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Abstract
Summary: Cells are organized as a hierarchy of macromolecular assemblies, ranging from small protein complexes to entire organelles. 
Various technologies have been developed to elucidate subcellular architecture at different scales, such as mass spectrometry approaches for 
mapping protein biophysical interactions and immunofluorescence imaging for mapping protein localization. We present the Cell Mapping 
Toolkit, which is designed to systematically integrate data from different modalities into unified hierarchical maps of subcellular organization. 
The toolkit facilitates an end-to-end pipeline including processing datasets, integrating modalities, and visualizing the final cell map with rich 
metadata including provenance documentation at each step. The Cell Mapping Toolkit provides researchers with tools for analyzing, integrating, 
and visualizing diverse protein datasets in a robust and reproducible framework.
Availability and implementation: The code is freely available and is hosted on GitHub at https://github.com/idekerlab/cellmaps_pipeline. 
Comprehensive documentation and practical examples are provided at https://cellmaps-pipeline.readthedocs.io/.

1 Introduction
A fundamental goal in biology is mapping protein assemblies 
and their spatial distribution within cells, with downstream 
applications including understanding disease phenotypes, re-
vealing drug targets, and interpreting genetics (Karr et al. 2012, 
Johnson et al. 2023, Cesnik et al. 2024). Various technologies 
currently exist for mapping biological systems, each measuring 
different biological scales ranging from nanometers to microns 
(Wilhelm et al. 2014, Mulvey et al. 2017, Thul and Lindskog 
2018, Luck et al. 2020, Richards et al. 2021, Skinnider et al. 
2021, Reed et al. 2024). For example, approaches including af-
finity purification coupled with mass spectrometry (AP-MS) 
(Choi et al. 2012, Huttlin et al. 2015, 2021, Gordon et al. 
2020) or size exclusion chromatography mass spectrometry 
(SEC-MS) (Havugimana et al. 2012, Bludau et al. 2020, Fossati 
et al. 2023) enable the identification of protein-protein interac-
tions (PPIs) and protein complexes. At larger biological scales, 

approaches including subcellular fractionation (Dunkley et al. 
2004, Mulvey et al. 2017) and immunofluorescence (IF) 
(Thul et al. 2017) or endogenous fluorescent-tagged imaging 
(Cho et al. 2022) determine the specific localization of proteins 
within larger cell compartments. There are also approaches for 
mapping protein functional associations, such as genome-wide 
CRISPR perturbations (Dixit et al. 2016, Replogle et al. 2022) 
that determine pairs of proteins with similar transcriptional 
effects upon knockdown.

These technologies have typically been applied separately, 
each revealing different information about protein organiza-
tion and with unique advantages and challenges (Christopher 
et al. 2021, Richards et al. 2021). Integrating data from 
multiple protein mapping technologies presents an opportu-
nity to generate a more comprehensive understanding of sub-
cellular structure. Toward this goal, we recently developed an 
approach for integrating diverse data modalities into a hierar-
chical map of protein assemblies (Qin et al. 2021, Schaffer 
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et al. 2025), robustly revealing more protein assemblies in the 
cell than any individual dataset alone. We developed the Cell 
Mapping Toolkit to streamline and productionize this pro-
cess of integrating datasets into hierarchical cell maps and to 
make the tools accessible to a broad research community. 
The toolkit is a scalable and user-friendly software tool con-
sisting of a set of Python packages. In what follows, we de-
scribe the Cell Mapping Toolkit and present a tutorial 
demonstrating its application to currently available datasets.

2 Software implementation
The Cell Mapping Toolkit comprises a set of Python pack-
ages that are pip installable and facilitate data downloading, 
processing, co-embedding, and cell map hierarchy generation 
and evaluation (Fig. 1A). The toolkit provides auto-generated 
documentation hosted on ReadTheDocs, includes unit testing 
that runs automatically on code commits, and adheres to a 
strict version control policy to minimize integration issues.

The main architecture follows a pattern where each step 
creates a directory on the filesystem that stores one or more 
data files (Fig. 1B). Subsequent steps use these data files, and 
each directory is registered as an RO-crate (Soiland-Reyes 
et al. 2022) via FAIRSCAPE framework (Levinson et al. 
2022) for provenance. As part of the RO-crate, each tool 
registers the code used to generate the data, as well as re-
quired provenance information for any imported data. This 
provenance and metadata ensure that every step implemented 
with the toolkit is documented and reproducible, which is im-
portant for downstream analysis and interpretability of cell 
maps (Wilson et al. 2021, Clark et al. 2024). Schemas defin-
ing the format for each file are available at Zenodo (https:// 
doi.org/10.5281/zenodo.14200177). The organization of the 
toolkit enables users to substitute any step with external code 
and new methods, as long as the output matches the required 
format specified by each step. Each tool in the pipeline has a 
command line interface, as well as a programmatic interface 
that can be called individually or as a whole. Here, we de-
scribe each step in the cell mapping process and the associ-
ated tool in the Cell Mapping Toolkit.

2.1 Step 1: Image and Protein-Protein interaction 
data downloaders 
The download process is managed by scripts that ensure the 
data is fetched, followed by validation against predefined 
schemas and packaging with rich metadata including prove-
nance into standard RO-Crate packages by the FAIRSCAPE 
client. We developed an Image Data Downloader, which cur-
rently supports downloads from the Human Protein Atlas 
(HPA) (Thul and Lindskog 2018) using a .tsv file that speci-
fies the required images or a text file with a list of proteins. 
We also created a PPI Data Downloader, which formats gene 
names and attributes for an input edge list.

2.2 Step 2: Embed each data modality
We generated tools to create embeddings (a low-dimensional 
representation extracted from complex high-dimensional in-
put) for each data modality, implementing algorithms to sup-
port image and network-based data. For images, the default 
embedding is the penultimate layer of an HPA image classifi-
cation model [densenet (Ouyang et al. 2019)] which captures 

information about protein subcellular localization. For 
network-based data modalities, we developed a PPI 
Embedding tool that runs the node2vec (Grover and 
Leskovec 2016) algorithm on the network, which generates 
an embedding for each node (i.e. protein) that captures rela-
tive relationships about the interaction neighborhoods.

2.3 Step 3: Co-embed the data modalities
The embeddings for each data modality—generated either by 
our toolkit for image and network embeddings or externally 
for other data types—are integrated using the co-embedding 
tool (Schaffer et al. 2025). The integration uses a self- 
supervised learning approach (Bao et al. 2022) to learn a uni-
fied embedding for each protein. The toolkit provides utilities 
for evaluating the co-embeddings, including assessing the 
similarities of protein pairs present in known complexes and 
visualizing the embedding space using the UMAP method 
(McInnes et al. 2018) (Fig. 1C).

2.4 Step 4: Generate hierarchy of 
protein assemblies
Hierarchy generation within the toolkit begins by calculating 
cosine similarities of the co-embedding between each protein 
pair. A set of protein-protein similarity networks is generated 
at various thresholds, and pan-resolution community 
detection is performed using Hierarchical community 
Decoding Framework (Zheng et al. 2021) to generate a 
multi-scale hierarchy.

2.5 Step 5: Evaluate the hierarchy
The hierarchy is evaluated for overlap with documented pro-
tein assemblies using multiple resources including Gene 
Ontology (Ashburner et al. 2000, Aleksander et al. 2023) cel-
lular component terms, the comprehensive resource of mam-
malian protein complexes [CORUM (Tsitsiridis et al. 2023)], 
and HPA cellular compartments. Additionally, the toolkit pro-
vides the option to annotate assemblies in the cell maps using 
a large language model (LLM) approach to name sets of pro-
teins and assign a name confidence score using a designed 
prompt (Hu et al. 2023). The final annotated hierarchy is 
saved in a format allowing visualization in Cytoscape, and can 
be uploaded to the Network Data Exchange (NDEx, https:// 
www.ndexbio.org/) for storage, sharing, manipulation, and 
publication (Pratt et al. 2015, Pillich et al. 2021). Finally, the 
toolkit provides documentation and utilities to assess the ro-
bustness of protein assemblies across multiple jackknife 
resamplings.

3 Results
3.1 Environmental setup
The Cell Maps Pipeline Python package can be installed using 
the following command: pip install cellmaps_ 
pipeline.

This package is compatible with Python versions 3.8 
through 3.11. For optimal performance and isolation of de-
pendencies, it is strongly recommended to utilize an 
Anaconda environment (docs.anaconda.com).
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3.2 Data acquisition
To create a proof-of-concept cell map, we randomly selected a 
set of 600 proteins, including 200 localized to each of three dif-
ferent cell compartments (nucleoplasm, mitochondria, and 

cytosol), as defined by HPA. A list of these proteins was pro-
vided as an input in the Image Downloader to obtain images 
(see below). Protein-protein Interactions (PPIs) were obtained 
from the high-confidence (score ≥ 0.7) STRING (Snel et al. 

Figure 1. Demonstration of the Cell Mapping Toolkit. (A) Overview of processing steps in Cell Mapping Toolkit. (B) Directory structure and outputs of the 
Cell Mapping Toolkit. The upper panel displays all output directories created after running the full pipeline, with each folder corresponding to a specific 
step in the process. The lower panel shows the resulting files in the directory generated by the PPI embedding step. These include log files, an 
embedding file, and a RO-Crate metadata file capturing provenance information. (C) Multimodal embedding of proteins based on integration of AP-MS 
and imaging data, reduced to two dimensions using the UMAP method. (D) Proof-of-concept cell map generated with 600 proteins using associations in 
STRING and images from the HPA. The hierarchy is represented in a tree view. The size of nodes is proportional to the number of proteins. Nodes are 
colored based on subcellular location, as defined by HPA. (E) Cell map in cell view (circle packing) on Cytoscape Web. Selecting a protein assembly 
cluster in the cell map shows underlying interaction data and links to the images.
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2000, Szklarczyk et al. 2019) interactome. We selected a sub-
network for the same 600 proteins from the network on NDEx 
(https://ndexbio.org/, uuid: 24823fd3-6ebb-11ef-a7fd-00505 
6ae23aa), saved as an edgelist in a .tsv file.

3.3 Data provenance
A provenance file detailing the information about input data 
must be provided to adhere to FAIR principles. Users have 
the option to generate a sample provenance file using the fol-
lowing command: 

cellmaps pipelinecmd.py . ––example_provenance 
>provenance.json 

Once the sample provenance file is generated, the user should 
edit it to include the necessary information, including name, 
organization name, project name, cell line, treatment, gene 
set, and information about individual input files.

3.4 Running the cell mapping toolkit
The Cell Mapping Toolkit can be executed by running cell-
maps_pipelinecmd.py with required arguments including the 
output directory, provenance file, and input data. 

cellmaps_pipelinecmd.py ./cellmaps_pipeli-
ne_outdir [FLAGS WITH PARAMETERS] 

Alternatively, individual toolkit steps can be run separately 
through their respective Python packages.

1) Downloading images from HPA   
cellmaps_imagedownloadercmd.py ./1.image_ 
downloader ––protein_list proteins.txt 
––cell_line U2OS ––provenance provenance_ 
images.json 

2) Generating embeddings in image and PPI data   
cellmaps_image_embeddingcmd.py ./2.image_ 
embedding ––inputdir ./1.image_downloader   
cellmaps_ppi_embeddingcmd.py ./2.ppi_em-
bedding ––inputdir ./string_ppi_dir 
––provenance provenance_ppi.json 

3) Integrating the embeddings (co-embedding)   
cellmaps_coembeddingcmd.py ./3.coembed-
ding ––embeddings ./2.ppi_embedding ./2. 
image_embedding 

4) Generating the hierarchical cell map   
cellmaps_generate_hierarchycmd.py ./4.hi-
erarchy ––coembedding_dirs ./3.coembedding 

5) Evaluating cell map for known components (Fig. 1D)   
cellmaps_hierarchyevalcmd.py ./5.hierarch-
yeval ––hierarchy_dir ./4.hierarchy 

3.5 Visualization and sharing
The Cell Mapping Toolkit can be used to upload the final hi-
erarchy to NDEx, a platform for sharing biological network 
data (Pratt et al. 2015, Pillich et al. 2021). NDEx provides 
other users easy access to the hierarchy, making it accessible 
to a broader community and facilitating collaboration. Users 
can upload their hierarchy using the cellmaps_generate_hier-
archy tool included in the toolkit, using their credentials to 
the NDEx account with the following command:

cellmaps_generate_hierarchycmd.py ./5.hier-
archyeval --mode ndexsave --ndexuser < USER >

Once the hierarchy is uploaded, a link is generated that 
allows the user to access and interact with the hierarchy 
through Cytoscape Web (web.cytoscape.org), a new web ap-
plication based on the desktop application (Shannon et al. 
2003, Smoot et al. 2011). This platform provides a visual in-
terface where users can explore and interact with the cell map 
in two views, the tree hierarchy (Fig. 1D) and a cell view 
(Fig. 1E). Users can also browse the underlying subnetworks 
and links to view images for each protein assembly.

3.6 Cell mapping toolkit test users
As part of the National Institutes of Health (NIH) Bridge2AI 
program (Clark et al. 2024), we have hosted a series of in- 
person and virtual codefests where users implement and test 
the Cell Mapping Toolkit. These codefests resulted in a total 
of approximately 50 participants who ran the toolkit and cre-
ated cell maps from different sample datasets. We used feed-
back from the users to fix unexpected issues and improve the 
documentation and guides. This number of test users high-
lights the stability of the toolkit on a variety of computational 
systems and by personnel of varying computational 
experiences.

4 Conclusions
We have developed the Cell Mapping Toolkit to build and 
analyze hierarchical maps of cell architecture via integration 
of diverse data modalities. The toolkit’s modularity and flexi-
bility enable users to adapt the pipeline to their specific data-
sets and applications. The tool is user-friendly, extensible, 
and ensures the creation of trackable and reproduc-
ible results.
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