22–24 NRTK fusion-rear-
ranged tumours are a newly evolving molecularly 
defined tumour group showing very heterogenous 
morphologies (e.g. similar to infantile fibrosar-
coma, inflammatory myofibroblastic tumour, soli-
tary fibrous tumour or MPNST) and biologically 
range from benign to highly malignant.7,25,26 
NTRK1-3 gene fusions have been identified as a 
diagnostic marker for treatment response with 
selective small-molecule inhibitors of the TRK 
kinases.24 Targeted therapies with TRK inhibitors 
demonstrated phenomenal responses in the major-
ity of patients with NTRK1/2/3 fusion-positive 
tumours.7,25,26 Considering that limited treatment 
options are available for most STS, it is crucial to 
detect tumours harbouring druggable fusions.7,22–26 
Despite the development of specific targeted 
approaches, however, the robust detection of 
structural variants remains a challenge, especially 
in FFPE specimens. Therefore, comprehensive 
validation of such assays is highly recommended.

Here, we performed molecular profiling of 81 
STS using the commercially available 
FoundationOne® Heme assay. At least five 
genetic alterations with an average of 12 altera-
tions could be detected per patient, indicating the 
assay has broad patient coverage. Surprisingly, 
FoundationOne® Heme did not detect character-
istic fusion events in a large proportion (n = 19) of 
STS with otherwise confirmed fusion events 
(n = 33). As outlined above, characteristic translo-
cations were detected either by FISH (n = 11), rt-
PCR (n = 7) or by the AFPSP (n = 15) in 33/35 
translocation-associated STS (Table 2). One case 
of DFSP (Supplemental Figure S2) was solely 
diagnosed based on H&E and IHC, as the mate-
rial quality of this sample was neither sufficient to 
conduct FISH nor rt-PCR. However, the tumour 
showed the characteristic histopathologic features 
of a DFSP with uniform spindle-cell prolifera-
tions growing in a storiform pattern and a strong, 
diffuse immunoreactivity for CD34 (Supplemental 
Figure S2). In another case of a H&E- and IHC-
diagnosed DFSP with transition into a fibrosarco-
matous (high-grade) variant of DFSP, material 
quality was sufficient but nevertheless, no fusion 
could be detected by either the AFPSP or 
FoundationOne® Heme. After re-evaluation of 
this sample’s H&E stains and IHC, a possible 
explanation for this lack of detection could be the 

presence of a recently described fusion involving 
the platelet-derived growth-factor-D gene, as this 
gene is neither covered by our AFPSP, nor by the 
FoundationOne Heme assay.27 Of note, the 
AFPSP as an alternative NGS approach detected 
fusions in 15 cases, in which FoundationOne® 
Heme yielded fusion-negative results even though 
the quality of the provided material was sufficient. 
Based on detection rates in cases of good material 
quality and otherwise proven translocations 
(n = 33), this resulted in an overall sensitivity of 
less than 45% for FoundationOne® Heme fusion 
detection (n = 14) in our STS sample.

To date, we are not able to provide a satisfactory 
explanation for our observed failures in fusion 
detections with FoundationOne® Heme testing. 
However, false-negative results with 
FoundationOne® Heme testing were not solely 
associated with the age of the FFPE material or 
possibly poor RNA quality, as false-negative 
results occurred throughout our cohort. In con-
trast, the AFPSP particularly failed in samples 
older than 15 years in which the quality of 
extracted RNA was insufficient.

In general, the sensitivity of RNA-based analyses is 
affected by low expression of the fusion gene or 
highly degraded RNA (especially in FFPE sam-
ples), which impacts cDNA generation, bait hybrid-
isation or PCR. Furthermore, FoundationOne® 
Heme and AFPSP are based on different enrich-
ment technologies, which might explain the 
observed differences in fusion detection rates. The 
FoundationOne® Heme assay is a hybridisation-
based approach relying on the efficient hybridisa-
tion of baits to cDNA molecules to extract the 
fusion gene product. If hybridisation is inefficient or 
the fusion gene is lowly expressed, the resulting 
library may contain only very few copies of the 
fusion product, which leads to an under-representa-
tion of this product in the sequencing data. In fact, 
we observed a wide range of sequence-read cover-
age of translocations in the FoundationOne® data, 
ranging from 500× down to 12×. Since no translo-
cation was covered by less than 12 reads, is it likely 
that the FoundationOne® analysis pipeline applies 
an internal cut-off for fusion detection and does not 
report fusions supported by only a few reads. In 
contrast, PCR-based enrichment technologies such 
as the AFPSP are more robust, as they selectively 
amplify the fusion product alongside the wild-type 
molecule. This type of library generation process 
seems to have a higher efficiency in our samples, 
which are FFPE blocks of varying ages.
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Since the content of the two assays varies, we fur-
thermore checked whether target selectivity might 
be another reason for the discrepant results. 
While the AFPSP targets fusions of 35 genes 
associated with STS, the FoundationOne® kit 
enriches selected introns of 31 genes involved in 
rearrangements and RNA of 265 genes com-
monly rearranged in cancer. Although most of the 
genes included in the AFPSP are also covered by 
FoundationOne®, 10 genes are specific for the 
AFPSP (Supplemental Table S2). However, 
since no fusions involved in those genes were 
detected in our samples, this does not explain the 
superior performance of the AFPSP.

We are aware, though, that due to our small sam-
ple size, the findings regarding the assay’s sensi-
tivity must be interpreted with caution: these 
results need to be re-evaluated in a larger and ide-
ally prospective STS patient cohort.

The translational potential of this article lies in 
FoundationOne® Heme’s detection of putative 
therapeutic targets for STS treatment in our sam-
ple: consistent with previous reports,2,16,17 our 
data indicate a higher abundance of genetic alter-
ations in the STS of a complex karyotype, as 
compared with fusion-driven STS. Moreover, 
well-known tumour-suppressor genes, such as 
TP53, RB1, ATRX, CDKN2A, CDKN2B, NF1 
and PTEN, were recurrently affected by various 
alterations, including single-nucleotide variants 
and CNAs, with TP53 and ATRX being the most 
frequently altered genes, affecting 22% of sarco-
mas with a complex karyotype. Previous reports 
have highlighted the contribution of mutations of 
the TP53 gene in sarcomagenesis and tumour 
aggressiveness.17–19 Furthermore, alterations in 
the NF1 and ATRX genes have recently been 
associated with the tumourigenesis of various 
cancers, including mesenchymal and glial neo-
plasms.28 Notably, Oppel et  al.28 have demon-
strated that an additional loss of ARTX in p53/
nf1-deficient zebrafish is implicated in the devel-
opment of specific tumours, such as various types 
of STS. Further work is urgently needed to better 
understand the potential interaction between the 
well-characterised tumour-suppressor genes to 
promote the development of sarcomas.28,29

Based on genomic findings in STS, efforts are 
being made to compensate for lost or aberrant 
gene functions via various therapeutic 
approaches.30 For example, cyclin-dependent 
kinase (CDK) pathway activation is recognised as 

an important driver of sarcomagenesis.17,29,31 
Losses of crucial regulators of this pathway, 
including RB1, CDKN2A and CDKN2B were 
common in our samples and have also been fre-
quently observed in other mesenchymal neo-
plasms and sarcomas.17,29 CDKN2A losses were 
furthermore correlated with a poorer prognosis in 
several subtypes of sarcoma.17,29 For that reason, 
CDK inhibitors, namely the CDK4/6 inhibitor 
palbociclib (Ibrance®), are currently being evalu-
ated in clinical phase II trials in CDK4 positive 
sarcomas [ClinicalTrials.gov identifier: 
NCT03242381] and chordomas [ClinicalTrials.
gov identifier: NCT03110744].29,32 In a phase II 
study on well-differentiated or dedifferentiated 
liposarcoma [ClinicalTrials.gov identifier: 
NCT01209598], palbociclib has already resulted 
in favourable progression-free survival (PFS) and 
occasional tumour responses.29,33 Depending on 
the results of ongoing trials, CDK inhibitors 
could be further investigated as additional thera-
peutic tools in adult STS with proven genetic 
alterations of these crucial cell-cycle regulators.

Furthermore, a subset of sarcomas of a complex 
karyotype displayed gene amplifications. It is 
therefore interesting to speculate that selective 
inhibitors could serve as additional treatment 
options for these sarcomas, particularly if these 
amplifications affect receptor tyrosine kinases and 
other important regulators of intracellular path-
ways. Hence, several clinical trials are currently 
exploring targeted therapies alone or in combina-
tion with chemotherapies in sarcoma patients.5 
Our data indicate that the HGF–MET axis might 
be a relevant target. MET is a receptor tyrosine 
kinase shown to be involved in tumour-cell 
growth, invasion and drug resistance in many 
cancer types.34,35 It is activated upon binding of 
its sole ligand, the HGF.34 HGF is secreted by the 
tumour environment or in an autocrine manner 
by the tumour cells.34 Indeed, HGF/MET was 
amplified in a subset of MFS. A total of 3 of 24 
(12.5%) MFS displayed HGF amplifications; 1 of 
these cases was additionally amplified for MET. 
Several authors have previously reported poly-
somy of the MET gene locus on chromosome 7q 
in MFS and linked MET overexpression to an 
aggressive MFS biology.36–38 Although MET 
inhibition showed promising results in solid can-
cers, such as non-small-cell lung cancer, gastroin-
testinal cancer or hepatocellular carcinoma,39 the 
potential use of approved MET inhibitors, such 
as crizotinib in MFS, has been insufficiently 
investigated.35
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Interestingly, a high proportion of MLS (7 of 15, 
46.7%) carried mutations in PIK3CA. The 
PIK3CA gene (encoding the catalytic p110-alpha 
subunit of phosphatidylinositol-3-kinase, PI3K) 
is one of the most frequently mutated oncogenes 
in human cancers, with three ‘hotspots’ localised 
in exons 9 (codons 542 and 545) and 20 (codon 
1047) being most commonly affected. 
Accordingly, the mutations we detected were also 
located in these hotspots. Our data support recent 
findings reporting the presence of activating 
mutations in PIK3CA in MLS and suggest an 
essential role of PI3K/Akt signalling in this 
entity.40–42 In 2010, Barretina et  al.42 reported 
that PIK3CA mutations were associated with a 
worse prognosis of MLS. In postmenopausal 
women and men with hormone-receptor-positive, 
HER2-negative breast cancer, the PI3K inhibitor 
alpelisib was recently approved for patients with 
detected PIK3CA mutations for use in combina-
tion with fulvestrant, as it improved PFS and 
OS.43 Moreover, this inhibitor class is under 
investigation in several cancer trials.44 In vitro 
studies have indicated that inhibition of the PI3K 
pathway might also prove beneficial for MLS.40 
Therefore, PI3K inhibitors should be considered 
as additional treatment options in selected cases 
of MLS. In sum, the role of PIK3CA mutations 
should be further explored in larger MLS patient 
cohorts and multicentric approaches.

Finally, our sarcoma sample frequently displayed 
alterations in genes regulating DNA packaging, 
accessibility to transcription factors and other epi-
genetic modulators.45 These recurrent mutations 
in epigenetic modulators indicate a role of epige-
netic regulation in sarcoma pathogenesis.2 
Alongside ATRX deletions, which occurred in 
sarcomas of a complex karyotype, the histone 
lysine methyltransferases KMT2D/MLL2 and 
KMT2C/MLL3 were amongst the most frequently 
altered genes in both fusion-driven STS and sar-
comas of a complex karyotype.16 The latter, par-
ticularly MFS und UPS, displayed mutations in 
MLL2 and MLL3 in 15% of samples. In fusion-
driven sarcomas, these genes were mutated in 
14% and 11% of samples, respectively, particu-
larly in MLS and SS. These lysine methyltrans-
ferases are putative tumour suppressors recently 
recognised as important in carcinogenesis;45 they 
were shown to be mutated in a broad variety of 
blood and solid cancers.45 Initial data obtained for 
other cancer types suggest that treatments with 
poly(ADP-ribose) polymerase and mitogen-acti-
vated protein-kinase inhibitors might be beneficial 

in treating KMT2C and KMT2D-mutated 
tumours, respectively.45 However, the role of 
KMT2 mutations in sarcoma pathogenesis and 
treatment remains to be explored.

Of note, the present analysis was exclusively per-
formed on localised neoplasms at a single time-
point, thereby providing only a snapshot of the 
disease. However, to study tumour evolution and 
to identify progression from early-stage to 
advanced disease, or to detect early local recur-
rence, longitudinal studies are required.46 Due to 
the invasive nature of biopsies, instigators face 
ethical, organisational and financial issues when 
performing serial sampling of tissue.46 However, 
in the last decade, the analysis of tumour-derived 
circulating markers from blood (‘liquid biopsy’) 
has evolved as a minimal-invasive alternative to 
tissue biopsies.47 Despite the broad variety of his-
tological and genetic subtypes of STS and the lack 
of a common biomarker, several studies have 
already demonstrated promising results for circu-
lating tumour DNA (ctDNA) as a marker for 
monitoring disease burden,48–50 or to detect mini-
mal residual disease and recurrence.51,52 In gen-
eral, ctDNA levels might be low in sarcomas but 
can be readily detected in aggressive or larger 
tumours such as advanced LMS or MLS.48,49,52 
Detecting a lower disease burden is a challenge 
but this might be overcome by developing patient-
specific high-resolution assays.47 Overall, valida-
tion of the diagnostic and prognostic relevance of 
ctDNA in large and longitudinal studies is required 
to enable routine clinical implementation.

Another major limitation of this study is its com-
paratively small sample size. Even though many 
of our results align with those of the published 
data, these data are also often derived from study 
cohorts of limited size.36–38,40–42 Nevertheless, it is 
important to see these studies published and to 
report interesting findings that may ground fur-
ther scientific hypotheses.

Conclusion
In conclusion, the most striking observation of our 
study was the low sensitivity of fusion detection of 
the FoundationOne® Heme assay in transloca-
tion-associated STS. The assay detected translo-
cations in only 14 out of 33 cases, in which fusions 
were detected using other methods such as FISH, 
rt-PCR or the AFPSP. However, due to our small 
sample size, these findings must be interpreted 
with caution and need to be re-evaluated in a 
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larger and prospective patient cohort. Nevertheless, 
the molecular findings in our comparatively small 
cohort of STS support existing evidence for poten-
tial therapeutic targets for STS treatment, for 
instance, of a putative role of CDKN2A losses in 
sarcoma pathogenesis. Furthermore, mainly due 
to amplification, an upregulation of HGF/MET 
signalling was observed in a subset of MFS. 
Moreover, MLS frequently harboured PI3KCA 
mutations, supporting the putative role of the 
PI3K/Akt pathway in this entity. Finally, recur-
rent mutations in epigenetic modulators such as 
MLL2 and MLL3 in translocation-associated and 
complex-karyotyped STS indicate a role for epige-
netic regulation in sarcoma pathogenesis. 
Identification of molecular alterations in STS, for 
example, by FoundationOne® Heme sequencing, 
paves the way for personalised treatment strate-
gies in STS, making these approaches highly 
translationally relevant in the clinical setting.
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