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Abstract: Cancer is a global health and economic issue. The majority of anticancer therapies become
ineffective due to frequent genomic turnover and chemoresistance. Furthermore, chemotherapy and
radiation are non-specific, killing all rapidly dividing cells including healthy cells. In this review, we
examine the ability of some natural products to induce lysosomal-mediated cell death in neoplastic
cells as a way to kill them more specifically than conventional therapies. This list is by no means
exhaustive. We postulate mechanisms to explain lysosomal membrane permeabilization and its role
in triggering cell death in cancer cells.
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1. Introduction

Cancer is the second leading cause of death worldwide. Many tumors eventually
become resistant to hormones, chemotherapy, and radiation by avoiding apoptosis [1].
Cancer cells become resistant to anticancer therapies by mutating pro-apoptotic genes
and upregulating anti-apoptotic genes. This chemoresistance is one of the biggest reasons
why chemotherapeutic therapies fail. Treatments such as chemotherapy and radiation are
known to have untoward side effects. The use of natural products may have fewer side ef-
fects and less toxicity than conventional chemotherapeutic drugs [2]. The chemoprotective
properties and low cytotoxicity of natural products make them attractive resources to use
against malignancies. It is desirable to identify more natural compounds with anticancer
activity. The antineoplastic actions of these natural compounds are mediated by their
ability to induce apoptosis in cancer cells [3]. Apoptosis or programmed cell death is
regulated by a balance of activation of proapoptotic genes, such as executioner caspases
(including caspases −3, −6, and −7 [4,5]) and antiapoptotic genes, such as Bcl-2 and XIAP.
This review will focus on the ability of certain natural products to induce apoptosis by
triggering lysosomal membrane permeability (LMP). Lysosomal-mediated apoptosis is an
attractive way to target neoplastic cells since cancer cells have larger and thus more fragile
lysosomes compared to wild-type cells [6,7]. Moreover, cancer cells have a higher reliance
on lysosomes for proliferation, metabolism, and adaptation to stressful environments
relative to normal cells. Indeed, cancer cells can increase the biogenesis of lysosomes, thus
affecting the number of lysosomes [8,9]. Unlike mutating genes, neoplastic cells cannot alter
their lysosomes, rendering these organelles as putative sites for directing novel anticancer
treatments. Thus, lysosomal cell death offers an alternative mechanism to kill tumor cells
that become resistant to standard chemotherapy. Lysosomes have been reported to play
a role in sequestering basic chemotherapeutic drugs in their acidic lumens, thus lower-
ing the effective drug concentrations to target sites, such as the nucleus [10,11]. Clearly,
further investigations are warranted to decipher the exact roles played by lysosomes in
cancer therapy.

Lysosomes are acidic organelles that contain at least fifty hydrolytic enzymes including
proteases, nucleases, glycosidases, and lipases [12]. Lysosomes digest unwanted materials
and damaged organelles. These hydrolases can degrade the entire contents of a cell, which
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is why they must perform cellular digestion within the lysosomal membrane. Leakage of
lysosomal enzymes into the cytosol can initiate apoptosis [13–15]. Furthermore, cleavage
of Bid and degradation of Bcl-2 by lysosomal cathepsins can promote mitochondrial mem-
brane permeabilization and caspase activation, which are hallmarks of apoptosis [16,17].
Lysosomal hydrolases can also initiate the intrinsic apoptotic pathway independent of Bid
cleavage [15]. The most relevant lysosomal proteases are cathepsins B, D, and L; they are
abundant in lysosomes and can remain active at neutral pH values [16,18]. The intrinsic
(mitochondrial) apoptotic pathway involves the release of intermembrane space proteins
such as cytochrome c and Smac/DIABLO and activation of executioner caspases [19–21].
This review will focus on the ability of certain natural products to induce apoptosis by
triggering lysosomal membrane permeability (LMP).

2. Lysosomal Membrane Permeabilization

Mounting evidence suggests that lysosomes are good molecular targets for cancer
therapy [22–24]. The cytosolic translocation of lysosomal enzymes can be triggered by
reactive oxygen species, lysosomotropic agents, and weak bases, including chemothera-
peutic agents [25,26]. A recent study identified autophazole, a novel autophagy initiator
that gets incorporated into lysosomes of cancer cells [27]. Autophazole induces the release
of cathepsins from lysosomes, leading to apoptosis. Some anticancer agents are known to
induce lysosomal-dependent cell death by modifying the lysosomal membrane integrity,
including vincristine and siramisene [28,29].

The precise mechanisms responsible for regulating lysosomal membrane permeabi-
lization (LMP) have yet to be elucidated. It is not known whether pores or channels form
in the lysosomes. It has been confirmed that the following agents and signaling pathways
can disrupt lysosomal membranes, namely reactive oxygen species [30], sphingosine [31],
downregulation of Hsp70 [32], photodynamic therapy [33], and translocation of Bax into
the lysosomal lumen [34]. Upon release into the cytosol via LMP, cathepsins degrade Bcl-2
and cleave Bid, triggering the mitochondrial apoptotic pathway [35]. Regardless of the
trigger of LMP, it has been shown by several reports that cytosolic leakage of cathepsins
precedes changes in the mitochondrial membrane potential [18,36].

Possible explanations for the control of LMP are emerging. One report confirmed the
occurrence of LMP via galectin 3 puncta assay as well as cytoplasmic leakage of lysosomal
enzymes [37]. A recent study provides a putative explanation for the regulation of LMP.
Toll-like receptor 3 (TLR3) acts as a death receptor in several cancer cell lines [38,39]. TLR3
can activate the extrinsic apoptotic pathway via initiator Caspase-8 [40,41]. Caspase-8 can
then subsequently activate downstream effector caspases such as Caspase-3 and trigger
the intrinsic apoptotic pathway. Loquet et al. (2021) showed that cell lines deficient in
Caspase-8 undergo an unconventional type of cell death characterized by permeabilization
of the lysosomal membrane as the initial event [42]. Interestingly, TLR3 is localized in
lysosomes [42] and might provide a way to execute LMP in cancer cells that are defective
in Caspase-8 or perhaps independent of Caspase-8.

3. Natural Products Induce Lysosomal Membrane Permeabilization in Cancer Cells

Several natural products have been identified that kill cancer cells by activating LMP,
see Table 1.

Venkatesan et al. reported that Pinus radiata bark extract (PRE) induces apoptosis
in MCF-7 breast cancer cells [43]. This group demonstrated that PRE-induced cell death
was accompanied by lysosomal membrane permeability and concomitant cytosolic release
of cathepsins. Furthermore, this cell death was observed to be caspase-independent.
Although this cell death did not involve caspase activation, it possessed certain hallmarks
of apoptosis. Namely, externalization of phosphatidylserine, cytoplasmic vacuolation, and
chromatin condensation were observed.

Oleocanthal-rich compounds such as olive oil have been demonstrated to induce
cell death in various cancer cells [44]. Moss et al. showed that low density lipoproteins
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reconstituted with the natural omega 3 fatty acid docosahexaenoic acid [45] (LDL-DHA)
were selectively toxic to liver cancer cells and not normal hepatocytes [46]. This study
demonstrated that basal levels of oxidative stress were higher in malignant TIB-75 cells
compared to normal TIB-73 cells. The increase in reactive oxygen species (ROS) and
iron-catalyzed reactions made cancerous liver cells susceptible to destabilization of their
lysosomes. Another report demonstrated that DHA-treated cells induced lysosomal-
mediated cell death in MDA-MB-231 breast cancer cells [47].

Monanchocidin A (MonA) is an alkaloid, initially isolated from the marine sponge
Monanchora pulchra [48]. Dyshlovoy et al. demonstrated that MonA induces apoptosis in
bladder and prostate cancer cells [49]. LMP was confirmed by release of cathepsin B into
the extracellular space and disappearance of red fluorescence of acridine orange coupled
with the appearance of green fluorescence. Non-malignant cells were less sensitive to
MonA. Inhibitors of lysosomes and lysosomal enzymes were able to block the cytotoxic
effects of MonA, further supporting the role of LMP in MonA-treated cells.

Triptolide (TPL), the active compound from the Chinese herb Tripterygium wilfordii
Hook F, has been used in traditional Chinese medicine for over two centuries. TPL activates
lysosomal-mediated apoptosis in MCF-7 breast cancer cells [50]. MCF-7 cells are a good
model system to study lysosomal cell death because they lack caspase-3, a key pro-apoptotic
executioner gene [51]. We have previously demonstrated in cell fractionation experiments
that cytosolic levels of cathepsin B increase in triptolide-treated cells during early stages of
apoptosis [50]. Owa et al. detected a shift from red fluorescence to green fluorescence in
experimental cells stained with acridine orange [50]. These findings support the disruption
of lysosomal membrane integrity by triptolide. We detected the subcellular localization of
cathepsin B in the cytosol of MCF-7 cells via fluorescence microscopy in triptolide-treated
cells [52]. In another report, TPL sensitized TRAIL-resistant pancreatic cancer cells to
apoptosis by promoting LMP [53]. Taken together, these results demonstrate that TPL
preferentially induces lysosomal disruption to target the death of cancer cells.

RDD648, an analog of the natural molecule riccardin D, was shown to exhibit anti-
cancer activities in breast cancer by targeting lysosomes in vitro and in vivo [54]. RDD648
neutralized the acidic pH in lysosomes and induced lysosomal leakage. This finding
suggests that this molecule behaves as a lysosomotropic agent. RDD648 facilitated STAT3
translocation to the nucleus, and this was involved in lysosomal-mediated cell death in
breast cancer cells. The role of STAT3 in this lysosomal cell death was confirmed by the
finding that inhibition of STAT3 ameliorated LMP. Nuclear STAT3 was observed to bind
to TFEB, leading to partial loss of TFEB, which is required for lysosome turnover. These
results may contribute to the design of treatments for breast cancers that express STAT3. A
derivative of riccardin D triggered DNA damage via cathepsin B-mediated degradation
and LMP in prostate cancer cells [55]. Another report showed that a derivative of riccardin
D caused significant reduction of xenograft tumors, and this cell death was accompanied
by LMP [56].

4-Deoxyraputindole C, also called compound S, a component extracted from the
Raputia praetermissa plant, was shown to cause cell death and cell cycle arrest in cancer
cell lines [57]. The authors showed that compound S was most active against Raji, a lym-
phoma cell lineage, and the death was accompanied by LMP and loss of mitochondrial
membrane potential. Compound S also induced cell cycle arrest at G0 and G2. Further-
more, Vital and colleagues observed that this cell death was not abrogated by the caspase
inhibitor. Taken together, these results suggest that compound S induces cell death in a
caspase-independent manner.

Short-chain fatty acids (SCFAs) trigger cell death in colorectal cancer associated with
lysosomal membrane permeabilization and mitochondrial dysfunction [58]. SCFAs are
normally produced in colon cells by bacterial fermentation [59]. Gomes and coworkers
demonstrated that transformed colonocytes are more susceptible to SCFAs compared
to normal colonocytes. Propionibacteria produce SCFAs, mainly propionate and acetate,
which induce apoptosis in colorectal cancer cells. Another study found that acetate-induced
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apoptosis in colorectal cancer cells was accompanied by LMP and cytosolic translocation
of cathepsin D [60]. Further studies are warranted to determine if modulation of SCFAs
can be used in the treatment or prevention of colon cancer.

In Geng et al. (2015), Icariside II (IS), a natural plant flavonoid, decreased the viability
of HepG2 hepatoblastoma cells in a dose- and time-dependent manner [61]. Cell death
was accompanied by LMP. Electron microscopy revealed autophagosome engulfment of
IS-impaired lysosomes. An accumulation of the lysosomal marker protein LAMP1, which
is an indicator of lysosomal membrane changes, was observed in the cytosol. Further-
more, acridine orange staining decreased with IS treatment, suggesting that the lysosomal
membrane was damaged.

(-)-Epigallocatechin-3-gallate (EGCG) is the most extensively studied tea polyphenol
for its anticancer function [62]. Zhang and coworkers demonstrated that EGCG-mediated
cell death was caspase-independent and non-apoptotic. Furthermore, the authors showed
EGCG triggered LMP and leakage of cathepsins into the cytosol [62]. Their study showed
that this lysosomal cell death was mediated by reactive oxygen species (ROS). The overpro-
duction of ROS is known to promote LMP [63,64].

Leelamine, a lipophilic diterpene amine phytochemical, is a natural compound ex-
tracted from the bark of pine trees and is a lysosomotropic agent [65] with antitumor
properties. Leelamine has been shown to inhibit proliferation of and induce cytotoxicity
in prostate and breast cancer cells [66,67]. Leelamine accumulates in lysosomes, thereby
preventing the translocation of cholesterol into the cytosol, leaving unbound cholesterol un-
available for cancer cells’ activities [67]. This finding suggests that the anticancer properties
of leelamine are due to its lysosomotropic properties.

Tubeimoside I (Tub) is a derivative of the Chinese medicinal plant of the Fritillaria
genus that was identified by screening a chemical library of natural products [68,69].
Tub-treated lung cancer cells demonstrated excessive ROS production, which resulted in
cytosolic release of cathepsin B [69]. Cathepsin B increase was confirmed by measuring the
green fluorescence intensity in acridine orange-stained cells [69]. The cytosolic release of
cathepsin B promoted upregulation of cytochrome C in cytosolic fractions, as detected by
western blotting [69]. These results suggest that Tub kills lung cancer cells via LMP and
precedes mitochondrial membrane potential changes.

Resveratrol (RSV), a phytochemical present in red fruits, peanuts, and grapes, pos-
sesses antioxidant and anticancer properties. RSV induces cell death in cervical cancer
cells by increasing LMP and modulating the expression of p53 [70]. This study also de-
tected decreased mitochondrial membrane potential downstream of the deregulation of
the lysosomal membrane.

Table 1. Natural products with anticancer properties related to lysosomal membrane permeabilization.

Natural Product Cells Doses Mechanism for LMP Reference

Pinus radiata bark extract MCF-7 breast cancer cells 65 µg/mL Chelation of intracellular
calcium and zinc [43]

Omega 3 fatty acid
docosahexaenoic acid TIB-75 liver cancer cells IC50 28 µM

ROS and iron catalyzed
reactions destabilize

lysosomes
[44]

Monanchocidin A Genitourinary cancer cells 50 µM Extracellular release of
cathepsin B [49]

Triptolide MCF-7 breast cancer cells 10 ng/mL
Lysosomotropic agent;

cytosolic release of cathepsin
B

[50,52]

RDD648

MCF-7 and HCC1428
breast cancer cells, prostate

cancer cells, xenograft
tumors

1–5 µM in vitro;
30 mg/kg in vivo

STAT3 binding to TFEB
induces loss of TFEB (needed

for lysosomal turnover)
[54]
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Table 1. Cont.

Natural Product Cells Doses Mechanism for LMP Reference

4-Deoxyraputindole C Lymphoma cells 53–56 µM
Decreased acridine orange

concentration inside
lysosomes

[57]

Short-chain fatty acids Colon cancer cells Not determined
Upregulation of LAMP-2

induces punctate structures
in lysosomes

[58]

Icariside II HepG2 hepatoblastoma
cells 20–30 nM Upregulation of cytosolic

LAMP-1 [61]

(-)-Epigallocatechin-3-
gallate

HepG2 hepatoblastoma
and HeLa cervical cancer

cells
60 µM ROS-triggered LMP [62]

Leelamine MCF-7 breast & LnCAP
prostate cancer cells

1–5 µM; Not
Determined

Lysosomotropic agent;
accumulates in lysosomes
and disrupts cholesterol

transport from lysosomes to
cytosol

[66,67]

Tubeimoside I Lung cancer cells 20 µM ROS accumulation damages
lysosomal membrane [69]

Acetate Colon cancer cells 70–220 mM Cathepsin D cytosolic release [60]

Resveratrol Cervical cancer cells 150–250 µmol/L Relocation of acridine orange
from lysosome to cytosol [70]

Abbreviations: LAMP-1, lysosome-associated membrane protein 1; LAMP-2, lysosome-associated membrane protein 2; ROS, reactive
oxygen species; STAT3, signal transducer and activator of transcription 3; TFEB, transcription factor EB.

4. Conclusions

Rupture of lysosomal membranes promotes release of lysosomal proteases into the
cytosol and apoptosis in cancer cells [17,70]. Figure 1 depicts putative mechanisms by
which natural products induce lysosomal membrane disruption.
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In this review, we proposed that lysosomal disruption may preferentially kill tumors
treated with natural products, representing a potential novel therapeutic option against
malignancies. Lysosomes are an interesting target in cancer cells because of their bigger
size and frailty compared to healthy cells [4,5]. LMP is a promising mode of therapy for
cancers that are resistant to chemotherapy, radiation, or hormone therapy, due to its distinct
mode of action. Further studies are warranted to decipher the precise mechanisms by
which natural products induce lysosomal cell death in cancer cells.
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Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
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