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Early assessment of adverse drug effects in humans is critical to avoid long-lasting

harm. However, current approaches for early detection of adverse effects still lack

predictive and organ-specific biomarkers to evaluate undesired responses in humans.

Microphysiological systems (MPSs) are in vitro representations of human tissues and

provide organ-specific translational insights for physiological processes. In this study, a

brain MPS was utilized to assess molecular signatures of neurotoxic and non-neurotoxic

compounds using targeted and untargeted molecular approaches. The brain MPS

comprising of human embryonic stem (ES) cell-derived neural progenitor cells seeded

on three-dimensional (3D), chemically defined, polyethylene glycol hydrogels was

treated with the neurotoxic drug, bortezomib and the non-neurotoxic drug, tamoxifen

over 14-days. Possible toxic effects were monitored with human N-acetylaspartic

acid (NAA) kinetics, which correlates the neuronal function/health and DJ-1/PARK7,

an oxidative stress biomarker. Changes in NAA levels were observed as early as

2-days post-bortezomib treatment, while onset detection of oxidative stress (DJ-1)

was delayed until 4-days post-treatment. Separately, the untargeted extracellular

metabolomics approach revealed distinct fingerprints 2-days post-bortezomib treatment

as perturbations in cysteine and glycerophospholipid metabolic pathways. These results

suggest accumulation of reactive oxygen species associated with oxidative stress,

and disruption of membrane structure and integrity. The NAA response was strongly

correlated with changes in a subset of the detected metabolites at the same time point

2-days post-treatment. Moreover, these metabolite changes correlated strongly with

DJ-1 levels measured at the later time point (4-days post-treatment). This suggests that

early cellular metabolic dysfunction leads to later DJ-1 leakage and cell death, and that

early measurement of this subset of metabolites could predict the later occurrence of

cell death. While the approach demonstrated here provides an individual case study for

proof of concept, we suggest that this approach can be extended for preclinical toxicity

screening and biomarker discovery studies.
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INTRODUCTION

Given that central nervous system (CNS) toxicity is a leading
cause of toxicity-related clinical trial failures (Cook et al., 2014;
Walker et al., 2018), the predictive capabilities of current pre-
clinical toxicity testing methods remain inadequate. The two-
dimensional (2D) mono-cultures of typical in vitro CNS models
fail to recapitulate the physiological complexity of CNS tissues,
limiting their ability to predict adverse responses at the tissue or
organ level (in vivo) from the effects observed at the molecular
or cellular level (in vitro) (Langhans, 2018). Further, while high-
throughput screening (HTS) utilizing such 2D models enables
rapid testing of large numbers of compounds, the endpoints
used, such as live/dead staining and lactate dehydrogenase
(LDH) release, are necessarily simple and limited in translational
relevance. Animal models remain a critical screen, yet species
differences limit their predictive capability. New methodologies
are sorely needed to better predict human neurotoxic liabilities
of new molecular entities (NMEs) rapidly and robustly prior to
clinical trials.

The emerging field of microphysiological systems (MPSs)
holds promise for this mission (Marx et al., 2016; Low and
Tagle, 2017). MPSs encompass a range of cellular- and tissue-
level models in three-dimensional (3D) culture platforms meant
to recapitulate more physiologically-relevant functions of human
organs and tissues compared to traditional 2D culture systems.
MPSs are more cost-effective than animal models and can be
used for numerous pharmaceutical development applications
including drug absorption, distribution, metabolism, excretion,
and toxicity (ADMET), evaluating efficacy and investigating
pharmacodynamic mechanisms. For example, neural toxicity
has been investigated in a brain MPS comprising a 3D
construct of mixed neuronal and glial cells derived from human
embryonic stem (ES) cells (Schwartz et al., 2015), and hepatic
drug metabolism has been studied in a 3D human liver MPS
(Tsamandouras et al., 2016). Likewise, drug absorption and
metabolism processes have been studied in an integrated gut-liver
platform that enables observation of organ-organ crosstalk (Chen
et al., 2017; Tsamandouras et al., 2017). Higher degree multi-MPS
systems have also been applied to assess systemic drug effects on
human physiology (Maschmeyer et al., 2015; Oleaga et al., 2016;
Zhang et al., 2017; Edington et al., 2018).

MPS technologies enable longer-term tissue culture to
study kinetics of drug-physiology interactions using various
continuous and endpoint metrics. Not only might they be
used to screen out toxic molecules at the preclinical stage, but
they could potentially provide insights for development and
validation of clinical biomarkers. For example, omics-profiling
(proteomics, metabolomics) combined with measurements of
neuronal electrical activity in a mixed neuronal/glial cell
culture platform identified several potential biomarkers of drug-
induced neurotoxicity (Schultz et al., 2015). Early response
biomarkers in humans that presage later overt toxicity would be
particularly valuable. As of 2011, fewer than 100 biomarkers were
validated for clinical use, highlighting the difficulties connected
with translating scientific findings to clinical decision making
(Poste, 2011).

Fluid-based molecular biomarkers such as those found in
serum, plasma, urine, and cerebrospinal fluid (CSF) have
the advantages of relative ease of sampling using minimally
invasive methods, as well as the possibility of frequent or even
continuous monitoring. Two biomarkers of neural function
accessible in blood and urine include N-acetylaspartic acid or
N-acetylaspartate (NAA) and DJ-1/PARK7 protein. NAA, the
acetylated form of the amino acid aspartate, is one of the most
abundant brain metabolites (Moffett et al., 2012), and has been
shown to be an indicator of neural cell function, while human
DJ-1, an oxidative stress indicator, is utilized for evaluating drug-
induced neurotoxicity (Kahle et al., 2009).

Numerous studies have demonstrated that NAA levels are
altered in the brain in a variety of human CNS disorders. Its
concentration declines in nearly all, including Alzheimer’s disease
(Bittner et al., 2013; Murray et al., 2014), MS (Tortorella et al.,
2011), and schizophrenia (Harris et al., 2006), although it is
elevated in Canavan disease (Wittsack et al., 1996; Moffett et al.,
2012) due to the lack of a metabolizing enzyme. NAA levels were
increased in the serum of ALS patients, thought to be related to
greater excretion of NAA into the circulation following release
from damaged neurons (Simone et al., 2011).

DJ-1 is a ubiquitous redox-responsive protein, mainly
localized in the cytosol and also found in mitochondria and the
nucleus. Studies have shown that during oxidative stress, DJ-1
may modulate the expression of genes such as glutamate-cysteine
ligase, which results in glutathione (GSH) metabolite formation
(Kim et al., 2012). Biochemically, DJ-1 is easily oxidized in
response to several oxidative stimuli, and the oxidized, acidic
isoforms of DJ-1 have been found to be accumulated in the brains
of patients with sporadic Parkinson disease and Alzheimer’s
disease (Choi et al., 2006).

In this study, drug-induced neurotoxicity using targeted
and untargeted biomarkers was evaluated in the brain MPS.
The effects of the chemotherapeutic compound bortezomib, a
proteasome inhibitor and known neurotoxic drug (Badros et al.,
2007; Argyriou et al., 2014; Canta et al., 2015), were assessed and
compared to effects of the selective estrogen receptor modulator
(SERM) tamoxifen, which has no clinically reported neural
adverse effects (Ernst et al., 2002; Stouten-Kemperman et al.,
2015; Hong et al., 2017). Neurotoxicity was first assessed with
the targeted biomarkers NAA andDJ-1 protein. Then, untargeted
metabolomics was used to identify additional early response
biomarkers after the first drug dose and these were correlated
with NAA and DJ-1 at different time points to identify whether
they are predictive of known markers of neuronal function and
toxicity measured at later times.

MATERIALS AND METHODS

Neural Progenitor Cell Culture
Neural progenitor cells (NPCs) derived from the human H1 ES
line developed in the laboratory of Professor James Thomson,
Morgridge Institute, Madison, WI were provided for this
study. The NPC derivation methods were previously described
(Schwartz et al., 2015). NPCs were cultured at 37◦C and 5% CO2

in neural expansion medium comprising DMEM/F-12 medium
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(500mL) supplemented with rhFGF2 (5 ng/ml), 1X N2 (Life
Technologies, Carlsbad, CA, USA), 1X B27 (Life Technologies),
L-ascorbic acid-2-phosphate magnesium (64 mg/L, Sigma-
Aldrich, St. Louis, MO, USA), Sodium/selenium (14 µg/L,
Sigma), NaHCO3 (543 mg/L, Sigma), penicillin-streptomycin
(10% v/v 10,000 units/ml, ThermoFisher, Waltham, MA, USA).
Cryopreserved NPCs were passaged on T-75 flasks coated with
Matrigel (growth factor reduced, Corning 356230, 0.1 mg/ml
for 1 h) in neural expansion medium. NPCs were maintained
in a humidified incubator at 37◦C and 5% CO2 below 90%
confluence on Matrigel-coated polystyrene flask before passage.
Cells were passaged every 4–5 days using Corning Accutase
Cell Detachment Solution, Liquid (ITC AT104, Mediatech,
Manassas, VA, USA) and neural expansion medium to neutralize
Accutase. Cells were then pelleted by centrifugation at 240
relative centrifugal force for 3min and a cell count was performed
using the Luna CountessTM II FL Automated Cell Counter
(ThermoFisher Scientific, Waltham, MA, USA). NPCs were
cryopreserved at 1.2× 107 cells per vial or harvested on MPS.

Polyethylene Glycol (PEG)
Hydrogel Formulation
Polyethylene glycol (PEG) hydrogels were formed using “thiol-
ene” photopolymerization chemistry from previously published
protocols (Fairbanks et al., 2014; Hansen et al., 2014). The
PEG hydrogel solution was purchased from Stem Pharm, Inc.
(Madison, WI, USA). Hydrogel formulation comprised 40
mg/mL 8-arm PEG-norbornene, 4.8 MMP-peptide crosslinker
(9.6M cysteine, 60% molar ration relative to norbornene
arms), 2mM CRGDS C-amidated peptide, and Irgacure 2959
photoinitiator in PBS. Gels were polymerized in 0.33 cm2

Transwell R© inserts (Corning 3470, Corning Life Sciences,
Teterboro, NJ, USA) with 40 µL total volume and 4.8 J/cm2 of
365 nm UV light (10min, 8 mW/cm2).

Drug Preparation
Lyophilized drugs were solubilized in dimethyl sulfoxide
(DMSO) and drug stock solutions were prepared in neural
expansion medium. Bortezomib (Sigma-Aldrich) was prepared
in the dark by dissolving powder in 100% DMSO and sterile
filtered to obtain a stock solution of 10mM. 0.1% drug stock was
serially diluted in media for final dosing concentrations ranging
from 0.001 to 10µM, increasing by factors of ten. Tamoxifen (LC
Laboratories, Woburn, MA, USA) was prepared by dissolving
powder in 100% DMSO and sterile filtered to obtain a stock
solution of 10mM. Drug stock was serially diluted in media
for final dosing concentrations ranging from 0.01 to 10µM,
increasing by factors of ten.

Formation of 3D Neural Constructs and
Neurotoxicity Experiments
Seeding H1 ES Cell-Derived Neural Progenitor Cells

(NPCs) on PEG Hydrogels
The NPCs were harvested for MPS seeding between passages
5 and 8. NPCs were seeded at density of 50,000 cells/0.33 cm2

Transwell R© and cultured on the PEG gel for 14-days prior to drug

exposure. NPC media was changed every 2-days using 200 µL in
the apical compartment, 1mL in the basal compartment.

Drug-Induced Neurotoxicity Experiments
After 14-days of culture to establish the brain MPS, the 3D
neural constructs were exposed to chemotherapeutic compounds
for another 14-days, with media exchanged every 2-days. The
time reported for all results are relative to establishment of
culture on day 0. The chemotherapeutic neurotoxic compound,
proteasome inhibitor, bortezomib (low-dose: 0.001µM, mid-
dose: 0.01µM, and high-dose: 0.1µM), or non-neurotoxic
compound, selective estrogen receptor modulator (SERM),
tamoxifen (low-dose: 0.01µM,mid-dose: 0.1µM, and high-dose:
1µM) were compared to untreated controls for 14-days. For
context, the bortezomib clinical maximum concentration (Cmax)
is∼0.6µM (Moreau et al., 2012) and tamoxifen Cmax is∼0.2µM
(Kisanga et al., 2004). The prepared drug concentrations in the
neural expansion media were added to both the apical and basal
compartments to avoid concentration gradients.

Quantification of NAA and DJ-1/PARK7
N-acetylaspartate (NAA) concentration in media samples was
measured and analyzed every 2-days as described previously
(Edington et al., 2018).

Human DJ-1/PARK7 concentration was measured in media
samples every 2-days using an electrochemiluminescence multi-
array immunoassay run according to the manufacturer’s
protocol (Human DJ-1/PARK7 Kit, Meso Scale Diagnostics,
LLC, Rockville, MD, USA) as follows. A 7-point calibration
curve with 4-fold serial dilution steps and a zero calibrator
blank were prepared in diluent buffer (Diluent 35). Media
samples were thawed and diluted in media blanks (1:2 v/v
samples/media). Plates were blocked, washed, and incubated
with diluted samples then read on a MESO QuickPlex SQ 120
instrument. Data were analyzed with Meso Scale Diagnostics’
Discovery Workbench software.

Immunocytochemistry
Both 2D laminin-coated Transwell inserts and 3D neural
constructs on Transwell inserts were fixed in situ with 4%
paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) and
incubated for 15min at room temperature. The samples were
stained for neuron-specific β-III tubulin antibody (1:500 v/v,
monoclonal mouse IgG; R&D Systems, Minneapolis, MN,
USA) and glial fibrillary acidic protein (GFAP; 1:500 v/v, goat
polyclonal to GFAP, Abcam, Cambridge, MA) in incubation
buffer (0.05% Triton X-100 and 1% bovine serum albumin in
phosphate buffered saline), followed by overnight incubation
at 4◦C. Then, the cells were washed 2 times for 60min with
rinse buffer (0.05% Triton X-100 in phosphate buffer saline),
followed by an overnight rinse at 4◦C in rinse buffer. After
rinse, 1:200 dilutions of secondary antibodies (Alexa Fluor R© 488,
Alexa Fluor R© 568, and Hoechst 1:1000 v/v, Invitrogen, Carlsbad,
California, USA) were added, followed by incubation overnight
at 4◦C or at least 4 h in the dark at room temperature. After
that, the cells were rinsed and incubated overnight at 4◦C in
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rinse buffer. Fluorescent images were obtained using a Keyence
confocal imaging system with a 20x objective.

Measurement of Untargeted Metabolomics
for Drug-Induced Neurotoxicity
Media samples at day 16 (2-days post-treatment) for cells treated
with 0.001–0.1µM bortezomib, and 0.01–1µM tamoxifen as
well as untreated control were shipped for analysis to Human
Metabolome Technologies America, Inc. (HMT; Boston, MA,
USA). For sample preparation, 40µL of samples weremixed with
10µL ofMilli-Q water containing internal standards (1,000µM).
The mixture was then filtered through a 5 kDa cut-off filter
(ULTRAFREE-MC-PLHCC, Human Metabolome Technologies,
Yamagata, Japan) to remove macromolecules. Metabolome
analysis was performed in samples of culture medium using
Capillary Electrophoresis Time-of-Flight Mass Spectrometry
(CE-TOFMS) in two modes for cationic and anionic metabolites.
On the basis of HMT’s standard library, 65 metabolites (47
metabolites in Cation mode and 18 metabolites in Anion mode)
were detected (dataset provided in Supplementary Materials).

Analysis of Biomarker and Untargeted
Metabolomics Data
The measured DJ-1 and NAA levels are reported as mean ±

SD. The data were analyzed using a two-way ANOVA with
Bonferroni’s post-hoc testing for n = 3, p < 0.05 using GraphPad
Prism version 7 (San Diego, CA, USA). For analysis of untargeted
metabolomics, MetaboAnalyst R package (Chong et al., 2018)
and Ingenuity Pathways Analysis (IPA, QIAGEN Bioinformatics,
Redwood City, CA, USA) (Krämer et al., 2014) were used for
multivariate and cluster analysis, and functional and pathway
analysis, respectively. Reported metabolomics relative peak area
data were normalized via auto scaling prior to statistical
analysis. Altered metabolites were analyzed using multiple t-
tests (individual t-tests for each metabolite) with Holm-Sidak
correction and plotted using GraphPad Prism. Pathway maps
were constructed in PathVisio desktop (Kutmon et al., 2015) for
visualization of connectivity of the detected metabolites.

Biomarker-Metabolite Correlation Analysis
and Regression Models
Prior to correlation analysis, untargeted metabolomics data was
refined by removing the metabolites that were not detected
(N.D.) in the majority of the samples. For those metabolites
that were either not detectable or became detectable upon drug
exposure, relative abundance values were assigned as 2-fold lower
than the lower limit of detection (LLOD/2). Lower limit of
detection was defined as the lowest relative abundance value
measured in any metabolite across the samples. Preprocessed
untargeted metabolomics data was used as the input for
all correlation analyses and regression models. Biomarker-
metabolite correlation analyses were carried out and plotted
using GraphPad Prism. Correlations with a coefficient larger
than 0.7 (|r| > 0.7) were considered strong correlations and
simple linear regression (SLR) models were employed for
those correlated metabolite-biomarker couples. The regularized

regression method Lasso (Tibshirani, 1996) was employed using
the caret (Kuhn, 2008) and glmnet R packages (Friedman et al.,
2010) to select the important metabolites (predictors from the
intercorrelated metabolomics data; multicollinearity) to predict
DJ-1 (dependent variable). The hyperparameter lambda (λ) was
optimized at the minimum root mean square error (RMSEmin)
of the repeated 5-fold cross-validations (100 repetitions) over
the whole dataset (R script in Supplementary Materials). The
final model for prediction was constructed using the regression
coefficients calculated at the optimized lambda. The predicted
DJ-1 levels were then compared with the measured DJ-1 levels
to calculate to goodness of fit (R2).

RESULTS

Brain Microphysiological System (MPS)
Supports Mixed Neural Cell Culture
for 28-Days
The brain MPS comprises a 3D PEG hydrogel with NPCs that
have differentiated into βIII-tubulin+ (neurons) and GFAP+

(glial) cells and self-assembled to form 3D neural constructs.
The mixed neuron-glial cell culture can be maintained in
this environment for at least 28-days, as demonstrated by
the immunofluorescence images in Figure 1A at day 14 and
Figure 1B at day 28. Structurally, the images illustrate cells
extending around the circumference of the 3D hydrogels.

Assessment of Brain MPS Response to
Bortezomib Using Targeted Biomarkers
During exposure to bortezomib from days 14–28, NAA and
DJ-1 levels were measured every 2-days to assess the drug-
induced neurotoxicity in the brain MPS. Low-dose (0.001µM)
bortezomib induced no significant difference in NAA and DJ-
1 levels compared to the untreated controls, as shown in
Figures 2A,B. For 0.01µM dose (mid-dose) of bortezomib on
day 18 (4-day treatment), NAA levels were significantly reduced
compared to control, and remained so at day 22 and beyond.
In contrast, DJ-1 levels significantly increased and remained
elevated for the duration of the drug exposure (Figures 2C,D).
These results suggest that 0.01µM bortezomib exposure leads to
neurotoxicity in the brain MPS.

For high-dose (0.1µM) bortezomib, on day 16 (2-day
treatment) NAA levels were upregulated compared to the
untreated control (Figure 2E), falling below control at day
18, and from day 20 (6-day treatment) through last day of
treatment, falling below the limit of quantification, suggesting
acute neuronal damage in that time period. In comparison, DJ-
1 levels were at first unaltered, but then increased sharply by day
18, coinciding with the decline in NAA, and subsequently DJ-1
significantly decreased for the duration of treatment, compared
to untreated controls, as shown in Figure 2F. Measurements and
t-test results of bortezomib-treated brain MPSs are tabulated in
Supplementary Table 1.These results demonstrated that changes
in NAA and DJ-1, clinically-relevant biomarkers, in the
brain MPS upon neurotoxic drug treatment were dose- and
time-dependent.
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FIGURE 1 | Brain microphysiological system (MPS): Neural progenitor cells (NPCs) cultured on three-dimensional (3D) chemically-defined poly(ethylene glycol)

hydrogel (multilayer) at (A) 14-days and (B) 28-days. Immunocytochemistry images for β-III tubulin (neurons; green), Glial Fibrillary Acidic Protein (GFAP: glial cells;

red), and Hoechst (nuclei; blue). Scale bar = 100µm.

Assessment of Brain MPS Response to
Tamoxifen Using Targeted Biomarkers
The effects of tamoxifen, a SERM with no clinically observed
neurotoxicity in humans, on NAA and DJ-1 levels were tested in
the brain MPS between days 14–28 in the brain MPS. For 0.1µM
(low-dose) and 0.01µM (mid-dose) treatments, NAA and DJ-
1 levels were not significantly different compared to untreated
controls at any time point during treatment (Figures 3A–D). For
1µM (high-dose) tamoxifen exposure, NAA levels were slightly
reduced at days 26 and 28 (after 12- and 14-day drug exposure,
respectively), as shown in Figure 3E. In comparison, DJ-1 level
was elevated after 4-days of drug exposure (day 18), fell below
untreated control at day 20, and then returned to levels similar to
untreated control for the duration of the experiment (Figure 3F).
In summary, the effects of tamoxifen on NAA and DJ-1 levels
in the brain MPS are limited in comparison to those observed
for bortezomib. Measurements and t-test results of DJ-1 and
NAA levels of tamoxifen-treated brain MPSs are tabulated in
Supplementary Table 1.

Bortezomib and Tamoxifen Treatments
Induce Distinct Metabolic Biomarker
Profiles in the Brain MPS
The untargeted metabolomics of extracellular media samples
were investigated 2-days post-treatment for bortezomib and
tamoxifen, and were compared to untreated controls. A total
of 65 metabolites were detected in the media samples, and
relative abundance values were used to indicate drug-induced
alterations in the metabolic fingerprints. For the multivariate
analysis, partial least squares discriminant analysis (PLS-DA)
was carried out to visualize differences among the groups
with respect to untreated controls. The PLS-DA scores plots
revealed the separation between the different dose treatments
of bortezomib (Figure 4A) or tamoxifen (Figure 4B) compared
to untreated controls. Bortezomib treatment induced a more

pronounced dose-dependent deviation from the untreated
controls than did tamoxifen treatment, as indicated by data
more closely packed and confidence regions overlapping in
comparison with the untreated controls for tamoxifen. 10-fold
cross validation for both PLS-DA models showed that Q2 was
0.79 for the first 2 components of the bortezomib model with
R2 of 0.97 (Supplementary Table 2). For the tamoxifen model,
calculated Q2 values were negative for up to 8 components,
suggesting that the model is either not predictive or is overfitted
(Supplementary Table 2).

The relative metabolite levels in the untreated controls and
the drug-treated neural constructs are compared in the heatmap
(Figure 4C) to detect the metabolites altered by drug treatment.
The group averages (n = 3 for each drug and dosing) of
the metabolic profiles suggested major differences in some
metabolite levels in the mid-dose and high-dose bortezomib-
treated groups compared to the untreated controls, while the low-
dose group appeared comparable to the untreated group. In the
mid-dose and high-dose tamoxifen-treated groups, alterations
in some amino acid levels were detected, but the changes were
not statistically significant (not shown). The low-dose tamoxifen
treated group was similar to untreated controls.

To assess the significance of altered metabolites upon
bortezomib or tamoxifen treatments, statistical analysis (multiple
t-tests) was carried out. None of the metabolite alterations in
the low-dose bortezomib treated group compared to untreated
control were statistically significant, while perturbations in the
levels of 3 metabolites in the mid-dose treated group, and of
5 metabolites in the high-dose treated group were statistically
significant (padj < 0.05) compared to the untreated controls. For
the tamoxifen-treated groups, none of the metabolite alterations
were statistically significant.

The most significant differences induced with bortezomib
treatment were in the relative levels of S-sulfocysteine (SSC)
and phosphorylcholine (ChoP) (Figure 5), which are the top-
2 metabolites with respect to the calculated VIP scores
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FIGURE 2 | Bortezomib treatment for 14-days in the brain MPS. (A,C,E) Extracellular N-acetyl-aspartate (NAA) concentration in the media for the noted dose (B,D,F)

Extracellular DJ-1/PARK7 concentration in the media for the noted dose. Each bar represents mean ± SD for triplicate MPS wells (n = 3) at each treatment dose and

time point. For each bortezomib dose, significant differences between treated (colored bars) and untreated control (black bars) at the same time point are denoted

according to the calculated p-values (two-way ANOVA multiple comparisons with a Bonferroni’s post-hoc test; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p <

0.0001). Day 14 represents the time at which drug dosing was initiated.

(metabolites with VIP >1 were considered as the greatest
contributors to the group separation) in the PLS-DA model
(Supplementary Table 2). Bortezomib had a dose-dependent
effect in the levels of SSC and ChoP, whereas these metabolites
were unaltered upon tamoxifen treatment. Cystine, the oxidized
form of cysteine, was similarly affected by bortezomib treatment,
but unaltered by tamoxifen at any dose level. Although these
metabolites are on the same canonical metabolic pathway,
different dependencies on bortezomib dose were observed.
SSC levels gradually decreased with increasing bortezomib
concentration, whereas cystine levels were comparable in
the untreated, low-dose, and mid-dose treated groups, but
significantly lower in the high-dose bortezomib-treated group
(Figure 5). Associated with ChoP, ethanolamine phosphate (PE)

levels were higher in bortezomib-treated groups, but remained
unaltered in tamoxifen-treated groups.

Significant changes were also detected in the levels of lactic
acid, pyruvate, citric acid, and hypoxanthine upon bortezomib
treatment, but unaltered in the tamoxifen-treated groups
(Figure 5). An increase in extracellular levels of lactic acid was
observed in the mid-dose bortezomib treated group and the
levels in the high-dose bortezomib treated group were similar to
that in the untreated controls. Pyruvate levels were comparable
in the untreated, low-dose, and mid-dose treated groups, but
significantly higher in the high-dose bortezomib treated group.
A similar effect on the levels of hypoxanthine, was found, with
significantly higher levels in the high-dose bortezomib treated
group. Citric acid showed a strong dose-dependent trend to
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FIGURE 3 | Tamoxifen treatment for 14-days of the brain MPS. (A,C,E) Extracellular N-acetyl-aspartate (NAA) concentration in the media for the noted dose (B,D,F)

Extracellular DJ-1/PARK7 concentration in the media for the noted dose. Each bar represents mean ± SD for triplicate MPS wells (n = 3) at each treatment dose and

time point. For each tamoxifen dose, significant differences between treated (colored bars) and untreated control (black bars) at the same time point are denoted

according to the calculated p-values (two-way ANOVA multiple comparisons with a Bonferroni’s post-hoc test; *p < 0.05 and ****p < 0.0001). Day 14 represents the

time at which drug dosing was initiated.

decrease upon bortezomib treatment, and remained unaltered in
the tamoxifen-treated groups.

Bortezomib-Induced Perturbations in
Metabolic Pathways Indicate Oxidative
Stress and Disruption of
Membrane Integrity
Pathway analysis using the Ingenuity Pathway Analysis (IPA)
software was carried out to examine the importance of altered
metabolites in the bortezomib mechanism of action. Only mid-
dose and high-dose bortezomib-treated groups were used in
comparison to untreated controls, since low-dose bortezomib
treatment did not induce significant metabolite alteration.

The pathway analysis revealed various diseases and disorders
to be associated with the observed metabolite alterations,
with “gastrointestinal disease,” and “organismal injury and
abnormalities” being common between the mid-dose and high-
dose treated groups (Figure 6A). “Neurological disease” and
“cancer metabolic pathways,” the only disease and disorder
pathways clearly relevant for the brain MPS, were reported to
be associated with the metabolite alterations in the high-dose
treatment group.

Bortezomib treatment caused a decrease in secreted levels
of SSC and cystine (Figure 5), which are both metabolites in
cysteine and methionine metabolism (Figure 6B) that regulates
redox homeostasis in brain tissue and neurons (McBean, 2017;
Paul et al., 2018). Examination of the pathway diagram indicates
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FIGURE 4 | Multivariate and cluster analysis for untargeted metabolomics. PLS-DA scores plots for the (A) bortezomib or (B) tamoxifen treated groups (green, blue,

and cyan circles represent low-dose, mid-dose, and high-dose, respectively, with their untreated controls in red circles, all within their 95% confidence intervals)

showing the differences in metabolic fingerprints. (C) Heatmap of relative levels of the detected metabolites showing the untreated group (n = 5) compared to

bortezomib or tamoxifen treated groups (n = 3 for each dose).
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FIGURE 5 | Altered metabolite levels captured 2-days post-treatment with different bortezomib or tamoxifen doses compared to untreated controls. Floating bars

(min to max, line at mean) represent relative metabolite abundance for untreated (black, n = 5), low-dose treated (green; 0.001µM bortezomib or 0.01µM tamoxifen,

n = 3 for each drug), mid-dose treated (blue; 0.01µM bortezomib or 0.1µM tamoxifen, n = 3 for each drug), and high-dose treated (red; 0.1µM bortezomib or 1µM

tamoxifen, n = 3 for each drug) brain MPS. Significant alterations (in drug treated samples, with respect to the untreated controls) are marked according to the

adjusted p-values (multiple t-tests with Holm-Sidak correction; *p < 0.05, **p < 0.01, and ****p < 0.0001). Non-detected metabolite levels are shown at the baseline

(as abundance = 0).

relationships among measured metabolites as well as informs the
mechanism of action of bortezomib in the brain MPS. These
results may suggest a correlation in cystine and SSC levels, and
possibly disruption of redox balance in the neural constructs
upon bortezomib treatment.

Significant elevations in the levels of extracellular
phosphorylcholine (ChoP) and ethanolamine phosphate (PE) in
bortezomib-treated groups (Figure 5) were also observed. PE
and ChoP are in the glycerophospholipids pathway and both
showed similar dose-responses to bortezomib treatment. ChoP is
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FIGURE 6 | Bortezomib-induced alterations in metabolic pathways. (A) Top diseases and disorders list from Ingenuity Pathway Analysis (IPA) for bortezomib

mid-dose, and high-dose treatment. Associated decrease or increase in the metabolites are shown in italic or underlined, respectively. (B) Bortezomib-induced

alterations in the cystine and methionine metabolism. Other metabolic pathways connected to cysteine metabolism are shown in dashed rectangles. Solid rectangles

represent metabolites in the pathways and the detected metabolites in this study are shown in italic. Transsulfuration pathway (olive color) shows cysteine synthesis

from methionine followed by conversion of cysteine to GSH. Bortezomib-induced decrease or increase in extracellular metabolite levels are highlighted in red and

green, respectively.

a functional group in the hydrophilic head of the phospholipids
forming lipid bilayers, and its release is only possible through
a leaky membrane (Walter et al., 2004). Detection of ChoP in
the culture media of bortezomib-treated group may suggest
that this a consequence of bortezomib-induced disruption of
membrane integrity.

Metabolic Signatures Correlate With NAA
as Early Indicators of Cellular Dysfunction
Followed by DJ-1 Release
Drug-induced response was observed in metabolic signatures
and NAA levels 2-days post treatment. While no alterations in

DJ-1 levels were detected that quickly, after 4-days of bortezomib
treatment, DJ-1 levels were in fact upregulated and NAA
levels downregulated.

To relate metabolic signatures from untargeted extracellular
metabolomics to the clinically-relevant protein biomarkers,
correlation analyses were carried out. For all untreated,
bortezomib-treated, and tamoxifen-treated groups, NAA,
and DJ-1 levels were analyzed with respect to metabolomics
measured on day 16 (2-day drug exposure for drug-treated
groups). NAA showed both strong positive and negative
correlations with many metabolites (Supplementary Table 3

and Supplementary Figure 2), as expected, since NAA,
the neuronal health biomarker is a metabolite in alanine,
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aspartate, and glutamate metabolism. To verify the NAA-
metabolite correlations, a linear regression model was
used for each metabolite with correlation coefficient
higher than 0.7 (|r| > 0.7) and a p-value lower than 0.05
(Supplementary Table 3, metabolites in bold); the regression
line with 95% confidence interval was mapped over the scatter
plot (Supplementary Figure 3).

Similar analyses carried out for DJ-1 (measured on day 16)
showed that this oxidative stress biomarker did not have
any strong correlations with the metabolic fingerprints
on the same time point (Supplementary Table 3 and
Supplementary Figure 2). Considering the measured DJ-1
levels on day 18 recapitulated the drug-response more precisely,
correlation analyses were also carried out with accumulated
DJ-1 levels (total amount measured on days 16 and 18).
Interestingly, accumulated DJ-1 was strongly correlated with the
metabolites that showed strong correlations with NAA on day 16
(Supplementary Figures 2, 4 and Supplementary Table 3).

These results show that the metabolic signatures and NAA
levels correlate well with the measured DJ-1 levels over the
longer time period. This finding suggests that a subset of
metabolites along with NAA could predict the later DJ-1 levels;
the phenotypic outcome indicating cell death induced by cellular
dysfunction associated with oxidative stress. To detect this subset,
Lasso, a regularized regression method was employed to select
the predictors (metabolites) that best define the dependent
variable, accumulated DJ-1. The final model constructed at
the optimized tuning parameter (λ), selected ethanolamine
phosphate (PE), hypoxanthine, and phosphorylcholine (ChoP) as
the predictors while filtering out the rest of the metabolites that
are not of importance for prediction (Supplementary Table 4

and Supplementary Figure 5). Using this model, accumulated
DJ-1 was predicted, and the goodness of fit (R2) of the prediction
was calculated as 0.88 with respect to the measured DJ-1 levels
(Figure 7). These results indicate that the measured DJ-1 at the
later time point could be predicted using the measured relative
abundance values of this subset of metabolites on the earlier
time point.

DISCUSSION

Early assessment of adverse effects of therapeutic drugs in
humans is crucial to avoid long-lasting harm. The detection of
adverse phenotypic responses of tissues and organs demands
continuous monitoring of response biomarkers in humans.
Metabolomic biomarkers have the potential to provide early
insights about organ- and tissue-level dysfunction prior to
irreversible toxicity occurring. In this regard, human MPS
technologies, which are designed to be more physiologically-
relevant than existing 2D cellular in vitro systems, may
provide preclinical platforms for drug screening studies. These
technologies support long-term tissue culture, enabling the
study of kinetics of drug-physiology interactions using various
continuous and endpoint metrics, such as clinical biomarkers
and -omics. As such, for toxicology, these technologies hold
promise not only for identifying toxic effects at the preclinical

FIGURE 7 | Predicted DJ-1 levels using the Lasso regression model (black

circles) with respect to the measured DJ-1 levels. R2 = 0.88 shows the

goodness of fit between the measured and predicted DJ-1 levels. The identity

line is shown in red.

stage but also providing insights about toxicity mechanisms,
identification of biomarkers, and informing clinical biomarker
strategies. Similar to the existing 2D in vitromodels, utilization of
theMPS technologies also necessitates assay development such as
biomarkers, cell viability/metabolism, and cytotoxicity, in terms
of media interference of the assay on detection, assay sensitivity,
and molecular stability. Additionally, accurate comparison of
in vitro systems requires quantitative characterization of each
experimental system, e.g., cell population, cell numbers, effect of
different medium composition on in vitro drug bioavailability,
and accuracy of the analytical methods.

This study focuses on drug-induced neurotoxicity using a
brain microphysiological system (MPS) treated with known
neurotoxic and non-neurotoxic drugs, and assessment using both
targeted and untargeted molecular profiling. The untreated brain
MPS was characterized using immunocytochemistry imaging
and measurement of targeted biomarkers (NAA and DJ-1) over
the 28-day cell culture. The immunocytochemistry imaging
demonstrated similar mixed neuron-glial cell culture extending
around the circumference on days 14 and 28 for untreated
controls. Additionally, over the 28-day culture period, NAA
and DJ-1 levels gradually increased from the start of the cell
culture and reached a plateau after day 14. The drug responses
were then evaluated between days 14 and 28 using targeted and
untargeted biomarkers.

Enhanced NAA levels were previously found in neuro-
pathological conditions, suggesting that measurement of NAA
could be means of monitoring neuronal health (Simone et al.,
2011; Tortorella et al., 2011). In this study, 2-days of bortezomib
treatment induced high levels of NAA release and altered the
cells’ metabolic fingerprint, suggesting cellular dysfunction. After
4-days of drug treatment, high levels of DJ-1 were also observed,
confirming bortezomib-induced oxidative stress. This sequence
suggests that neuronal function is impaired quickly, as indicated
by NAA, even while overt oxidative stress damaging the cell
membrane as indicated by DJ-1 leakage into the medium is
only measurable several days later. The untargeted metabolomics
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results further support these findings, with the elevated levels of
PE, a phospholipid breakdown product, and ChoP, a compound
released from the cells with leakymembranes. This study suggests
that a subset of the detected metabolites in the untargeted
metabolomics study following 2-days of treatment could predict
the phenotypic outcome (DJ-1) observed at a later time point
(after 4-days of treatment). The subset of metabolites that
were predictive consisted of ethanolamine phosphate (PE),
hypoxanthine, and phosphorylcholine (ChoP). These findings
are of particular relevance since NAA and DJ-1, known relevant
molecular biomarkers, combined with metabolomics could
reveal additional biomarkers to be used in the clinic and
could be utilized for assessment of drug-induced neurotoxicity
of NMEs.

Bortezomib, used in the treatment of relapsed/refractory
multiple myeloma and mantle cell lymphoma, has been
reported to induce gastrointestinal toxicity, thrombocytopenia,
asthenia, peripheral neuropathy (Menashe, 2007) and have
adverse pulmonary effects (Miyakoshi et al., 2006). Exposure
to bortezomib causes unfolded proteins to accumulate in the
endoplasmic reticulum (ER), causing ER stress and triggering
cell stress associated with ROS accumulation (Ri, 2016).
Indeed, previous in vitro proteasome inhibition studies showed
direct mitochondrial function effect, causing accumulation of
ubiquitinated proteins within the mitochondrion and leading
to increased reactive oxygen production (Sullivan et al., 2004;
Torres and Perez, 2008). In the brain, reactive oxygen and
nitrogen species are mostly elevated compared to other organs
in the body, and the redox balance would normally be regulated
via the antioxidants GSH and cysteine. Disruption of this
redox homeostasis has been reported to play an important role
in progression of neurodegenerative disorders (Shanker and
Aschner, 2001; McBean, 2017; Paul et al., 2018).

In this study, bortezomib had a dose-dependent effect on
the levels of the metabolites SSC, and cystine, the oxidized
form of cysteine, whereas these were unaltered by tamoxifen
treatment. SSC, a product of a not well-established cystine-
sulfite reaction, was shown to exhibit depolarization (Meweitt
et al., 1983), and elevated levels of SSC contributed to
neurotoxicity by decreasing intracellular levels of free radicals
(Moore et al., 1987). Both SSC and cystine are found in the
cysteine metabolism pathway that regulates redox homeostasis
in brain tissue and neurons (McBean, 2017; Paul et al.,
2018). For the regulation of cysteine metabolism, cells use
multiple mechanisms to maintain a constant cysteine supply,
either by synthesizing it from methionine via the reverse
transsulfuration pathway (Figure 6B), or by the uptake of
extracellular cystine via the transporter system x−c . The observed
decrease in the extracellular cystine levels in the high-
dose bortezomib-treated group may indicate increased cystine
uptake from the media (Figure 5 and Supplementary Figure 1).
The x−c system transports extracellular cystine in exchange
with glutamate. In this study, extracellular glutamate levels
were detected only for the high-dose bortezomib treated
group (Supplementary Figure 1), in accordance with the lower
extracellular cystine levels. Similar findings were reported
suggesting that depletion of extracellular cyst(e)ine triggers

oxidative stress via depletion of intracellular GSH, followed by
cell cycle arrest and cell death (Cramer et al., 2017).

Oxidative stress or disruption of redox homeostasis in general
has been associated with neurodegenerative diseases, due to
change in the glutamate levels in the brain, causing calcium influx
into neurons, eventually leading to breakdown of membrane
structural elements (Klein, 2000). In this context, phospholipids,
the essential structural elements of the cell membrane, were
reported to be elevated in the cerebrospinal fluid of Alzheimer
patients (Walter et al., 2004). Our results in the brain MPS
were similar, where bortezomib treatment induced significant
elevations in both extracellular ChoP and PE. PE, a precursor
of phospholipid synthesis, is a phospholipid breakdown product,
and contributes to the sphingolipid metabolism. ChoP is a
functional group in the hydrophilic head of the phospholipids
forming the lipid bilayers and release of this compound from
the cell is possible through a leaky membrane (Walter et al.,
2004). These observations may suggest release of ChoP to
the culture media is a consequence of bortezomib-induced
disruption of membrane integrity. For untreated and tamoxifen
treated groups, ChoP was undetectable in the MPS medium.
ChoP normally can be hydrolyzed to free choline in the cell
and be released through certain transporters (Klein, 2000).
However, changes in the extracellular choline levels are not
specific to disruption of membrane integrity since choline could
be hydrolyzed from (or condensed to) acetylcholine, or oxidized
to betaine which provides methyl groups to form methionine
in the transsulfuration pathway of the cysteine and methionine
metabolism. In this study, a decrease in the extracellular
choline levels for the low-dose and mid-dose bortezomib treated
groups was observed, but the levels were comparable for the
high-dose bortezomib, tamoxifen treated, and untreated groups
(Supplementary Figure 1). Hence, an increased ChoP release
could be an indicator of membrane breakdown, but not the only
driving force of the change in the extracellular choline levels.

Significant changes in the levels of lactic acid, pyruvate,
citric acid, and hypoxanthine were detected upon bortezomib
treatment but not with tamoxifen. The functions of several
of these may give clues to the mechanisms by which
bortezomib is adversely affecting the tissue. Hypoxanthine is
a purine derivative commonly utilized as a hypoxia biomarker
(Saugstad, 1988), while citric acid is a key constituent
in the TCA cycle. While the changes observed in the
citrate levels may be correlated with pyruvate (and lactate)
through the TCA cycle, previous studies reported that citrate
is synthesized in and released from astrocytes in large
amounts, which contributes to its regulatory function in the
CNS as an extracellular chelating agent (Westergaard et al.,
2017). Moreover, bortezomib-induced perturbations in these
metabolites may also suggest mitochondrial dysfunction of the
neural constructs.

For the statistical analysis of the metabolomics data, multiple
t-tests were carried out and Holm-Sidak correction was applied
to account for multiple comparisons problem. The Sidak method
allows strong control on the familywise error rate (FWER),
and it is believed to be too conservative in some cases. False
discovery rate (FDR) measure may be more reasonable since
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it allows a proportion of Type I errors to occur. When the
statistical analyses were repeated with FDR measure (with
Q = 5%), our results were the same for tamoxifen treatments,
and low- andmid-dose bortezomib treatments, while the number
of significantly altered metabolites upon high-dose bortezomib
treatment were higher (data not shown). Metabolites such as
citric acid, and PE, which were not significant in the Holm-Sidak
method were significant in the FDR method. Considering that
Sidak correction might be too conservative, the metabolites with
lower adjusted-p-values (0.05–0.1) were already included in our
biological interpretation of the metabolomics data.

In summary, clinically relevant biomarkers for neural health
and neurotoxic response were quantified in the brain MPS. The
changes in biomarker profiles upon neurotoxic drug treatment
using both targeted and untargeted molecular biomarkers
indicated oxidative stress and membrane breakdown in the
brain MPS. Furthermore, a subset of early response biomarkers
identified with untargeted metabolomics after a first dose of
neurotoxic drug administration was correlated to DJ-1 protein
levels, which was observed after repeated drug dosing. These
results indicated that early response biomarkers could be
used to predict adverse drug effects in repeated drug dosing
regimens before overt cell death occurs. These clinically relevant
biomarkers could also be used to assess early response in
humans to avoid irreversible drug-induced toxicity. While our
study does not provide a deep biological characterization of the
brain MPS and its relevance to the human brain in terms of
tissue/cell content and organ function, we believe this study
to be a proof of concept for the assessment of preclinical
response biomarkers and utilization of a 3D in vitro model
for possible drug screening studies. Under the conditions used
in the study, we found that NAA, DJ-1, and extracellular
untargeted metabolomics were able to capture a differential
response for a neurotoxic, and a non-neurotoxic drug. It should
be noted that response biomarkers are highly dependent on
the drug mechanism of action (MoA), and should be chosen
with care for large scale screening of drugs that belong to
different classes of MoA. We acknowledge the limitations of

the brain MPS, sensitivity of the NAA, DJ-1, and untargeted

metabolomics measurements, and the drugs used in this study as
they provide an individual case study rather than demonstrating
a high throughput drug screening or prediction of neurotoxicity.
However, we suggest that the approach demonstrated here can
be extended for preclinical toxicity screening and biomarker
discovery studies.
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