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1  | INTRODUC TION

The moist skin of amphibians supports a diverse array of bacteria 
that play critical ecological roles, including defense against patho-
gens. Recent studies have shown that microbes on frog skin not only 
confer protection against skin diseases and other benefits (Walke 
et al., 2014; Knutie, Wilkinson, Kohl, & Rohr, 2017; McFall-Ngai et al., 
2013), but that the microbiota is, to some extent, characteristic for 
a species even among coexisting species (McKenzie, Bowers, Fierer, 

Knight, & Lauber, 2012; Kueneman et al., 2013; Walke et al., 2014). 
Like other recently explored microbiota, communities on frog skin 
are the result of complex processes involving both environmental 
influences and host-specific characteristics (Adair & Douglas, 2017), 
and thus, environment (location) can also be a significant factor in 
determining bacterial community composition (Kueneman et al., 
2013).

Environmental factors that can influence or disrupt the microbial 
community on amphibian skin include the season (Woodhams et al., 
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Abstract
The microbiota of frog skin can play an important role in protecting against diseases 
and parasites. The frog skin microbial community represents a complex mix of mi-
crobes that are promoted by the chemical environment of the frog skin and influ-
enced by the animal’s immediate past environment. The microbial communities of six 
species of frogs sampled from the campus of Charles Darwin University (CDU) were 
more similar within species than between species. The microbiota of the introduced 
cane toad (Rhinella marina) was most dissimilar among the species. Pairwise compari-
sons showed that the microbial communities of each species were different, except 
for the terrestrial Litoria nasuta and the arboreal L. rothii. The microbial communities 
of the six species were not related to ecological habit (arboreal or terrestrial), and 
neither was the alpha diversity of the microbes. The core microbes (defined as being 
on ≥90% of individuals of a species or group) were significantly different among all 
species, although 89 microbial operational taxonomic units (OTUs) were core mi-
crobes for all six species at CDU. Two species, Rhinella marina and Litoria rothii, were 
sampled at additional sites approximately 10 and 30 km from CDU. The microbial 
communities and the core OTU composition were different among the sites, but 
there were nevertheless 194 (R. marina) and 181 (L. rothii) core OTUs present at all 
three sites. Thus, the core microbiota varied with respect to geographic range and 
sample size.
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2014; Longo, Savage, Hewson, & Zamudio, 2015; Longo & Zamudio, 
2016), temperature (Daskin, Bell, Schwarzkopf, & Alford, 2014; Wu, 
Cramp, & Franklin, 2017), water pH (Krynak, Burke, & Benard, 2015), 
contaminants (Costa, Lopes, Proença, Ribeiro, & Morais, 2016), and 
captivity (Loudon et al., 2014; Becker, Richards-Zawacki, Gratwicke, 
& Belden, 2014; Sabino-Pinto et al., 2016; Kueneman et al., 2016). 
Biologic factors include transitions in life stages (Rollins-Smith, 
Ramsey, Pask, Reinert, & Woodhams, 2011; Kueneman et al., 2013; 
Bresciano et al., 2015; Sanchez et al., 2017), diet (Antwis et al., 
2014), sloughing the skin (Meyer, Cramp, Bernal, & Franklin, 2012; 
Wu et al., 2017), disease (Jani & Briggs, 2014), and microbial interac-
tions (Loudon et al., 2016; Bates et al., 2018).

Despite the perturbations resulting from these environmental 
and biologic factors, species-specific communities persist and are 
consistent in different locations (McKenzie et al., 2012; Kueneman 
et al. 2013; Walke et al., 2014; Belden et al., 2015) and prolonged 
captivity (Becker et al., 2014). This apparent homeostasis is consis-
tent with the notion that several characteristics of the amphibian 
skin (epidermal structures, skin peptides, and other mucosal com-
ponents) select and enhance specific bacteria over others (Rollins-
Smith & Woodhams, 2012). This dynamic process between a 
disruptive environment and the homeostatic properties of the skin 
can explain the seemingly contradictory reports of both variability 
and consistency of the microbiota of amphibian skins (Kueneman 
et al., 2013; Adair & Douglas, 2017).

Much of the research pertaining to frog skin microbiota has fo-
cused on the complexities of the epidemic of chytrid fungus (Rollins-
Smith et al., 2011; Jani & Briggs, 2014; Holden et al., 2015; Berger 
et al., 2016; Bates et al., 2018) and other frog skin diseases (Federici 
et al., 2015; Knutie et al., 2017), including suggestions of using 
probiotics on frog populations (Harris et al., 2009; Loudon et al., 
2014; Küng et al., 2014) even at a landscape scale (Muletz, Myers, 
Domangue, Herrick, & Harris, 2012). These efforts have yielded in-
conclusive results, including problems associated with the resilience 
of the skin microbiota inhibiting the uptake of probiotics (Küng et al., 
2014). Recent reviews have cautioned against this highly targeted 
approach, calling for studies to enhance the understanding of the 
ecological and evolutionary context in which frog skin microbiota 
operates (Kueneman et al., 2013; Küng et al., 2014; Kueneman et al., 
2015; Woodhams, Bletz, Kueneman, & McKenzie, 2016).

Detailed exploration of host–microbiota associations has re-
sulted in the concept of a “core” community, based on near ubiquity 
among individuals of a host species. The core microbiota has been 
variously defined, but is typically defined as being present on >90% 
of hosts (Loudon et al., 2014; Apprill et al., 2014).

The aim of this study was to enhance our understanding of the 
ecological context of the skin microbiota by sampling from a previ-
ously well-studied group of frogs (Tracy & Christian, 2005; Young, 
Christian, Donnellan, Tracy, & Parry, 2005; Tracy, Christian, Betts, 
& Tracy, 2008; Tracy, Tixier, Le Nöene, & Christian, 2014) from the 
wet–dry tropics of Australia. We studied six frog species from one 
site, three of which are arboreal species and three of which are ter-
restrial. Previous studies of this community of frogs have shown that 

ecological habit (arboreal versus terrestrial) is associated with some 
physiological traits in this seasonal tropical environment (see refer-
ences cited above). To explore the effect of host species, ecological 
habit, and geographic location on skin microbial community patterns, 
we further sampled two of the six species from two additional sites at 
distances of approximately 10 km and 30 km from the main study site.

2  | MATERIAL S AND METHODS

2.1 | Species, study sites, and sampling scheme

Approval to sample frogs was granted by the Charles Darwin 
University Animal Ethics Committee (project A14012). Three ter-
restrial frogs (Rhinella marina, Litoria nasuta, and Limnodynastes 
convexiusculus) and three arboreal frogs (Litoria caerulea (Figure 1), 
Litoria rubella, and Litoria rothii) species were sampled from on or 
near the campus of Charles Darwin University (CDU), in Darwin, 
Northern Territory, Australia. Although some frogs were collected 
near buildings on campus, others were sampled from a more natu-
ral area consisting of native vegetation. Two species, the cane toad, 
Rhinella marina, and Roth’s tree frog, Litoria rothii, were also sampled 
from Mickett Creek and Howard River, approximately 10 and 30 km, 
respectively, from CDU. These rural areas primarily consist of na-
tive vegetation, with widely dispersed buildings. The cane toad was 
introduced to Australia approximately 80 years ago (Easteal, 1981), 
but the other species are native to the area. Twenty individual frogs 
were sampled from each species and location (total of 200 samples). 
New gloves were used for each sample.

After capture by hand, each frog was rinsed twice with 100 mL 
0.45 μm filtered high-purity water (Culp, Falkinham, & Belden, 2007; 
Lauer et al., 2007) before being swabbed with a sterile synthetic 
swab (MicroRheologics FLOQSwab). Each frog was stroked 30 times 
to produce a sample, using 10 strokes around body (avoiding cloaca, 
4 dorsal, 1 each side, 4 ventral) and 5 strokes on each limb (front 

F IGURE  1 Two green tree frogs, Litoria caerulea, on the campus 
of Charles Darwin University, Darwin, Northern Territory, Australia
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and back of the foot, front and back of the leg, axial region). Samples 
were kept on ice while in the field and then frozen at −20°C until the 
DNA was extracted.

2.2 | DNA extraction

DNA was extracted from the samples using the Qiagen DNeasy 
Blood and Tissue Kit (Qiagen, Valencia, CA), following the manufac-
turer’s protocol for tissue extraction.

2.3 | 16S rDNA target sequencing

Two hundred nanograms of DNA was sent to the sequenc-
ing provider Molecular Research DNA (www.mrdnalab.com, 
Shallowater, TX, USA) for amplification using the Caporaso et al. 
(2011) primers, F515 (GTGCCAGCMGCCGCGGTAA) and R806 
(TAATCTWTGGGVHCATCAGG) targeting the V4 variable region of 
the 16s rRNA gene. The forward primers contained sample-specific 
eight-nucleotide barcodes. A 30-cycle PCR using the HotStarTaq 
Plus Master Mix Kit (Qiagen) was run with the following conditions: 
94°C for 3 min, 28 cycles of 94°C for 30 s, 53°C for 40 s, 72°C 
for 1 min, and final elongation step at 72°C for 5 min. Amplicon 
products from different samples were mixed in equal concentra-
tions and purified using Ampure XP beads (Agencourt Bioscience 
Corporation: Beverly, MA). Pooled and purified PCR products were 
used for DNA library preparation according to the Illumina TruSeq 
DNA library preparation protocol. Samples were sequenced utiliz-
ing a MiSeq instrument, following manufacturer’s guidelines.

2.4 | Processing of sequencing data

Sequence data were processed using a proprietary analysis pipeline 
(www.mrdnalab.com, Molecular Research DNA, Shallowater, TX). 
Sequences were depleted of barcodes, and primers and short se-
quences <200 bp were removed as well as sequences with ambigu-
ous base calls and homopolymer runs exceeding 6nt. Chimeras were 
also removed. Sequences were clustered at 3% divergence (97% 
similarity) to define operational taxonomic units (OTUs), and OTUs 
with singleton sequences were removed (Dowd et al., 2008; Edgar, 
2010; Swanson et al., 2011; Capone, Dowd, Stamatas, & Nikolovski, 
2011). OTUs were taxonomically classified using BLASTn against a 
curated Greengenes database (DeSantis et al., 2006).

Furthermore, OTUs were excluded which were not classified as 
bacteria, occurred in less than 1% of samples (i.e., in less than three 
samples), or contained fewer sequences than 0.01% of the total se-
quence abundance. All sequences were subsampled to the lowest 
common sequence number (2,008 sequences) per sample.

2.5 | Data analysis

operational taxonomic unit data were analyzed in Primer-7 (Clarke 
& Gorley, 2001; Primer-E, Plymouth, UK) and in R (version 3.2.2.) 

using the packages phyloseq in Bioconductor (Callahan, Sankaran, 
Fukuyama, McMurdie, & Holmes, 2016), corrplot, vennerable, and 
labdsv.

The dataset was subset into two groups: Frogs sampled on or 
near the CDU campus and the cane toads and Roth’s tree frogs from 
three sites (CDU, Mickett Creek, and Howard River). Bacterial or-
ders that occurred at relative abundances of more than 1% in a frog 
species or site are shown in taxa plots using phyloseq. A weighted 
UniFrac distance matrix was created. The distance matrix was visu-
alized using nonmetric multidimensional scaling (nMDS) and a trian-
gle heat map. Alpha diversity and changes in the frog skin microbial 
communities were analyzed in Primer-7 by permutational MANOVA 
(PERMANOVA; 9999 permutations) with fixed factors “frog spe-
cies” and “habitat” for the CDU frog dataset and “frog species” and 
“site” for the toad and Roth’s tree frog dataset. Pairwise tests for 
frog species, habitat, and site were also conducted if the main test 
was significant (p < 0.05). Alpha diversity was examined with respect 
to ecological habit using a linear mixed-effect model in Stata with 
ecological habit as a fixed effect and frog species as a random effect 
nested in ecological habit.

We identified the core microbiota for campus frogs, and toad 
and Roth’s tree frogs sampled at the campus, Howard River, and 
Mickett Creek sites by selecting those OTUs that were present in 
at least 90% of samples within a group. Core OTUs are shown in 
Venn diagrams, and PERMANOVA and pairwise analyses were also 
conducted on these core OTUs to explore significant differences in 
the core microbiota between frog species and sites.

3  | RESULTS

3.1 | Microbial community composition

After data processing, 651 bacterial OTUs were recorded from the 
six frog species sampled. The composition of frog skin bacteria at 
the level of order is shown in Figure 2a. The most dominant orders 
included Burkholderiales, Actinomycetales, Pseudomonadales, 
Enterobacteriales, and Sphingomonadales. The same five orders 
were dominant in the samples from the two species sampled across 
three sites (Figure 2b). Visual inspection of Figure 2a reveals that 
L. caerulea and R. marina had considerably more (proportionally) 
Actinomycetales but fewer Pseudomonadales and Enterobacteriales 
than the other frogs.

The alpha diversity, as represented by the Shannon index, is 
given in Table 1 for both the total complement of OTUs and the core 
OTUs for the six species on the CDU campus. The diversity of OTUs 
was significantly higher in Limnodynastes convexiusculus (4.97) than 
in the other frog species (F5,119 = 31.3, p < 0.0001), and this was also 
true for the diversity of core OTUs. The lowest diversity (3.10) was 
found in Litoria caerulea, and this species also had the lowest diver-
sity of core OTUs. Once the effect of species was taken into account, 
there was no significant effect of ecological habit on alpha diversity 
(p = 0.24).

http://www.mrdnalab.com
http://www.mrdnalab.com
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3.2 | Frog species comparisons

An nMDS showed clustering of the microbial composition by frog 
species (Figure 3a), and PERMANOVA confirmed the clustering of 
communities according to species (F5,119 = 36.1, p < 0.001). The mi-
crobial communities of the frog species were significantly different 
from one another in pairwise comparisons (p < 0.001), except not 
between the terrestrial Litoria nasuta and the arboreal L. rothii.

A triangle heat map of average weighted UniFrac distances be-
tween frog species illustrates that the skin microbiota of the intro-
duced cane toads was the most dissimilar when compared to the 
five native species, and communities were more similar within spe-
cies than between species (Figure 4). Microbial communities of the 
three terrestrial species and the three arboreal species were signifi-
cantly different between the two ecological habits (F1,119 = 12.5, 
p < 0.0001).

The microbial communities of Rhinella marina and Litoria rothii 
(Figure 3b) were significantly different across the three sites over 
30 km (F2,119 = 4.0, p < 0.009). Pairwise comparisons showed that 

Litoria rothii communities were different at all three sites (p < 0.003) 
and Rhinella marina communities were different between CDU 
and Mickett Creek and between Howard River and Mickett Creek 
(p < 0.02), but not between CDU and Howard River (p = 0.48).

3.3 | Core OTUs

The number of core OTUs for each frog species is listed in Table 1, 
and the core OTUs are also expressed as a percentage of the 
total OTUs for each frog species. Overall, 604 OTUs were core 
OTUs for at least one frog species. Over 70% of the total OTUs in 
Limnodynastes convexiusculus were core OTUs, which was a distinctly 
higher percentage than in the other frogs. Litoria rubella had the low-
est percentage as core OTUs (36.6%) among the six species. The 
composition of the core OTUs was significantly different between 
frog species at CDU (F5,1452 = 164.1, with p < 0.001 for all pairwise 
comparisons), although 89 core OTUs were shared by all six species 
on the CDU campus. The core OTUs for R. marina and L. rothii were 
significantly different across three sites (F2,509 = 9.3, p < 0.0007), but 

F IGURE  2 Major skin microbial orders 
which occurred at more than 1% in (a) 
six species of frogs sampled from the 
campus of Charles Darwin University 
(CDU) (n = 20 for each species) and (b) two 
species (L. rothii and R. marina) sampled 
from CDU, Mickett Creek (MC), and 
Howard River (HR), approximately 10 and 
30 km from CDU, respectively (n = 20 per 
species per location)
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there were nevertheless 194 OTUs found on R. marina at all three 
sites (Figure 5a) and 181 OTUs found on L. rothii at all three sites 
(Figure 5b).

4  | DISCUSSION

The six frog species studied had species-specific microbial com-
munities on their skin, despite those at CDU being from the same 
location. Strikingly, L. caerulea and L. rubella, many of which were 
collected from the same part of campus, had distinctly different skin 
microbial communities (Figure 3a). Species-specific microbial skin 
communities have been found in previous studies (McKenzie et al., 
2012; Belden et al., 2015; Rebollar et al. 2016), but this example 
is noteworthy because of their geographic proximity, they shared 
ecological habit (arboreal), and they are congeneric. The microbial 
community on the introduced cane toad, R. marina, was distinctly 
different from the two native terrestrial species (Litoria nasuta and 
Limnodynastes convexiusculus) (Figure 3a), and it was the most dis-
similar in comparison with all the other species (Figure 4).

The five dominant orders represented on the skin have also been 
reported in other amphibian studies, particularly Burkholderiales, 
which include many common soil bacteria, and Actinomycetales, 
which are not only common in soil, but which produce bioactive 
metabolites with antibiotic activity (Bates et al., 2018). Kueneman 
et al. (2015) and Bataille et al. (2016) reported the numerical dom-
inance of both Actinomycetales and Sphingomonadales on the skin 
of toads and their possible antifungal role. The Pseudomonadales, 
particularly those of the genus Pseudomonas, contain several species 

known to provide protection against pathogenic bacteria and fungi 
(Chang, Huang, Lin, Huang, & Liao, 2016; Federici et al., 2015). The 
Enterobacteriales were dominant in this study, and while this order 
has been reported from the guts of frogs (Chang et al., 2016), we 
found only two reports from amphibian (toad) skin studies (Hughey 
et al., 2017; Bataille et al. 2016). Enterobacteria can be found almost 
everywhere (soil, water, wastewater, animal guts), so frogs could 
come into contact with them from drains and water bodies (Neave 
et al., 2014) or via invertebrates they have consumed (Chang et al., 
2016).

Taken as a group, the communities of arboreal frogs were signifi-
cantly different from terrestrial frogs, as are a range of physiological 
characteristics (Young et al., 2005; Tracy et al., 2014). Nevertheless, 
the microbial community of the terrestrial frog L. nasuta was not 
different from that of the arboreal L. rothii, suggesting that the sig-
nificant difference between the two ecological habits was, in part, 
due to the general pattern of frog species-specific microbial com-
munities. The similarity between L. nasuta and L. rothii cannot be ex-
plained by phylogenetic relationships because the arboreal species 
L. rothii and L. rubella are closely related, but L. nasuta is more dis-
tantly related and groups with other terrestrial species in the genus 
(Young et al., 2005).

The number of core OTUs for the six frog species on the CDU 
campus ranged from 256 to 281 (Table 1), and these represented 
36.6% to 70.7% of the total microbiota for the frog species, with 
the core OTUs of Limnodynastes convexiusculus being the highest 
percentage of the total. For the two species sampled across three 
sites, the core was variable among the sites, yet there were never-
theless OTUs that were present on all individuals over the 30-km 

TABLE  1  (A) The total number of OTUs and core OTUs measured for each of six species sampled from the campus of Charles Darwin 
University (CDU) and for two species at two additional sites. The %Core is defined as the number of core OTUs expressed as a percentage of 
the total number of OTUs. The Shannon diversity index is used to represent the total diversity and core diversity for the frogs at CDU. (B) 
The core is compared using data from three sites for two species. The combined core treats the data from three sites as one group. Thus, 
combined core OTUs were found in at least 90% of all individuals of a species as opposed to 90% of individuals from a given site

A

Species

CDU campus Mickett Creek Howard River

Total 
OTUs

Total 
diversity

Core 
OTUs

Core 
diversity %Core

Total 
OTUs

Core 
OTUs %Core

Total 
OTUs

Core 
OTUs %Core

Rhinella marina 635 3.48 281 3.45 44.2 637 256 40.2 635 278 43.8

Litoria rothii 651 4.02 270 3.99 41.5 651 256 39.3 651 268 41.2

L. caerulea 651 3.10 244 3.09 37.5

L. rubella 644 3.49 236 3.45 36.6

L. nasuta 651 3.96 343 3.93 52.7

Limnodynastes 
convexiusculus

651 4.97 460 4.95 70.7

B

Species Total OTUs Combined core OTUs % Combined core of total

Rhinella marina 645 194 30.0

Litoria rothii 651 181 27.8
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F IGURE  3 Relatedness of the skin microbiota as shown by a nonmetric multidimensional scaling (nMDS) of (a) six frog species sampled 
from the campus of Charles Darwin University (CDU) and (b) two species (L. rothii and R. marina) sampled from CDU, Mickett Creek (MC), 
and Howard River (HR). Each nMDS was based on the weighted UniFrac distance matrix of rarefied OTU data and had a stress value <0.14 
(a) and <0.10 (b)
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transect (Figure 5). If the data from three sites are grouped within 
a species, the number of OTUs that meet the definition of “core” is 
substantially smaller than the number of core OTUs from a single 
site. This raises questions about the definition and determination of 
the core microbiota. One could argue that the best measurement 
of the core microbes is represented by the central portion of the 
Venn diagrams in Figure 5, which is not only based on a larger sam-
ple (n = 60), but the larger geographic range of the sample also likely 
provides a more comprehensive characterization of the microbiota. 
However, even if one accepts this argument over a 30-km transect, 
the definition and determination of the core microbiota become 
problematic over greater distances because both the environment 
and the frogs themselves could vary substantially at a larger (i.e., 
continental) scale. Thus, the optimal microbiota at one site may not 
be the same at another site with frogs and microbes adapted to each 
local environment.

The core microbiota is defined on the basis of prevalence 
(≥90% of individuals), but the unstated assumption is that if it is 
found in most individuals, then a core microbe is likely to have 
a role in the microbiota in producing important metabolites that 
are either important to the frog (i.e., antifungal properties or ac-
tivation of the immune system (McFall-Ngai et al. 3013)) or in 
structuring the microbiota. However, near ubiquity in the skin 
microbiota (i.e., a core microbe) could reflect either functional 
importance or simply prevalence in the environment. However, 
the fact that different frog species from the same location have 

different cores provides indirect support for the notion that the 
core microbiota is not simply reflecting the ubiquity of microbes 
in the environment. Analyses that indicate microbial function in 
the microbiota (Berry & Widder, 2014) are more appropriate for 
determining the importance of an OTU (i.e., a “keystone”) in a mi-
crobiota. The relationship between core and keystone OTUs has 
received little attention. Figure 5 indicates that a core microbe 
(as determined at a site level) may not be functionally important 
(given that it is not part of the core at sites 10 or 30 km away), 
but rather, some environmental microbes may be abundant at 
some sites but not others. However, is the converse true? That 
is: Is it possible for a keystone microbe to not be a core microbe? 
Understanding the functional importance of microbes within the 
microbiota is crucial to advancing our understanding of these rela-
tionships. Although descriptively satisfying, the concept of a core 
(as currently defined) may not continue to be a useful construct as 
our understanding of the structure and function of the frog skin 
microbiota develops.
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