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Introduction: Chronic obstructive pulmonary disease (COPD) and lung cancer often coexist, but its pathophysiology and genomics
features are still unclear.
Methods: In this study, we retrospectively collected lung cancer concomitant COPD (COPD-LC) and non-COPD lung cancer (non-
COPD-LC) patients, who performed next generation sequencing (NGS) and had clinicopathological information simultaneously. The
COPD-LC data from the TCGA cohort were collected to conduct further analysis.
Results: A total of 51 COPD-LC patients and 88 non-COPD-LC patients were included in the study. Clinicopathological analysis
showed that proportion of male gender, older age, and smoking patients were all substantially higher in COPD-LC group than in non-
COPD-LC group (all P<0.01). Comparing the genomic data of the two groups in our cohort, COPD-LC had higher mutation frequency
of LRP1B (43% vs 9%, P = 0.001), EPHA5 (24% vs 1%, P = 0.002), PRKDC (14% vs 1%, P = 0.039), PREX2 (14% vs 0%, P =
0.012), and FAT1 (14% vs 0%, P = 0.012), which had a relationship with improved tumor immunity. Immunotherapy biomarker of PD-
L1 positive expression (62.5% vs 52.0%, P = 0.397) and tumor mutation burden (TMB, median TMB: 7.09 vs 2.94, P = 0.004) also
were higher in COPD-LC. In addition, RNA data from TCGA further indicated tumor immunity increased in COPD-LC. Whereas,
COPD-LC had lower frequency of EGFR mutation (19% vs 50%, P = 0.013) and EGFR mutant COPD-LC treated with EGFR-TKI
had worse progression-free survival (PFS) (HR = 3.52, 95% CI: 1.27–9.80, P = 0.01).
Conclusion: In this retrospective study, we first explored molecular features of COPD-LC in a Chinese population. Although COPD-
LC had lower EGFR mutant frequency and worse PFS with target treatment, high PD-L1 expression and TMB indicated these patients
may benefit from immunotherapy.
Keywords: lung cancer, COPD, mutation landscape, Chinese population, molecular markers

Introduction
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide.1 Despite the development of new diagnostic
technology, average 5-year survival rate at early stage is 60%, while average 5-year survival rate at late stage is 22%.2

Chronic obstructive pulmonary disease (COPD) is characterized by persistent respiratory symptoms and airflow limita-
tion. It is a high-profile public health challenge in worldwide and the third leading cause of death in China, with 8.6%
prevalence of spirometry-defined COPD.3,4 At present, the spirometry criterion for airflow limitation remains a post-
bronchodilator fixed ratio of FEV1/FVC <0.7 which is the gold standard for diagnosis of COPD.5

Lung cancer and COPD are intimately interrelated. Numerous studies have shown that the presence of airflow
limitation confers between a 2–6-fold increase in the risk of lung cancer depending on the study design and definition of
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COPD.6,7 A previous study demonstrated that COPD is a risk factor for lung cancer development, independent of tobacco
exposure.8 A meta-analysis of 26 studies revealed that lung cancer concomitant COPD was associated with poorer
overall survival (OS), which was independent of tumor stage, diagnostic criteria of COPD or location.9 Although
precision medical developments over past decades have sufficiently delineated the genomic landscape of lung cancer
and afforded options for targeted and immune therapy for it, our understanding of molecular characteristics and excellent
therapeutic options in lung cancer concomitant COPD remains inadequate.

A retrospective study based on the National Health Insurance Research Database in Taiwan indicated lung cancer
patients with EGFR-TKI treatment had a worse survival outcome if patients had pre-existing COPD.10 However, the
patients in this study lacked further description of genetic mutations. Another retrospective immunotherapy research
investigated the clinical impact of COPD on the treatment response to palliative pembrolizumab in non-small cell lung
cancer (NSCLC). Patients with COPD not only had higher response rate (38.2% vs 20.5%, p = 0.028), but also had better
OS and progression-free survival (PFS).11 The above results indicate that lung cancer concomitant COPD is different
from lung cancer in clinical pathology, efficacy of targeted and immune therapies and even genomic features. Recently,
Kenji et al12 demonstrated that the PI3KCA mutation is a distinctive genetic feature of NSCLC and COPD, however,
only 72 cancer-related genes were sequenced in this study and without immunotherapy biomarker exploration. Therefore,
deep understanding of genomic determinants of lung cancer concomitant COPD is critical for choosing an effective
therapy.

In this retrospective study, we first compared the clinical characteristics and serum markers of lung cancer patients
with and without COPD. Second, we focused on the potential pathogenic and targeted molecular links and differences
between lung cancer concomitant COPD and non-COPD. In addition, TCGA data of lung cancer concomitant COPD was
used to explore associations and differences between cancer populations in China and the West.

Materials and Methods
Patients and Study Design
Patients with lung cancer or lung cancer concomitant COPD diagnosed at The Fourth Affiliated Hospital of Xinjiang
Medical University (Urumqi, Xinjiang Uygur Autonomous Region, China) between December 2018 and August 2021
and conducted NGS (69/539 cancer related genes panel) to clarify status of driver mutations were enrolled in this study.
Patients with other synchronous cancers except for lung cancer were ineligible. COPD was defined as incompletely
reversible airflow obstruction associated with post-bronchodilator forced expiratory volume in one second (FEV1) and its
ratio to forced vital capacity (FEV1/FVC) <0.7 and persistent respiratory symptoms including cough, dyspnea, and
excessive sputum production.13 Clinical and pathological information was obtained from each patient including gender,
age, smoking status, pathological type, and details of treatment. Informed written consent was acquired from each patient
at the time of sample submission. The demographic and clinical characteristics of all patients are presented in Table 1 and
Supplementary Table S1. The study methodologies conformed to the standards set by the Declaration of Helsinki and it
was approved by the ethics committee (approved No. 2022XE010).

TCGA Data
The lung cancer samples with explicit lung function data (FEV1/FVC) were chosen in the TCGA database that was
downloaded from the cBioPortal (https://www.cbioportal.org). According to the GOLD guidelines,13 (FEV1/FVC) <0.7
in TCGA was defined as COPD-LC. Lung cancer with (FEV1/FVC) ≥0.7 was defined as non-COPD-LC.

Sample Collection, DNA Extraction, and Library Preparation
To be specific, all cancer samples (cfDNA/FFPE/fresh tissue) were tested with 69-genes panel or 539-genes panel. The
specific test information of each sample was in the Supplementary Table S1. All samples were sequenced in a College of
American Pathologists (CAP)-certified genomic testing facility (Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China).
Genomic profiling of these samples was performed on formalin-fixed paraffin-embedded (FFPE) tumor/plasma biopsy
specimens that were obtained from patients who had signed written informed consent. Three commercial kits were used
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for the DNA extraction. Genomic DNA (gDNA) of formalin-fixed and paraffin-embedded (FFPE) tissues and fresh
tissues was extracted using the Tissue sample DNA extraction kit (Kai Shuo). Genomic DNA of leucocytes was extracted
using MagMAXTM DNA Multi-Sample Ultra Kit (Thermo). Cell-free DNA (cfDNA) of plasma was extracted using
MagMAXTM Cell Free DNA Isolation Kit (Thermo). All of the extraction procedures were performed following the
manufacturer’s instructions. DNA was quantified on Qubit Fluorometer with Qubit dsDNA HS Assay kit (Thermo) and
its quality was evaluated by Agilent 4200 TapeStation (Agilent). Probe hybridization capture method was used for library
construction. Commercial reagents and customized probe were used for library construction and hybridization capture. In
brief, 15–200 ng gDNA was sheared into 200~350 bp by fragmentation enzymes. Indexed paired-end adaptors for
Illumina platform were self-developed and customized (SimcereDx). End repair, A-tailing and adaptor ligation of sheared
DNA and cfDNA was respectively performed by KAPA HyperPlus DNA Library Prep kit (Roche Diagnostics) and
VAHTSTM Universal DNA Library Prep Kit for Illumina® (Vazyme). Unligated adaptors were removed by the size
selection function of Agencourt AMPure XP beads (Beckman Coulter). The ligation products were PCR amplified to
form a pre-library for hybridization. The final library was quantified on Qubit Fluorometer with Qubit dsDNA HS Assay
kit (Thermo Fisher) and its quality was evaluated by Agilent 4200 TapeStation (Agilent).

Table 1 Clinicopathological Characteristics of the Chinese Cohort

Characteristic COPD Non-COPD P value

No. of Patients (%) No. of Patients (%)

Total of patients 51(100) 88(100)

Age (yr) P<0.001

Mean±SD 73.1±8.0 66.1±10.6

Sex - no. (%) P<0.001

Male 40(78) 42(48)

Female 11(22) 46(52)

Pathology - no. (%) P=0.087

Adenocarcinoma 32(63) 71(81)

Squamous-cell carcinoma 12(23) 13(15)

Adenosquamous carcinoma 2(4) 1(1)

Others 5(10) 3(3)

Stage - no. (%) P=0.142

I 2(4) 7(8)

II 2(4) 2(2)

III 12(23) 8(9)

IV 34(67) 67(76)

NA 1(2) 4(5)

Smoking history - no. (%) P=0.002

Yes 29(57) 36(41)

No 18(35) 52(59)

NA 4(8) 0(0)
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Library Sequencing and Bioinformatics Analysis
The qualified DNA libraries were sequenced on Illumina NovaSeq6000 platform (Illumina, San Diego, CA) and
generated 150 bp paired end reads. Base calls from Illumina NovaSeq6000 were conducted to FASTQ files. The software
fastp (v.2.20.0) was used for adapter trimming and filtering of low-quality bases.14 The BWA-MEM (v.0.7.17) algorithm
was performed to align to the reference genome (UCSC’s hg19 GRCh37).15 Duplicate reads from PCR were excluded
using Dedup with Error Correct. SNVs/InDels were called and annotated via VarDict (v.1.5.7)16 and InterVar,17 then the
variants were filtered against the common SNPs in public database including 1000 Genome Project (Aug 2015) and
Exome Aggregation Consortium (ExAC) Browser28 (v.0.3). CNVs and fusions were analyzed by CNVkit (dx1.1)18 and
factera (v1.4.4),19 respectively.

Immunohistochemistry (IHC) Staining of PD-L1
Tissue biopsies of this study were performed with immunohistochemical (IHC) staining of PD-L1 expression with the
VENTANA PD-L1 (SP263) Assay (Ventana Medical Systems, Inc., Tucson,

Arizona) according to the protocol reported previously.20 PD-L1 IHC was evaluated by a pathologist based on tumor
cell score (TC score) with membranous and/or cytoplasmic staining, and divided into three groups: no-expression (<1%
of tumor cells), low expression (1–49%) and high expression (≥50%).

TMB Analysis
Tumor mutation burden (TMB) was defined as the total number of non-synonymous somatic, coding, base substitution,
and indel mutations per megabase (Mb) of genome in both our clinical cohort and The Cancer Genome Atlas (TCGA)
cohort. For whole-exome sequencing (WES) data in TCGA, 38 Mb was adopted as the estimated exome size and
calculated using maftools.21 In our Chinese cohort, 539 panel data were used to calculate TMB and 2 Mb was adopted as
the estimated exome size.

Tumor Immunogenicity and Immune Characteristics Analysis
The CIBERSORTweb portal (https://cibersort.stanford.edu/) was used to assess 22 types of infiltrating immune cells that
were based on normalized gene expression data. The CIBERSORT immune infiltration proportions and immune-
associated gene list were acquired from the immune landscape implemented by Thorsson et al.22

Gene Set Enrichment Analysis
The gene set enrichment analysis (GSEA) was conducted using the Java GSEA 4.1.0 Desktop Application (http://www.
gsea-msigdb.org/gsea/index.jsp) to identify immune-related gene signatures between the COPD-LC and non-COPD-LC.23

R package DESeq2 was conducted to produce properly normalized RNA-seq Counts data which are compatible with
GSEA.24 The gene sets examined in GSEA of Hallmark gene sets were obtained from Molecular Signatures Database
(MSigDB database v7.4) (http://www.gsea-msigdb.org/gsea/downloads.jsp). This analysis involved 1000 random permu-
tations for gene set and weighted enrichment statistic. The normalized enrichment score (NES) is the primary statistic for
examining gene set enrichment results. The proportion of false-positives was controlled by calculating the false discovery
rate (FDR). FDR estimates the probability that a gene set with a given NES represents a false-positive finding. A
significantly enriched gene set was expected at FDR < 0.05.

Statistical Analysis
Results are reported as percentage, median (interquartile range (IQR)) or mean with standard deviation. Fisher’s exact or
Chi-square test was performed to compare categorical variables. The Student’s t-test was used for analyzing quantitative
data between two groups, and one-way ANOVAwas used for comparisons of more than two groups. PFS of EGFR-TKIs
was defined as the time from EGFR-TKIs therapy to documented progression or death from any cause or until the time of
the last follow-up. The Kaplan-Meier (K-M) curve analysis of PFS was compared using the Log rank test. The Cox
proportional hazards model was applied for univariable and multivariate survival analysis, and available confounding
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factors were adjusted. All the data were analyzed via R statistics package (R version 4.0.3). All statistical tests were two-
sided, and P-value of < 0.05 was considered significant.

Results
Clinicopathological Characteristics of COPD-LC Patients in Our Chinese Cohort and
TCGA Cohort
Between December 2018 and August 2021, 51 patients diagnosed with lung cancer concomitant COPD (defined as
COPD-LC) and 88 lung cancer patients without COPD (defined as non-COPD-LC) at The Fourth Affiliated Hospital of
Xinjiang Medical University were enrolled in this study (Supplementary Table S1 and Supplementary Figure S1). The
clinicopathologic characteristics are summarized in Table 1. Comparison of the clinical features between COPD-LC and
non-COPD-LC revealed that COPD-LC had a significantly higher ratio of male patients (78% vs 48%, P <0.001) and
elderly patients (mean ± SD: 73.1±8.0 vs 66.1±10.6, P< 0.001) than non-COPD-LC. Meanwhile, the patients with
COPD-LC had a higher proportion of smoking history (57% vs 41%, P = 0.002), which is not surprising because COPD
is a major independent risk factor for lung carcinoma in smokers and increases the risk of lung cancer up to 4.5-fold.25

Moreover, there were also some differences between COPD-LC and non-COPD-LC in some serum markers and tumor
markers, such as C-reaction protein and albumin levels (details in Supplementary Table S2). In the TCGA cohort, 69
COPD-LC and 126 non-COPD-LC cases were included in the analysis. The clinicopathological features of the TCGA
cohort are shown in Supplementary Table S3. In the TCGA cohort, pathologic types and smoking history differed
between the two groups.

The Genomic Landscape of COPD-LC Patients in Our Chinese Cohort
In order to do a comprehensive analysis, 21 COPD-LC and 68 non-COPD-LC tissue samples that conducted 539
cancer-related genes were eventually collected in the landscape analysis (Supplementary Figure S1). The mutational
landscape of tissue samples in the two groups is shown in Figure 1A. In general, the high frequency mutations of all
patients happened on TP53 (54%), EGFR (43%), MUC16 (27%), LRP1B (17%), PIK3CA (10%), and RBM10 (10%).
While in COPD-LC, recurrent mutant genes were TP53 (71%), LRP1B (43%), MUC16 (33%), EPHA5 (24%), EGFR
(19%), and RBM10 (19%). The mutation frequency and Fisher’s exact test results of 539 genes within the two groups
are shown in Supplementary Table S4. Notably, LRP1B (43% vs 9%, P = 0.001), EPHA5 (24% vs 1%, P = 0.002),
PRKDC (14% vs 1%, P = 0.039), PREX2 (14% vs 0%, P = 0.012), and FAT1 (14% vs 0%, P = 0.012) mutated more
frequently in COPD-LC than non-COPD-LC (Figure 1B), which were reported to be associated with better immu-
notherapy efficacy in NSCLC or pan-cancer.26–31 Interestingly, EGFR, which was a targetable driver gene and had
relationship with worse response to immunotherapy, had lower mutation frequency in COPD-LC group than non-
COPD-LC group (19% vs 50%, P = 0.013). Therefore, we investigated TMB and PD-L1 expression status in the two
groups. COPD-LC had higher TMB than non-COPD-LC (median [IQR]: 7.09 [2.84–11.03] vs 2.94 [1.46–4.55], P =
0.004, Figure 1C). And it was observed that patients with PREX2 mutation (median [IQR]: 20.59 [18.75–22.35] vs
6.25 [2.37–9.04], P = 0.008) and LRP1B (median [IQR]: 11.03 [9.22–16.91] vs 3.91 [2.01–7.27], P = 0.005) had
significantly higher TMB (Figure 1D). A gastric cancer study found mutation status of PREX2 in baseline ctDNA
influenced the PFS of immunotherapy.27 But there have been no reports that this gene is associated with lung cancer
immunotherapy and TMB. Therefore, the association of this gene with high TMB and immunotherapy warrants further
investigation. Patients with mutations in other mutant genes except for EGFR had a trend toward a higher TMB value
(Supplementary Figure S2). In addition, COPD-LC had a higher proportion of PD-L1 positive expression (TC≥1%)
than non-COPD-LC (62.5% vs 52.0%, P = 0.397, Figure 1E). However, significant difference of PD-L1 positive
expression was not observed, probably due to the limited sample size. These results indicated that COPD-LC may
benefit from immunotherapy.
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COPD-LC Had Lower EGFR Mutation Frequency and Worse Clinical Outcomes of
EGFR-TKI Treatment
Notably, in our Chinese cohort, the COPD group had a much lower mutation frequency of the driver gene EGFR (19% vs 50%,
P= 0.013) than the non-COPDgroup (Figure 1B). Thenwe followed treatment status of all EGFRmutant patientswho conducted
NGS tests. Finally, EGFR-TKI first-line therapy information of 27 advanced patients (7 COPD-LC, 20 non-COPD-LC) was
achieved. Their clinical information is shown in Supplementary Tables S5 and S6. Survival analysis revealed that EGFRmutant
COPD-LCwas significantly associatedwithworse PFS (mPFS: 21.7 vs 48.0weeks,HR=3.52, 95%CI: 1.27–9.80, long-rank P=

Figure 1 Analysis of our Chinese cohort. (A) Heatmap of 539 cancer related genes mutation of COPD-LC (n = 21) and non-COPD-LC (n = 68) in our Chinese cohort. (B)
Comparison of differential mutation genes displayed within COPD-LC and non-COPD-LC. (C) Comparison of TMB within COPD-LC and non-COPD-LC. (D) Relationship of
differential mutation genes and TMB in COPD-LC (LRP1B and PREX2). (E) PD-L1 expression status with COPD-LC and non-COPD-LC. Notes: *P < 0.05; **P < 0.01; ***P <0.001.
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0.01, Figure 2A). In the multivariable Cox proportion hazards regressionmodel, taking account of age, sex, smoking history, PD-
L1 expression and TP53 co-mutation, COPD was also an adverse factor of PFS (HR = 6.86; 95% CI: 1.37–34.36; P = 0.02,
Figure 2B).

Figure 2 Survival analysis of EGFR mutant patients with EGFR-TKI treatment. (A) Kaplan–Meier curves of PFS in EGFR mutant COPD-LC and non-COPD-LC patients. (B)
Multivariate Cox regression analysis of EGFR mutant patients with EGFR-TKI treatment.
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The Genomic Landscape of COPD-LC Patients in TCGA Cohort
In the TCGA cohort, 69 COPD-LC and 126 non-COPD-LC were included in the analysis. The clinicopathological
features of TCGA cohort are shown in Supplementary Table S3. In the TCGA cohort, COPD-LC had a higher proportion
of smoking patients than non-COPD-LC (100% vs 93%, P = 0.028), while COPD-LC had a lower proportion of lung
adenocarcinoma than non-COPD-LC group (42% vs 67%, P = 0.001). Although the proportion of adenocarcinoma in our
Chinese cohort was lower in the COPD-LC group, it did not reach a statistical difference (63% vs 81%, P = 0.087).
Interestingly, in the TCGA cohort, we found no differences in age and sex between the COPD-LC and non-COPD-LC
groups. For somatic mutation analysis, 539 genes, same as genes in our clinical panel, were used, and the mutational
landscape of these patients is shown in Figure 3A. In general, the high frequency mutations of all patients occurred on
TP53 (62%), MUC16 (46%), LRP1B (39%), SPTA1 (23%), and KRAS (21%). In COPD-LC, top mutant genes were
TP53 (68%), MUC16 (52%), LRP1B (38%), SPTA1 (22%), KEAP1 (19%), and KRAS (17%). EGFR is not shown in the
heatmap because of its low mutation frequency (6%, 11/195). The mutation frequency and Fisher’s exact test of 539
genes in the two groups are shown in Supplementary Table S7. Differentially mutant genes between COPD-LC and non-
COPD-LC are shown in Figure 3B. Notably, there was no significant difference between the two groups on tumor
immunity related genes, such as LRP1B, EPHA5, PRKDC, and PREX2. Further, comparing TMB between the two
groups, although COPD-LC had higher TMB (median [IQR]: 10.89 [7.00–16.94] vs 10.08 [4.67–15.76]), the difference
was not statistically significant (P = 0.097, Figure 3C). These differences in molecular characteristics between the TCGA
cohort and Chinese cohort were probably due to clinicopathological differences of the two groups.

Herein, we used transcriptome data from the TCGA cohort to explore the underlying mechanisms associated with
COPD-LC and immunotherapy. We used CIBERSORT to explore 22 types of infiltration of immune cells and the results
are shown in Figure 3D. As expected, improved anti-tumor immunity was observed in COPD-LC. Eosinophils, plasma
cells, and activated mast cells were more abundant in the COPD-LC group. Resting mast cells, resting CD4 memory T
cells and Tregs cells were lower in COPD-LC. Since COPD is a consequence of complex host-environment interactions
that occur over time, COPD-LC had more active mast cells (P = 0.0087). In addition, the inflammatory response in
COPD involves both neutrophilic inflammation and eosinophilic inflammation in COPD.32 The eosinophils in COPD-LC
have higher expression (P = 0.0101). Since essentially all smokers develop macrophage and neutrophil infiltration in
their lungs,33 no difference in neutrophil and macrophage cells expression was observed between the two groups. In
addition, the results of enrichment analysis showed that many pathways varied significantly between the two groups
(Figure 3E). Some signal pathways were upregulated in COPD-LC, such as DNA repair and G2/M checkpoint, which
further indicated these patients may benefit from immunotherapy. Perturbation of DNA repair machinery could increase
genomic instability, generate neoantigens, upregulate the expression of programmed death ligand 1 (PD-L1) which may
promote the efficacy of immunotherapy. The G2/M phase, involving energy dependent reactions for structural rearrange-
ments of cell division, is associated with T cell proliferation.34 Therefore, an upregulated G2/M checkpoint pathway may
promote T cell proliferation.

Discussion
For the past few years, extensive studies have focused on mutation landscape, innovational target and immunotherapies
of lung cancer.35–37 However, our understanding of lung cancer with various complications including COPD is
inadequate. In this retrospective study, we first found COPD-LC patients had unique features of clinicopathology. In
addition, some serum and tumor markers also differed between COPD-LC and non-COPD-LC groups. Then we explored
the genomic differences between two groups in our Chinese cohort. In terms of molecular characteristics, compared with
non-COPD-LC, COPD-LC had higher mutation frequency of some immune-related genes (LRP1B, EPHA5, PRKDC,
PREX2, and FAT1).26,29,38 Notably, in these differential mutant genes, COPD-LC patients with mutations in LRP1B
(11.03 vs 3.91, P = 0.005) and PREX2 (20.59 vs 6.25, P = 0.007) had significantly higher TMB value than non-COPD-
LC patients. LRP1B (low-density lipoprotein receptor-related protein 1B) is one of the most frequently mutated genes in
tumor samples and have been proved to associate with TMB and survival prognosis in NSCLC patients treated by ICIs.29

PREX2 (Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 2) is capable of inhibiting the activity of
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Figure 3 Analysis of TCGA cohort. (A) Heatmap of 539 cancer related genes mutation of COPD-LC (n = 69) and non-COPD-LC (n = 126) in TCGA cohort. (B)
Comparison of differential mutation genes displayed within COPD-LC and non-COPD-LC. (C) Comparison of TMB within COPD-LC and non-COPD-LC. (D) Boxplot
depicting the infiltration of 22 immune cells in COPD-LC and non-COPD-LC. CIBERSORT was used to calculate the infiltration degree of these immune cells. (E)
Differences in pathway activities scored by GSEA Hallmark collection between COPD-LC and non-COPD-LC. Enrichment results with significant associations between
COPD-LC and non-COPD-LC are shown (P < 0.05, FDR < 0.05). Notes: *P < 0.05; **P < 0.01; ****P < 0.0001.
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PTEN and thus regulates the downstream PI3K signaling pathway. As a result, PREX2 is considered to be an
oncoprotein.39 Previous study of gastric cancer hinted that PREX2 mutation had a relationship with better PFS in
immunotherapy but no further mechanism was researched or discussed.27 Considering the association of PREX2
mutation and TMB, and high mutation frequency of PREX2 in COPD-LC group, the function of PREX2 in COPD-
LC patients needs more research. Further, we compared the results to the matching molecular atlas in the TCGA database
to explore the differences. However, there was no significant difference between two groups on tumor immunity related
genes and TMB. There were differences in clinicopathological characteristics between our Chinese cohort and the TCGA
cohort, which may be a possible factor leading to the differences in gene mutations between the two cohorts. In addition,
racial difference may be another reason. A French study40 performed WES sequencing on 22 advanced NSCLC patients
(11 with COPD vs 11 without COPD) who received immunotherapy and found no significant difference in TMB between
the two groups. However, mutations in these COPD-LC patients were not disclosed in the study. Therefore, to the best of
our knowledge, this study is the first to elucidate the comprehensive molecular profile including driver mutation and
common immunotherapy related biomarkers of lung cancer concomitant COPD in the Chinese population and TCGA
cohort.

In addition to the mutation differences between COPD-LC and non-COPD-LC, we also investigated the differences
between the two groups in treatment outcomes among patients with EGFR targetable mutations. The COPD-LC group
had a much lower mutation frequency of EGFR (19% vs 50%, P = 0.013) than the non-COPD. And results of EGFR
mutant patients with EGFR-TKI therapy revealed that COPD-LC had worse PFS than non-COPD-LC (HR = 3.52, 95%
CI: 1.27–9.80, P = 0.01). This result is consistent with the results of the prior large-scale clinical study.10 However, that
study did not describe more genetic information. Previous literatures have reported that TP53 is an unfavorable factor for
the prognosis and targeted therapy of lung cancer.41–43 In addition, Inomata et al44 found patients with negative tumor
PD-L1 expression showed better PFS of first-line treatment with an EGFR-TKI. After taking account of these two
molecular factors and some clinical factors, only COPD was the worse factor to EGFR treatment (HR = 6.86; 95% CI:
1.37–34.36; P = 0.02). Because of the limited sample size, influence of mutant differential genes (such as LRP1B,
EPHA5, and PRKDC) and TMB on PFS needs more research.

This retrospective analysis has several limitations. First, although COPD-LC was characterized by infiltration of some
T-cell immune cells and some immune-related pathways, population and molecular gaps exist between the TCGA cohort
and our Chinese cohort. More underpinnings with further clinical study and experimental work are needed. Second, this
study was conducted by a single center with a limited number of COPD-LC patients, thus further investigation to validate
our findings in a prospective study and multicenter collaboration are necessary.

Conclusion
In conclusion, our retrospective study is the first to reveal the molecular differences between COPD-LC and non-COPD-
LC in both a Chinese population and TCGA cohort. In the Chinese cohort, COPD-LC patients had features including low
mutation frequency of EGFR, but high mutation frequency of immune-related genes, high PD-L1 expression, and high
TMB which showed these patients may benefit from immunotherapy. Notably, there was no significant difference
between the two groups on EGFR gene, tumor immunity related genes and TMB in the TCGA cohort. These findings
could pave the way to improving treatment planning for lung cancer coexisting COPD patients, especially in Chinese
COPD-LC patients.
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