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Abstract 

Accurate patient population stratification is a key requirement for a personalized medicine and more precise 

biomarkers are expected to be obtained by better exploiting the available data. We introduce a novel computational 

framework that exploits both the information from gene expression data and histopathology images for constructing 

a tissue-based biomarker, which can be used for identifying a high-risk patient population. Its utility is 

demonstrated in the context of colorectal cancer data and we show that the resulting biomarker can be used as a 

proxy for a prognostic gene expression signature. These results are important for both the computational discovery 

of new biomarkers and clinical practice, as they demonstrate a possible approach for multimodal biomedical data 

mining and since the new tissue-based biomarker could easily be implemented in the routine pathology practice. 

Introduction 

Tumor heterogeneity is a major hurdle on the path to a personalized medicine and many molecular biomarkers have 

been proposed for stratifying the patient population and predicting the (non) response to treatments. This 

heterogeneity is obvious both at tissue level, in histopathology images, and at molecular level, with various gene and 

protein profiling studies proposing systems for subtyping the cancers. With the recent technological developments, it 

is now possible to interrogate the same underlying biological reality from different perspectives and at various 

resolutions, from sequencing of the whole genome of an individual cell to magnetic resonance imaging of an 

organism. The combination of these diverse modalities is not only natural, but also necessary if we are to advance 

our understanding of the biological processes and to fully exploit the available data. Some combinations are more 

amenable to a common representation, thus facilitating the interpretation and inference – for example methylation 

and expression data or computer tomography and magnetic resonance imaging. In other situations, it is not clear if, 

how and to what extent some modalities can be combined. This is the case for microscopy imaging and gene 

expression (or other similar molecular data) – a combination of primary importance since it would allow 

establishing direct genotype-phenotype correlations, where tissue architecture and heterogeneity could be linked to 

some molecular signals. In the particular case of oncology, such correspondence may open new directions for 

identifying gene responsible for certain pathological phenotypes or, the primary goal of the present study, for 

identifying tissue biomarkers that can be used as proxies for genomic signatures. 

Some recent results indicate the potential of this approach. For example, in the case of breast cancer a few genomic-

phenotypic correlations are known, such as the association of lobular phenotype with deletions in the CDH1 gene 

(encoding for E-cadherin)
1
 or the predictive utility of mesenchymal/metaplastic features in the case of AR-positive 

triple negative breast cancers
2
. In the case of colorectal cancer (CRC) it is well known the association of 

mucinous/serrated carcinomas with BRAF mutations and we have shown that such association can be extended to a 

larger group of “BRAF mutated-like” tumors, characterized by a specific genomic signature
3
. Similarly, connections 

between nuclear morphometry and molecular data have been identified in glioblastoma
4,5

 and exploited in a 

multimodal prognostic signature in breast cancer
6
. These observations all support the idea that genomic and 

phenotypic traits can be put in correspondence and, by consequence, that some phenotypic features could potentially 

be used as proxies for genomic markers. 

In the present work we propose a computational framework for jointly mining the genomic and imaging data. The 

gene expression data is supposed to be obtained from the same (or adjacent) tumor section as the histopathology 

whole-slide image. The key point of our approach resides in a convenient re-coding of the imaging data that makes 

it usable by the standard data mining methods. In usual tissue-based gene expression profiling experiments, the 

DNA (or RNA) is extracted from a pool of cells, either micro- or macro-dissected from a designated tissue region. In 

the end, the value associated with a gene (or probeset) and considered to represent its expression level can be seen as 

an average signal over all the extracted region/cells
*
. On the other hand, a whole-slide pathology image has a 

number of pixels in the order of . Clearly, using raw pixel values (color or simply intensity) to find 

                                                             
*
 Single cell profiling or sequencing is possible

7
, but not yet feasible for every cell in a whole region of interest and 

the utility of such an approach for large studies remains to be demonstrated.   
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connections with the molecular data is nonsensical since isolated pixels do not bear enough information. Thus we 

are looking for a representation of image data in terms of features that capture local aspects of the image, ideally in a 

multi-scale and rotation invariant fashion, and which can be aggregated to give a global characterization of the tissue 

region of interest. This is a typical problem in content-based image retrieval applications and, inspired by them, we 

adapted here one of solutions proposed in this context – the bag-of-features method.  

To demonstrate the feasibility of the proposed framework, we explore whether the image-based features can be used 

– and to what extent – to predict a classification based on a genomic signature, namely the BRAF mutant-like (BL, 

hereinafter) signature
3
. This gene expression signature has been shown to identify a high-risk group of CRC 

patients
3
 constituting a well-defined subpopulation

8
 for which targeted therapies could eventually be developed

9
. 

The group of BL tumors (which includes about a third of all KRAS mutants), while being BRAF V600E wild-type, 

share a number of clinicopathologic characteristics with the true mutants, including poor overall and after relapse 

survival, higher frequencies of mucinous histology, high grade tumors, and microsatellite instability. The gold 

standard for identifying this subpopulation is given by the genomic signature, which involves computing a score as a 

linear combination of 64 genes
3
 (a difference of means of two groups of genes), with a positive score indicating a 

BL sample and a negative score a non-BL sample, respectively. The BL patient population in described in Popovici 

et al.
3
. 

 

Methods 

An overview of the computational framework is given in Figure 1. There are three distinct phases: learning a 

suitable image representation (codebook learning), image re-coding and multimodal data mining/analysis. Once the 

image representation is fixed and all images are recoded, we learn a binary classifier to predict gene expression-

based labels. All modeling (learning the image representation and the classifier) is performed on a modeling set, 

 
Figure 1. A schematic overview of the main steps of the computational framework: From a set of training 

images the corresponding tumor regions are extracted (following the annotation) and the local descriptors 

are computed (colored regions in the image). Using k-means clustering, a codebook is constructed. A new 

image follows the same image preprocessing steps up to local descriptor extraction. Then, based on the 

codebook, the local descriptors are assigned to codeblocks whose occurrence frequencies are saved as the 

image coding. With the images recoded, joint image and molecular data mining may proceed as usual. 
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independent on the validation set. We discuss the details of this framework and the statistical methods used for 

analysis in the following sections. 

 

Data 

The data collection used consisted of  samples for which both histopathology whole-slide images and clinical 

data were available, along with corresponding BL genomic scores
3
 (computed from gene expression data measured 

from a nearby tumor section). These samples are a subset of those described in Popovici et al.
3
. 

All samples were BRAF V600E wild-type, stage III, microsatellite-stable, CRC tumors. The collection was split in 

two sets for modeling ( ) and testing ( ). In the modeling set the two groups of BL (positive BL 

score) and non-BL (nBL – negative BL score) were equally sized, while in the validation set  were BL. 

For each sample, a whole-slide scan was obtained at  magnification (Hamamatsu scanner, typically of the order 

of  pixels) and, for practical reasons, was computationally downscaled to an equivalent  

magnification.  

 

Image preprocessing 

Since the gene expression was measured only from the tumor regions in each section, the image analysis was 

confined to the same regions (marked in the slides by an expert pathologist before DNA extraction). Hence, the first 

preprocessing step was to crop down the images to the bounding box of the tumor regions and to remove the normal 

tissue region, followed by a denoising step (Gaussian filtering). The images represented standard pathology slides, 

stained with haematoxylin (binding to chromatin-rich regions such as nuclei) and eosin (as contrast), from which 

only the haematoxylin was used in subsequent analyses. The intensity of the haematoxylin signal was obtained by 

color deconvolution
10

.  

 

Feature extraction and image re-coding 

As discussed in the Introduction section, the gene expression “signal” can be seen as an average over all cells from 

the micro-dissected tissue region (tumors, in our case). The chosen image representation is somehow similar: the 

bag-of-features
11

 represents the image in terms of frequencies of some basic image blocks. This method produces a 

sparse representation of an image and is an adaptation of the bag-of-words technique from text categorization and 

retrieval applications. It relies on the construction of a representative codebook, followed by the re-coding of the 

images in terms of ”words” (codeblocks) from this codebook
11

. Typically, the construction of the codebook begins 

with the computation of a number of feature vectors that represent some characteristics of the images over small 

local neighborhoods. The selection of these neighborhoods may be systematic (all the patches in a given region of 

interest), random or may rely on some points-of-interest detector. Once a representative collection of feature vectors 

has been obtained, a codebook is constructed by −means clustering of the vectors, with  being a user-supplied 

parameter. The resulting  cluster centroids (called codeblocks), , form the basis of the image re-

coding: a given image is re-coded by assigning all extracted local neighborhoods to one of the  clusters (nearest 

centroid classification) and building a vector of codeblock occurrence frequencies (Figure 2). Thus, each image is 

represented in terms of a vector from . Once the codebook has been constructed, for any new image a similar 

-value vector is obtained by following the same steps as before, with the exception that the codebook is fixed. This 

is a standard vector quantization method in signal and image processing, used initially for signal compression
12

. The 

choice of clustering algorithm ( −means) is justified by its probability density modeling properties and its 

scalability to very large data sets, as is the case in image processing. 

In the present work, this general framework has been modified in two key aspects: (i) we introduce a codebook size 

optimization step and (ii) we allow for uncertainties in image recoding. The codebook size optimization is aimed at 

improving the image recoding with respect to the binary classification problem to be solved. The small sample size 

( ) drastically reduces the design choices and possibilities of parameter optimization, while increasing the 

chances of overfitting. We have chosen to use a diagonal linear discriminant (DLDA) built on the top 10 (the size of 

the smallest codebook) features selected by two sample t-test, with the side note that a larger modeling set would 

allow a finer model selection and parameter optimization. The size of the codebook ( ) was selected to maximize 
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the classification accuracy of this model, estimated by 5-fold cross validation (over the training set). Basically, this 

implied repeatedly constructing a number of codebooks (with ), re-coding the images and 

estimating the performance of the classifier trained to distinguish BL from nBL.  

The second modification we introduced is based on the observation that the selection of training images might not 

cover the whole variability necessary to build a representative codebook. Thus, when re-coding images in the test 

set, we allowed a certain degree of uncertainty in the codebook by introducing a pseudo-cluster (labeled ) to 

which all local neighborhoods that were too far from any centroid of the codebook were assigned. When 

constructing the codebook, the average distances  and standard deviations  were recorded for each cluster . 

Then, for a new test image, any local neighborhood further than  from any centroid  was assigned to 

cluster . This pseudo-cluster was not part of the model, it merely indicated discarded/not assigned regions. We 

also tested the classical approach, with no pseudo-cluster, and we assessed the impact of using this strategy on the 

classification results. 

For the extraction of local neighborhoods image descriptors we opted for using Speeded-Up Robust Features 

(SURF)
13

 technique, which combines a key point detector with a local image descriptor to achieve a fast multi-

resolution detection and characterization of regions of interest. The descriptor is both rotation and scale invariant, 

both of which are required properties in our application. We used the implementation provided by the OpenCV 

library
†
 and we set the sensitivity threshold for the detection of key points (Hessian threshold) to 7500 throughout all 

the experiments. The resulting local descriptor vectors had 64 real values and described local neighborhoods of 

various sizes (since SURF is adapting to the local image content). 

 

Image classification 

Once the codebook size has been fixed and the final version obtained from the modeling set, all images have been 

re-coded as a set of  -vectors. These vectors were used to construct a DLDA-based classifier to distinguish 

between BL and nBL classes. Prior to training the classifier, the data was normalized to zero mean and unit standard 

deviation, in each of the  variables, and normalization parameters saved as part of the model. A simple, t-test based 

feature ranking procedure was used and only the top  variables retained in the model. In contrast to codebook 

learning, when the number of variables was kept fixed, here we optimized  over the training set by estimating (5-

fold cross-validation) the performance for  and selecting the value yielding the highest accuracy.  

 

Statistical analyses 

To test for association between the image features and BRAF score we used a two-sided test based on Pearson’s 

product moment correlation coefficient. To test the association between image features and binary variables (BRAF 

mutant-like and mucinous status) we used two-sided t-test. The  confidence intervals (CI) for the classification 

accuracy were obtained using Agresti-Coull method
14

. Finally, to test the differences in survival between two groups 

of patients, we used the Gehan-Breslow generalized Wilcoxon test for crossing survival curves, with a significance 

level of . No adjustment for multiple testing was applied. All statistical analyses were carried out in R statistical 

computing environment version 3.2.2 with survival package 2.38-3. 

                                                             
†
 Available from http://www.opencv.org  
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Results 

Codebook 

Using the described procedure, we established that a codebook with  was optimal for our training set. The 

codebook contained feature vectors corresponding to local neighborhoods of sizes varying from  to . 

The original local neighborhoods (before color deconvolution) are shown in Figure 2.  

 

 

 

 

Correlations between image features and genomic score 

Each image from the testing set was re-coded in terms of the frequencies of the codeblocks, resulting in a vector of 

 variables. Of these  variables,  were significantly associated with the BRAF mutant-like status and score (t-

test and correlation test p-values , respectively) with one additional variable being marginally associated 

with the score only. Not surprising, the same  variables were associated with the mucinous status. No association 

was found between the pseudo-variable corresponding the cluster  and the tested clinical variables. 

These initial results showed that the codebook was able to capture, at least partially, the essential features for 

identifying BL tumors. However, they also showed that none of the feature was strong enough to act as a BL-marker 

alone, justifying the plan for building a multivariate classifier. 

 
 

Figure 2. The 50 local neighborhoods whose feature vectors were 

selected as centroids (codeblocks) of the codebook. 
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Tissue-based proxy biomarker 

We built a DLDA-based classifier to distinguish between the BL and nBL classes, on the re-coded images based on 

the 50-codeblock codebook. The estimated (by cross-validation, on the modeling set) optimal number of variables 

was  and led to a model with an accuracy of  ( ) (sensitivity: 93.75%, 

specificity: 90.24%) on the independent test set (6 misclassified samples out of 73). In order to assess the quality of 

the strategy for estimating the optimal number of variables in the classifier ( ), several alternative classifiers were 

built on the modeling set, with the number of variables varying between  and  (with increments of ). They 

have been used to classify the test images that were coded with and without the use of the pseudo-cluster . It was 

apparent (see Figure 3) that employing a pseudo-cluster led to marginally improved classification accuracy, because 

the assignment to the 50 codeblocks was stricter. A larger test set would be required to eventually achieve a 

statistically significant difference between the two scenarios. 

 

Population stratification by tissue and genomic biomarkers 

The genomic biomarker has been shown to be a strong prognostic indicator for survival after relapse, hence it was 

hoped that the tissue-based biomarker would have the same property. The tissue-based biomarker misclassified 6 

patients (with respect to the genomic signature) and this had a negative impact on the stratification (Figure 4). The 

stratification obtained by genomic biomarker was statistically significant (p-value=0.02; HR=2.22), while the 

stratification by tissue-based biomarker showed only a trend towards significance (p-value=0.06; HR=1.62). The 

image-based classifier had a better sensitivity than specificity so most of the higher risk patients were similarly 

predicted by both biomarkers (30 out of 32). 

 
Figure 3. Classification accuracy on the test set for two series of DLDA classifiers: 

built on codebooks with (red) and without (blue) the pseudo-cluster . For clarity, the 

confidence interval is shown only for the model selected based on the modeling data. 
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On the other hand, the image-based classifier could have been optimized to improve its sensitivity, such that most 

(or all) of the high risk BL patients to be correctly identified. Such an optimization, while feasible, would require a 

larger cohort with more events. 

 

Discussion 

Combining gene expression (or other molecular) data with imaging data may lead to a different perspective on the 

biological processes. The imaging dimension brings information about phenotypic properties of the sample, whereas 

the molecular machinery is partially captured by the gene expression data. The main problem in combining such 

data stems from the difficulty to summarize the images into a reasonably sized set of meaningful (for the task at 

hand) variables. Indeed, for image data there are a myriad of characteristics that could be measured. One option is to 

use expert guidance for defining the feature of interest (e.g. nuclear morphometry) and then to build methods able to 

extract it. The advantage is that such a feature is justified by prior biological knowledge, leading to a model that is 

easier to interpret. Unfortunately, these features usually require expert-labeled images, which can be quite difficult 

to obtain and subject to inter-expert variability. Also, being based on previously established results, this approach 

may limit the ability of making new discoveries. A second option for summarizing the images is using statistics on 

local descriptors that could be linked in a later stage to some underlying biology. This approach is not confined to 

prior biological knowledge and may be applied on images that were not previously segmented by an expert. 

However, it still relies on the data analyst to define the proper local descriptors and is a high risk-high gain 

approach: there is a higher risk of failure, but also higher chance to establish novel connections. 

The work presented here took the second approach and relied on robust local image features that were scale and 

rotation invariant, making them ideal candidates. Once the images were re-coded based on a codebook adapted to 

the data, we proceeded to establish connections with gene expression data – here a genomic signature. Several 

image-based variables were found to be correlated with the “BRAF-mutated-like” status and formed the basis of an 

image- (tissue-) based biomarker. We call this a “proxy biomarker” since it allows to mimic (to a certain degree) the 

predictions that the genomic biomarker would make. 

The error rate of the image-based biomarker, while encouraging, indicates that there is room for improvement. For 

example, an improved sensitivity would make the biomarker an interesting screening test, since the patients would 

be prioritized for genomic testing as well (with strong indications of a possible deregulation of EGFR and/or MAPK 

pathways
8
).  
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Figure 4. Population stratification by genomic (left) and image-based (right) biomarkers. The 6 

misclassified patients have a negative impact on the stratification by the image-based biomarker, 

but still the stratification remains close to statistical significance (for the a priori chosen 

significance level). 
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Our approach used the bag-of-features technique with a modification: in the test images, we allowed for some to be 

assigned an “unknown” code (denoted  indicating that they were too far from any examples seen in the 

modeling step. The test results indicated that there is a marginal gain in using this approach (within the confidence 

interval, for the relatively small test set), which comes with basically no extra costs, thus being worthwhile. 

Having such a tissue-based biomarker has direct practical consequences. First, it can lead to a test that can easily be 

applied, without interfering with the routine pathology workflow, since it only relies on standard images. The 

pathologist can use the test as an additional source of information, complementing the standard procedures. 

Alternatively, the test can be applied retrospectively on archive pathology images when searching for cases for 

expression profiling. 

One direction that is not pursued here pertains to the analysis of the identified image features from a pathologist 

perspective. It would be interesting to see if any of the computationally derived image features can be linked to 

known morpho-pathology features, validating the approach from a biological interpretation perspective as well. This 

is left for a follow-up work. 

Conclusions 

We have presented a novel framework for building tissue-based biomarkers starting from a genomic signature and 

we applied it to the problem of finding a biomarker able to predict the “BRAF mutated-like”
4
 status. This problem 

has a clear practical importance in the diagnostic and prognostic of colorectal cancer. The samples on which we 

applied our method were relatively homogeneous (all microsatellite-stable, stage III) hence having a biomarker able 

to stratify this population is of clinical interest. 

We have demonstrated that it is possible to extract, in a data-driven manner, meaningful image features that may be 

related to genomic data. While this approach would probably not work in all scenarios, it opens the avenue for large-

scale automatic data mining, which could lead to the identification of new biomarkers (either tissue-based or 

multimodal). 

As a final remark, the proxy biomarker presented here represents but a first step towards a full-fledged test of 

clinical relevance. Many more tests and larger sample sizes are required before it would become useful. 
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