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Abstract

Lung cancer is one of the leading causes of cancer-related deaths worldwide and is charac-

terized by hijacking immune system for active growth and aggressive metastasis. Neutro-

phils, which in their original form should establish immune activities to the tumor as a first

line of defense, are undermined by tumor cells to promote tumor invasion in several ways. In

this study, we investigate the mutual interactions between the tumor cells and the neutro-

phils that facilitate tumor invasion by developing a mathematical model that involves taxis-

reaction-diffusion equations for the critical components in the interaction. These include the

densities of tumor and neutrophils, and the concentrations of signaling molecules and struc-

ture such as neutrophil extracellular traps (NETs). We apply the mathematical model to a

Boyden invasion assay used in the experiments to demonstrate that the tumor-associated

neutrophils can enhance tumor cell invasion by secreting the neutrophil elastase. We show

that the model can both reproduce the major experimental observation on NET-mediated

cancer invasion and make several important predictions to guide future experiments with

the goal of the development of new anti-tumor strategies. Moreover, using this model, we

investigate the fundamental mechanism of NET-mediated invasion of cancer cells and the

impact of internal and external heterogeneity on the migration patterning of tumour cells and

their response to different treatment schedules.

Author summary

When cancer patients are diagnosed with tumours at a primary site, the cancer cells are

often found in the blood or already metastasized to the secondary sites in other organs.

These metastatic cancer cells are more resistant to major anti-cancer therapies, and lead

to the low survival probability. Until recently, the role of neutrophils, specifically tumor-

associated neutrophils as a member of complex tumor microenvironment, has been

ignored for a long time due to technical difficulties in tumor biology but these neutrophils
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are emerging as an important player in regulation of tumor invasion and metastasis. The

mutual interaction between a tumor and neutrophils from bone marrow or in blood

induces the critical transition of the naive form, called the N1 type, to the more aggressive

phenotype, called the N2 TANs, which then promotes tumor invasion. In this article, we

investigate how stimulated neutrophils with different N1 and N2 landscapes shape the

metastatic potential of the lung cancers. Our simulation framework is designed for boyden

invasion chamber in experiments and based on a mathematical model that describes how

tumor cells interact with neutrophils and N2 TANs can promote tumor cell invasion. We

demonstrate that the efficacy of anti-tumor (anti-invasion) drugs depend on this critical

communication and N1!N2 landscapes of stimulated neutrophils.

Introduction

Lung cancer is still the leading cause of cancer-associated deaths worldwide, with 1.8 million

deaths in 2018 [1, 2]. Various cell types such as immune cells, fibroblasts, and endothelial cells

in a tumor microenvironment (TME) interact with tumor cells via the cytokines and growth

factors. Tumor-associated neutrophils (TANs) are of particular interest because experimental

studies showed that they can contribute to the tumor growth, critical invasion, epithelial-mes-

enchymal transition (EMT), and metastasis of cancer cells [3, 4]. Until recently, neutrophils

have been considered as merely a bystander in the TME and metastasis [5–7] but they are

emerging as an important player due to consistent and continuous evidences of their tumor-

promoting roles [3]. It was shown that cancer cells can secrete CXC chemokines, one of four

main subfamilies of chemokines, attracting neutrophils to tumor microenvironment [8] and

neutrophil invasion is highly correlated with poor clinical outcomes [9, 10]. While the classical

form of neutrophils, called N1 TANs, can effectively eliminate tumor cells via lysis [11–13],

TNF-α [14], or inducing tumor cell apoptosis [15], another form, called N2 TANs, can support

tumor growth, invasion, metastasis [16–20] and ultimately, poor clinical outcomes in many

cancers [21]. Metastatic cancer cells were also able to induce neutrophils to form metastasis-

promoting NETs without involving infection processes [22].

While the tumor-secreted transforming growth factor (TGF-β) was shown to transform N1

TANs (tumor-suppressive phenotype) to N2 TANs (tumor-promoting phenotype) [23–25],

the N2!N1 transition can be mediated by type I IFN [14, 23, 26, 27] (Fig 1). Neutrophil elas-

tase (NE or ELANE) as well as matrix metallopeptidase (MMP) was shown to infiltrate the

TME [28] and promote tumor growth and invasion of cancer cells through the PIK3 signaling

pathways [8, 29, 30]. More importantly, it was shown that neutrophils can promote the tumor

cell invasion in the transwell assay [22, 31] and in vivo experiments [22, 32].

Mathematical models of tumor microenvironment and tumor-immune system interactions

have been developed: fibroblasts-tumor [33–35], macrophages-tumor [36, 37], astrocytes-

tumor [38], NK cells-tumor [39–41], neutrophil-tumor [42, 43], tumor-endothelial [44], and

immune-tumor [45, 46] interactions. However, the detailed mechanism of tumor invasion and

metastasis via communication with TANs is still poorly understood. It would be difficult to

build a comprehensive mathematical model of the tumor invasion and metastasis that incor-

porates all the biochemical and mechanical processes (S1 Text). As a beginning step, we focus

on the neutrophil-mediated invasion of tumor cells, for which there are experimental data.

Here, we develop a mathematical model based on taxis-reaction-diffusion equations that gov-

ern cell-cell signaling and chemotactic cell movement. Our goal is to understand the biochemi-

cal factors that are important in regulating the chemotactic movement of tumor cells from the
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upper chamber to the lower well of the Boyden chamber assay shown in Fig 2. We show that

the mathematical model can replicate the major components of experimental findings and we

test several anti-invasion intervention strategies with predictions.

Materials and methods

We developed a mathematical model of tumor cell invasion in in vitro experiments, a critical

step in metastasis [22, 47, 48], based on mutual interactions between tumor cells and neutro-

phils (Fig 1).

We denote by O the 3-dimensional domain

O ¼ fx ¼ ðx1; x2; x3Þ; � Li < xi < Li for 1 � i � 3g

and set

Oþ ¼ O \ fx1 > 0g; O� ¼ O \ fx1 < 0g; O� ¼ Oþ [ O� ;

Gþ ¼ @Oþ; G� ¼ @O� :

The semi-permeable membrane occupies the planar region

M ¼ fx1 ¼ 0; � Li < xi < Li for i ¼ 2; 3g;

and the ECM occupies a 3-dimensional region

S ¼ f� L0 < x1 < L0; x1 6¼ 0; � Li < xi < Li for i ¼ 2; 3g

Fig 1. Interaction of the TGF-β, IFN-β, and NE-pathways in the control of tumor cell invasion. In homeostasis of normal tissue, these pathways are

balanced so as to control growth, but in lung cancer, increased secretion of TGF-β by tumor cells induces the N1!N2 transition of the neutrophils and

stimulates their secretion of NE and other growth factors. This disrupts the homeostasis and stimulates aggressive tumor invasion.

https://doi.org/10.1371/journal.pcbi.1008257.g001
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where 0< L0 < L1. We denote by IA the characteristic function of a set A:

IAðxÞ ¼ 1 if x 2 A; IAðxÞ ¼ 0 if x =2A

The geometry of the experimental setup of the Boyden invasion chamber is shown in Fig

2A. In the typical transwell migration assay, neutrophils isolated from the bone marrow are

plated in the lower chamber, and tumor cells are added on top of Matrigel-coated insert in the

upper chamber [22]. In our model, we assume that tumor cells are initially placed on the top of

gel-coated area above the membrane with mini-pores in the middle, and invade the lower

chamber where neutrophils (or conventional medium for control) reside. The corresponding

computational domain is shown in Fig 2B.

We introduce the following variables at space x and time t:

n(x, t) = density of tumor cells,

N1(x, t) = density of N1 neutrophils,

N2(x, t) = density of N2 neutrophils,

ρ(x, t) = concentration of tumor extracellular matrix (ECM),

C(x, t) = concentration of CXCL-8,

Fig 2. Schematics of an invasion assay system. (A) Boyden transwell invasion assay. Tumor cells were suspended in the upper chamber, while

neutrophils or medium alone (control) were placed in the lower chamber. Semipermeable inserts coated with matrigel (extracellular matrix) were

inserted in the filter. In response to NE secreted by N2 neutrophils in the lower chamber, tumor cells degrade the heavy extracellular matrix

proteolytically and invade the lower chamber. The number of neutrophils on the lower surface of the permeable insert was counted after 22h in the

absence and presence of neutrophils in the lower chamber. (B) TGF-β (G), NE (E), NE inhibitor (D), CXCL8 (C), MMP (P), TIMP (M) and tumor cells

(n) can cross the semi-permeable membrane, but neither type of neutrophils (N1, N2) can cross it. Initially, the tumor cells reside in the upper chamber

(domainO+) while neutrophils are placed in the lower chamber (domainO−). An extracellular matrix (ECM) layer (S) surrounds the filter, semi-

permeable membrane (M).

https://doi.org/10.1371/journal.pcbi.1008257.g002

PLOS COMPUTATIONAL BIOLOGY Role of NETs in regulation of lung cancer invasion and metastasis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008257 February 17, 2021 4 / 29

https://doi.org/10.1371/journal.pcbi.1008257.g002
https://doi.org/10.1371/journal.pcbi.1008257


G(x, t) = concentration of TGF-β,

E(x, t) = concentration of NET/NE,

D(x, t) = concentration of NET/NE inhibitor,

P(x, t) = concentration of MMPs,

M(x, t) = concentration of MMP inhibitor (TIMP).

The evolution equations for these variables are developed in next sections, but in this work

we focus on the Boyden invasion chamber, transwell assay, in one space dimension.

Tumor cell density (= n(x, t))

The mass balance equation for the tumor cell density n(x, t) is

@n
@t
¼ � r � Jn þ Pn; ð1Þ

where Jn is the flux and Pn is the net production rate of cancer cells. The flux Jn is comprised of

three components, Jrandom, Jchemo, and Jhapto, which are the fluxes due to random motion, che-

motaxis, and haptotaxis, respectively [34, 49].

We assume that the tumor extracellular matrix is homogeneous and isotropic in tumor

microenvironment, and that the flux due to the random motility is given by

Jrandom ¼ � Dnrn ð2Þ

where Dn is the random motility constant of tumor cells.

In lung tissue, tumor cells are strongly attracted to chemotactic attractants [32] such as NE

and neutrophils [22, 32] and migrate toward the up-gradient (rE) of the chemo-attractant,

NE, through the process called ‘chemotaxis’ [50]. The chemotactic flux is assumed to be of the

form

Jchemo ¼ wE n
rE

dE þ sEjrEj
; ð3Þ

where χE is the chemotactic sensitivity, δE, σE are scaling parameters, and E is the concentra-

tion of NE, whose dynamics will be introduced in Section below. This form reduces to the

standard form of the chemotactic flux (Jchemo� C nrE; C = constant) under small NE gradi-

ents (|rE|� 1) and saturates (Jchemo� (χE/δE) n u; u =rE/|rE| is the unit vector) under

large NE gradients, preventing the blow-up behaviors of solutions [34]. Other forms such as

wn
rE
E [51] or wn

C
ðCþEÞ2

rE (C: constant) [52] have been adapted in the literature.

Tumor cell invasiveness is enhanced by proteolytic degradation of the extracellular matrix

via MMPs [4, 25, 53] and NEs [29, 54] that are produced by neutrophils. This results in local

degradation of tumor ECM [49] and tumor cell movement in the direction of the up-gradient

(rρ) of ECM via a cellular process called haptotaxis. This process is valid only in the ECM

domain S, therefore, we include the characteristic function IS, providing the on-off switch on

the ECM membrane. We represent the haptotactic flux in a similar fashion:

Jhapto ¼ wrIS n
rr

dr þ srjrrj
; ð4Þ

where χρ is the haptotactic sensitivity, δρ, σρ are scaling parameters, and ρ is the concentration

of tumor ECM, whose dynamics will be introduced in Section below.
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The net production of tumor cells is due to active NE-stimulated growth [8, 22] and cell

killing by N1 TANs [3, 21, 23], which we represent as follows:

Pn ¼ r 1þ rE
Em

kmE þ Em

� �

n 1 �
n
n0

� �

� mnN1n: ð5Þ

Here r is the proliferation rate of tumor cells in the absence of NE (E), rE is the dimensionless

parameter of NE-mediated tumor growth, kE and m are Hill-function coefficients for activa-

tion of proliferation in the presence of NE, n0 is the carrying capacity of the tumor in a given

TME, and, finally μn is the killing rate of tumor cells by N1 neutrophils (N1) whose dynamics

will be described in Section ‘Densities of neutrophils’ below. Here, r; rE; kE; n0; mn 2 R
þ,

m 2 Zþ.

Combining the several fluxes in Eqs (2)–(4) and growth term in Eq (5) leads to the govern-

ing equation for the tumor cell density

@n
@t
¼ r � Dnrn � wEn

rE
dE þ sEjrEj

� wrISn
rr

dr þ srjrrj

 !

þ r 1þ rE
Em

kmE þ Em

� �

n 1 �
n
n0

� �

� mnN1n in O�; t > 0:

ð6Þ

Densities of neutrophils: N1 (= N1(x, t)) & N2 (= N2(x, t)) types

We use a similar form of reaction-diffusion-advection equations for the evolution of the densi-

ties of neutrophils, based on mass balance as in the previous section. We assume that (i) Neu-

trophils are chemotactic to the CXCL secreted by tumor cells [55–57], and the chemotactic

flux is of the nonlinear form (3), but with different chemotactic sensitivities (χ1, χ2). Since the

N2 TANs produce NE and MMPs, the movement of activated neutrophils further enhances

tumor invasiveness and growth via the NE-PI3K pathway described earlier. (ii) The anti-

tumorigenic (N1) neutrophils transform into the active N2 type at the rate λ12 in the presence

of TGF-β, based on experimental evidences [3, 21, 43]. For instance, the N1!N2 transition of

TANs with protumour properties was typically observed in a TGF-β-rich tumor microenvi-

ronment and the presence of IFN-β or TGF-β inhibitor can mediate the reverse transition

(N2!N1) with anti-tumoral properties [3]. Therefore, TGF-β pathway inhibitors are under

clinical trials since they were shown to promote the development of N1 TANs [58, 59]. (iii) N1

and N2 phenotypes proliferate at a rate, λ1 and λ2(G), respectively. Then, we have the following

evolution equations:

@N1

@t
¼ r � D1rN1 � w1N1

rC
d1 þ sCjrCj

� �

þ l1N1 � l12GN1 in O�; t > 0; ð7Þ

@N2

@t
¼ r � D2rN2 � w2N2

rC
d2 þ sCjrCj

� �

þ l12GN1 þ l2ðGÞN2 in O�; t > 0: ð8Þ

Tumor ECM density (= ρ(x, t))

The tumor ECM provides structural foundation for efficient cell migration [60], but it also

needs to be remodeled via proteolysis for tumor cell migration by microenvironmental
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proteases [55, 61–63]. In this work, we assume that the tumor ECM is degraded by the TAN-

secreted NEs [64] and TAN-secreted MMPs [4, 25, 53, 55] as in the invasion experiments [22].

The rate of ECM change can be represented as

dr
dt
¼ � ðmr1Eþ mr2PÞn in S; t > 0: ð9Þ

Here μρ1, μρ2 are the degradation rates by NEs and MMPs, respectively, which are secreted by

N2 neutrophils. Essentially, this equation represents proteolytic degradation of tumor ECM

coated on the filter when there is a significant level of tumor ECM present, as is normally the

case in a TME.

CXCL8 concentration (= C(x, t))

Tumor cells secrete CXCL in order to recruit the immune cells such as neutrophils [55–57].

CXCLs and corresponding receptors (CXCR) such as CXCL5 and CXCR6 are important prog-

nostic factors, alone or in a combination with the TANs, for shorter overall survival and cumu-

lative risk of recurrence [3, 65, 66]. Thus the governing equation for CXCL8 is

@C
@t
¼ DCDC þ lCn � mCC in O�; t > 0; ð10Þ

where DC is the diffusion coefficient of CXCL, λC is the secretion rate of CXCL by tumor cells

and μC is the decay rate of CXCL.

TGF-β concentration (= G(x, t))

TGF-β is a polypeptide that plays a major role in regulation of many human diseases including

cancers [67] due to its capacity of maintaining tissue homeostasis and involving in most of the

chronic inflammatory and wounding processes by activating its inactive form in ECM [68].

Tumor cells are the primary source of TGF-β in TME [3, 69]. TGF-β activates proinflamma-

tory and antitumorigenic N1 neutrophils into the aggressive N2 type, which in turn stimulates

tumor cell invasion [55, 70]. Thus the governing equation for TGF-β is as follows:

@G
@t
¼ DGDGþ lGn � mGG in O�; t > 0; ð11Þ

where DG is the diffusion coefficient of TGF-β, λG is the secretion rate of TGF-β by tumor

cells, and μG is the decay rate of TGF-β.

Concentrations of NET/NE (= E(x, t)) and its inhibitors (= D(x, t))

NET and NE are highly associated with aggressive invasion, growth, EMT, and metastasis of

cancer cells [4, 54, 71]. NE is produced by neutrophils [4, 64, 72] and used for degradation of

extracellular matrix and tissue destruction [8, 54, 73]. It was also shown that NE inhibitors

such as DNase I block this effect in growth models [8] and invasion assays [22]. In our frame-

work, NET and the associated NEs are merged into one component. Thus, the governing equa-

tions for NET/NE and its inhibitors are

@E
@t
¼ DEDEþ lEN2 � mEE � mED

EDl

Kl
D þ Dl

in O�; t > 0; ð12Þ

@D
@t
¼ DDDDþ lDIOI

� mDD in O�; t > 0; ð13Þ
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where DE, DD are diffusion coefficients of NET/NE and its inhibitors, respectively, λE is the

production rate of NET/NE from N2 neutrophils, λD is the injection rate of NET/NE inhibitors

at a subdomain OI, μE, μD are natural decay rates of NET/NE and its inhibitors, respectively,

μED is the consumption rate of NE in response to NE inhibitors with kinetic parameters KD,

l (DE;DD; lE; lD; mE; mD; mED;KD 2 R
þ, l 2 Zþ).

MMP concentration (= P(x, t))

Matrix metalloproteinases (MMPs) are highly associated with cancer cell invasion and metas-

tasis [48, 74]. Neutrophils, not tumor cells [55, 75], were suggested to the primary source of

MMPs [4, 25, 53, 55] including MMP-9 [53] in lung cancer development, showing strikingly

predominant presence at the invasive fronts of metastatic cancers [53]. Thus the governing

equation for MMPs is

@P
@t
¼ DPDP þ lPN2 � mPM

PMm

Km
M þMm

� mPP in O�; t > 0; ð14Þ

where DP is the diffusion coefficient of MMPs, λP is the MMP production rate by N2 neutro-

phils, μPM is the degradation of MMPs by its inhibitor, TIMP, with Hill-coefficients KM, m
(KM 2 R

þ
;m 2 Zþ), μP is the decay rate of MMPs. In general, DP is very small (DP� 1) while

the half-life of MMPs is short (μP� 1) [76], leading localized activities at the moving front of

invasive cells.

TIMP concentration (= M(x, t))

Tissue inhibitors of metalloproteinases (TIMPs) play an important role in inhibiting tumor

invasion and metastasis [77] by regulating major signaling pathways in pericellular proteolysis

of various extracellular matrix and cell surface proteins [78]. In the model, TIMPs are injected

for inhibition of the proteolytic activities of cancer cell invasion. Note, however, that this

action can partially block cancer cell invasion since cancer cells can still execute the NE-medi-

ated invasion. Thus, the governing equation of TIMP is

@M
@t
¼ DMDM þ lM � mMM in O�; t > 0; ð15Þ

where DM is the diffusion coefficient, λM is the TIMP supply rate, and μM is the decay rate of

TIMP.

Boundary conditions and initial conditions

In the following simulations we prescribe Neumann boundary conditions on the exterior

boundary Γ1 (= @O; see Fig 2B) as follows:

Jn � n ¼ 0;

D1rN1 � w1 N1

rC
d1 þ sCjrCj

� �

� n ¼ 0;

D2rN2 � w2 N2

rC
d2 þ sCjrCj

� �

� n ¼ 0;

ðDCrCÞ � n ¼ 0; ðDGrGÞ � n ¼ 0;

ðDErEÞ � n ¼ 0; ðDPrPÞ � n ¼ 0;

ðDDrDÞ � n ¼ 0; ðDMrMÞ � n ¼ 0;

ð16Þ
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where ν is the unit outer normal vector. The membrane is permeable to all variables (n, N1, N2,

C, G, E, D, P, M), but not freely so. We describe the flux at the membrane boundary Γ2 (=M;

see Fig 2B) for these variables u = (n, N1, N2, C, G, E, D, P, M) as

Jþ ¼ J� ; Jþ þ giðuþ � u� Þ ¼ 0; ð17Þ

where

uðxÞ ¼

( uþðxÞ if x1 > 0

u� ðxÞ if x1 < 0:
ð18Þ

Here, the parameters γi (γi> 0, i = 1, � � �, 9) represent the permeability of cells (i = 1, 2, 3) and

molecules (i = 4, � � �, 9). The permeability (γi) is determined by the density and size of the

holes on the semi-permeable membrane between upper and lower chambers as well as the size

of the moving object relative to the hole size. The holes in the insert are uniformly distributed

on the membrane of the Boyden invasion transwell assay [22, 31]. See [79] for the derivation

of these Robin-type boundary conditions by the homogenization method. If the size of the cir-

cular holes in the membrane is increased (or decreased), the membrane becomes more (or

less) permeable, and γi increases (or decreases) [33, 34]. For instance, the diameter of typical

cells is in the range of 10-20 μm while the size of growth factors and cytokines such as TGF-β
is much smaller [80]. Furthermore, the diffusion coefficient of cells is usually much smaller

than that of growth factors and cytokines [81]. While, the typical diffusion coefficient of mole-

cules (CXCL8, EGF, and TGF-β) is in the range of (1.0-2.5) × 10−6 cm2/s [57, 82–86], the ran-

dom motility coefficient of cells is much smaller ((1.0-10.0) × 10−10 cm2/s). Therefore, the

parameter (γi = γc (i = 1, 2, 3)) of the migratory cells is smaller than the permeability parameter

(γi = γ (i = 4, � � �, 9)) of the diffusible molecules due to different physical sizes. In a classical

Boyden invasion chamber, a typical, invasive tumor cell in the upper chamber is not able to

invade the lower chamber if the diameter of the permeable holes on the membrane is less than

0.4 μm while molecules can diffuse throughout the domain [33]. So, we take the smaller per-

meability parameter for cells (γc< γ).

Finally, we prescribe initial conditions,

nðx; 0Þ ¼ n0ðxÞ in O�;

N1ðx; 0Þ ¼ N10ðxÞ; N2ðx; 0Þ ¼ N20ðxÞ in O�;

rðx; 0Þ ¼ r0ðxÞ in S;

Cðx; 0Þ ¼ C0ðxÞ; Gðx; 0Þ ¼ G0ðxÞ; Eðx; 0Þ ¼ E0ðxÞ; Dðx; 0Þ ¼ D0ðxÞ; in O�;

Pðx; 0Þ ¼ P0ðxÞ; Mðx; 0Þ ¼ M0ðxÞ in O�:

ð19Þ

Parameters are given in Tables 1 and 2. Nondimensionalization and parameter estimation

of the system (6)–(19) are given in S2 and S3 Text, respectively. This non-dimensional form of

governing equations was used for the simulations. Hereafter, the computational domain is

restricted to one space dimension, and the computational domain is scaled to unit length.

All the simulations were performed using a finite volume method (FVM; clawpack (http://

www.amath.washington.edu/~claw/)) with fractional step method [87]. A nonlinear solver

nksol was used for solving algebraic systems. The Eqs (6)–(19) were solved on a regular uni-

form grid with grid size 0.01 (hx = 0.01). An initial time step of 0.0001 (or smaller) was used,

but adaptive time stepping scheme based on the number of iterations can increase or decrease

this step size.
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Table 1. Parameters used in the tumor model.

Description Dimensional Value Refs.

Diffusion coefficients (cm2 s−1)

Dn Tumor cells 2.5 × 10−8 [33, 37, 129–131]

D1 N1 Neutrophil 1.1 × 10−8 [83]

D2 N2 Neutrophil 1.1 × 10−8 [83]

DC CXCL8 (IL-8) chemokines 2.5 × 10−6 [57, 82, 83]

DG TGF-β 1.0 × 10−6 [84–86]

DE NET/NE 5.0 × 10−7 [132–137]

DP MMP 5.0 × 10−10 [37, 138, 139]

DD DNase I (NET/NE inhibitor) 7.374 × 10−6 [140], estimated

DM TIMP (MMP inhibitor) 8.33 × 10−7 estimated

DA TGF-β Anti-body 8.33 × 10−7 estimated

Production rates

r Proliferation rate of tumor cells 3.3 × 10−4 s−1 [22, 33], estimated

rE NE-mediated proliferation rate of tumor cells 7.0 × 10−2 estimated

kE Hill type coefficient of tumor cell proliferation 2.15 × 10−9 gcm−3 [33], estimated

m Hill coefficient of NE-mediated tumor proliferation 2 estimated

n0 Tumor cell carrying capacity 2.5 × 104 cells/cm3 [33], estimated

λ1 Proliferation rate of N1 neutrophil 4.38 × 10−6 s−1 [33, 141], estimated

λ12 Transformation rate from N1 to N2 neutrophils 4.08 × 103 cm3 g−1 s−1 [33], estimated

λ2 Proliferation rate of N2 neutrophils 2.65 × 10−5 s−1 [33, 141], estimated

λC Production rate of CXC from tumor cells 4.44 × 10−11 s−1 [33, 142, 143], estimated

λG Production rate of TGF-β from tumor cells 4.89 × 10−7 s−1 [33, 142, 143]

λE Production rate of NET/NEs from Neutrophils 2.26 × 10−7 s−1 [144]

λP Production rate of MMPs from Neutrophils 2.22 × 10−8 s−1 [144]

λD Production rate of NET/NE inhibitor 9.0 × 10−13 gcm−3 s−1 estimated

λM Production rate of TIMP 1.29 × 10−11 gcm−3 s−1 estimated

λA Production rate of TGF-β anti-body 4.78 × 10−5 μMs−1 estimated

Degradation/Decay rates

μn tumor cells degradation rate by N1 2.78 × 10−1 cm3 g−1 s−1 estimated

μρ1 ECM degradation rate by NEs 1.02 × 104 cm3 g−1 s−1 estimated

μρ2 ECM degradation rate by MMPs 3.19 × 105 cm3 g−1 s−1 estimated

μC decay rate of CXCL8 6.42 × 10−5 s−1 [145–147]

μG decay rate of TGF-β 8.02 × 10−6 s−1 [33], estimated

μE decay rate of neutrophil elastase 8.02 × 10−6 s−1 [148]

μP decay rate of MMP 5.0 × 10−5 s−1 [49]

μD decay rate of NE inhibitor 9.627 × 10−5 s−1 [149–153]

μM decay rate of TIMP 4.56 × 10−6 s−1 [154]

μED degradation rate of NET/NE by its inhibitor (2.8 × 10−4—2.8 × 10−2) s−1 estimated

μA decay rate of TGF-β anti-body 6.42 × 10−5 s−1 [43, 155]

μAG decay rate of TGF-β by anti-body 4.8 × 10−3 μM−1 s−1 [43], estimated

KD Hill coefficient of NET/NE degradation by its inhibitor 3.2 × 10−9 g/cm3 [156], estimated

l Hill coefficient of NET/NE degradation by its inhibitor 2 [156], estimated

μPM degradation rate of MMPs by TIMP (2.8 × 10−5—2.8 × 10−4) s−1 estimated

https://doi.org/10.1371/journal.pcbi.1008257.t001
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Results

In this section, we investigate the role of NEs in regulation of cancer cell invasion, compare the

predictions of our mathematical model with experimental data, and then suggest new thera-

peutic strategies for blocking invasive tumor cells.

Predictions of the mathematical model

Fig 3 shows the density profiles of all variables (n, N1, N2, ρ, C, G, E, P) at t = 0, 5, 14, 22h in the

absence of DNase I and TIMP when neutrophils were added in the lower chamber. In each

subframe, the right (or left) half of the computational domain represents the upper (or lower)

chamber in the Boyden invasion assay (Fig 2A). By degradation of the tumor ECM on the

membrane of the insert, tumor cells in the upper chamber were experimentally shown to have

capacity of invading the lower chamber upon stimulus of N1/N2 neutrophils in the lower

chamber [22, 31]. Tumor cells in the upper chamber secrete CXCL8 (Fig 3F), which then dif-

fuses and attracts neutrophils in the lower chamber by chemotaxis. On the other hand, tumor

cells produce TGF-β (Fig 3B), which diffuses and enhances the N1!N2 transformation of

neutrophils (Fig 3C) in the lower chamber. These activated N2 TANs in the lower chamber

then secrete NET/NEs (Fig 3D) and MMPs (Fig 3E) to stimulate chemotactic and haptotactic

movement of tumor cells in the upper chamber. Tumor cells break down the ECM component

by proteolytic activities with the NE and MMP near the membrane and invade the left cham-

ber (Fig 3A). As they invade, they can sense higher levels of NE, and proliferate at a higher rate

(see Eq (6)).

A comparison of computational results from the mathematical model with experimental

data [22] is shown in Figs 4 and 5. Hereafter, in order to calculate the population of cells

(tumor cells, N1 TANs, N2 TANs) and level of chemical variables (CXCL-8, TGF-β, NET/NE,

DNase, MMPs) at various times in the mathematical model, we integrate the density and

Table 2. Parameters used in the tumor model. Continued from Table 1.: Dimensionless values were marked in �.

Description Dimensional Value Refs.

Degradation/Decay rates

KM Hill coefficient of MMP degradation by TIMP 4.64 × 10−8 g/cm3 [156], estimated

m Hill coefficient of MMP degradation by TIMP 2 estimated

Movement parameters (chemotaxis, haptotaxis)

χE Chemotactic sensitivity to NE 1.117 × 10−9 cm.s−1 [22, 33, 130, 157]

δE Scaling parameter of NE gradient (|E|) 6.46 × 10−8 g/cm4 estimated

σE Scaling parameter of NE gradient (|E|) 1.0 estimated

χρ Haptotactic sensitivity 3.5 × 10−10 cm.s−1 [22, 158–160], estimated

δρ Scaling parameter of ECM gradient (|ρ|) 5.0 × 10−3 g/cm4 estimated

σρ Scaling parameter of ECM gradient (|ρ|) 1.0 estimated

wC
1

Chemotactic sensitivity of N1 neutrophils to CXCL8 1.1 × 10−9 cm.s−1 [22, 33, 161], estimated

δ1 Scaling parameter of CXCL gradient (|C|) 1.0 × 10−11 g/cm4 estimated

wC
2

Chemotactic sensitivity of N2 neutrophils to CXCL8 1.1 × 10−9 cm.s−1 [22, 33, 161], estimated

δ2 Scaling parameter of CXCL gradient (|C|) 1.0 × 10−11 g/cm4 estimated

σC Scaling parameter of CXCL8 gradient (|C|) 1.0� estimated

Membrane parameters

γc permeability of cells (Tumor cells, N1 neutrophils, N2 neutrophils) 0.01-785 (78.5)� estimated

γ permeability of chemicals (CXCL8, TGF-β, NET/NE, NE inhibitor, MMP, TIMP) 0.1-7850 (785)� [33], estimated

μ ECM width 0.6� estimated

https://doi.org/10.1371/journal.pcbi.1008257.t002
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concentration over the space: density of tumor cells (n̂ðtÞ ¼
R

O
nðx; tÞ dx), N1 TANs

(N̂ 1ðtÞ ¼
R

O
N1ðx; tÞ dx), N2 TANs (N̂ 2ðtÞ ¼

R

O
N2ðx; tÞ dx), and concentrations of ECM

(r̂ðtÞ ¼
R

Srðx; tÞ dx), CXCL-8 (ĈðtÞ ¼
R

O
Cðx; tÞ dx), TGF-β (ĜðtÞ ¼

R

O
Gðx; tÞ dx), NET/NE

(ÊðtÞ ¼
R

O
Eðx; tÞ dx), DNase I (D̂ðtÞ ¼

R

O
Dðx; tÞ dx), and MMPs (P̂ðtÞ ¼

R

O
Pðx; tÞ dx). In

the experiments, Park et al. [22] found that the presence of neutrophils in the lower chamber

could enhance tumor cell invasion through NET formation and NE activities, and the DNase

treatment abrogated the invasion-promoting effect of neutrophils in the lower chamber. Fig

4A–4C shows time courses of the tumor population, population of invasive tumor cells, and

neutrophil population (N1 (red solid), N2 (blue dashed) TANs), respectively, in the absence

(control) and presence (+TAN) of neutrophils. In the presence of neutrophils, both total (Fig

4A) and invasive (Fig 4B) tumor cell populations are increased relative to the control case due

to neutrophil transition (Fig 4C) and NE activities (Fig 3D) in the system. After 22h the num-

ber of 4T1 tumor cells invading the lower chamber almost doubled (*190%) in the co-culture

with neutrophils (red bar (+TAN); left panel in Fig 4D) in the lower chamber as compared to

the control (blue bar; left panel in Fig 4D) in experiments [22]. In the model simulations, the

number of invading tumor cells increased (*2-fold) in the presence of neutrophils in the

lower chamber (red bar (+TAN); right panel in Fig 4D) relative to the control (absence of neu-

trophil (blue bar); right panel in Fig 4D). As Park et al. [22] note, several tumor cell lines (4T1,

BT-549) invade the lower chamber even in the absence of neutrophils in the lower well, which

indicates the intrinsic invasiveness of tumor cells.

Fig 3. Dynamics of the system. The time evolution of the density of each variable. (A) tumor cells and ECM (B) TGF-β (C) N1/N2 neutrophils (D)

neutrophil elastase (E) MMP (F) CXCL8. Here, ECM = [0.35, 0.65]�O = [0, 1]. Note that the initial concentrations of CXCL8, TGF-β, neutrophil

elastase and MMPs are uniformly zero, as in experiments. �x-axis = space (the dimensionless length across the invasion chamber), y-axis = the

dimensionless density/concentration of the variables.

https://doi.org/10.1371/journal.pcbi.1008257.g003
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In Fig 5, we investigate the effect of DNase I against NET/NE on tumor invasion. Our

mathematical model predicts that injection of DNase I in the lower chamber of the transwell

can inhibit NET/NE activities (Fig 5A) and reduce the TAN-induced invasiveness of tumor

cells (right panel in Fig 5B). Park et al. [22] showed that NE inhibition or digestion of the DNA

of the NETs by DNase I can effectively abrogated the invasion-promoting effect of TANs in

the lower chamber, i.e., the number of invasive 4T1 tumor cells was reduced in the presence of

the neutralizing DNase I (+TAN+D) when compared to the TAN case in the absence of the

DNase I (+TAN) (left panel in Fig 5B). Thus, simulations are in good agreement with experi-

mental data [22]. By definition, NETs are associated with neutrophil proteases with the extra-

cellular histone-bound DNA [88]. In the experiments [22], pro-invasive effects of NETs were

shown to be associated with protease activities of NET-associated protease, NE. Park et al. [22]

found that the NE inhibitor reduced the extension of cancer cell-induced NETs and inhibit

Fig 4. TAN-promoted cancer cell invasion (Experiment [22] & simulation). (A-B) Time courses of populations of total tumor cells (A) and invasive

tumor cells (B). (C) Time courses of N1 (red solid) and N2 (blue dashed) neutrophils. (D) Experimental data from the invasion assay in [22] (left

column; 4T1 cancer cells) and computational results from mathematical model (right column). The graph shows the (scaled) populations of invasive

tumor cells at t = 22 h in the absence (control) or presence (+TAN) of neutrophils. Here and hereafter cell populations are derived from the continuum

density.

https://doi.org/10.1371/journal.pcbi.1008257.g004
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TAN’s ability to promote the invasion of 4T1 and BT-549 breast cancer cells. They also found

that DNase I treatment can also prevent lung metastasis in mice. However, it is worth observ-

ing that this DNase I is not enough to completely inhibit the aggressive migration of tumor

cells from the upper chamber to the lower chamber, since they are able to invade in the

absence of neutrophils.

In Fig 6, we illustrate the TGF-β-mediated transition between N1 and N2 neutrophils, thus

giving rise to two phenotypic states: (a) state I, dominated by non-invasive cancer cells, and (b)

state II, dominated by invasive cancer cells. A conceptual schematic of cancer-immune inter-

play is shown in Fig 6A. Fig 6B–6D shows the scaled populations of invasive cancer cells and,

N1 and N2 neutrophils for various levels of TGF-β (0, 0.0001, 0.001, 0.002, 0.01, 5, 10, 20, 50,

100, 200). When the TGF-β level is low, N1 neutrophils dominate the tumor microenviron-

ment (Fig 6C and 6D), leading to non-invasive states of cancer cells (State I, Fig 6B). As the

TGF-β level is increased, the N1-dominant system transits to the N2-dominant state (Fig 6C

and 6D), resulting in the invasive state of cancer cells (State II, Fig 6B). These results illustrate

that the positive feedback loop between N2 neutrophils and invasive phenotype via up-regula-

tion of TGF-β, chemotaxis through CXCL8 and NET activities essentially determines the phe-

notypic transition between non-invasive and invasive states.

The N1!N2 transition of TANs was shown to play a critical role in promoting tumor

growth, angiogenesis, invasion [3, 24, 25, 89], and ultimately metastasis initiation [90, 91]. Fig

7A shows the spatial profiles of the tumor cells for various N1!N2 transition rates (λ12 =

1.6 × 10−4 (red solid), 1.6 × 10−2 (blue dashed), 1.6 × 10−1 (pink with marks)) at the final time

(t = 22 h). The N1- and N2-dominant spatial profiles of neutrophils in the lower chamber for

the corresponding parameter set are shown in Fig 7B and 7C, respectively. If we increase the

rate λ12 (differentiation degree of anti-tumorigenic TANs to tumor-promoting TANs), the

N2 population dominates the lower chamber (Fig 7B and 7C) with the higher population ratio

N2:N1 of TANs (Fig 7F). Fig 7D shows time courses of NE levels for various values of the

differentiation rate (λ12 = 1.6 × 10−4, 1.6 × 10−3, 1.6 × 10−2, 1.6 × 10−1). The corresponding

Fig 5. DNase I treatment against NE can abrogate the invasion-boosting effects of neutrophils (Experimental data [22] and simulation results).

(A) NE levels in the system in the absence (control) and presence (+TAN) of neutrophils, and DNase treatment (+TAN+D) cases at t = 22 h. (B)

Experimental data from the invasion assay in [22] (left column; 4T1 cancer cells) and computational results from mathematical model (right column).

The graph shows the (scaled; %) population of invasive tumor cells at t = 22 h in the absence (control; blue) and presence (+TAN; red shaded) of

neutrophils, and DNase treatment (+TAN+D; yellow dotted) cases. Addition of DNase I reduces the number of invading tumor cells by almost 50%.

https://doi.org/10.1371/journal.pcbi.1008257.g005
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populations of invasive tumor cells and neutrophils (N1,N2) at final time (t = 22 h) are shown

in Fig 7E and 7F, respectively. For a larger λ12, more aggressive, tumor-promoting N2 TANs

in the lower chamber can interact with tumor cells in the upper chamber (Fig 7A) by secreting

more NE (Fig 7D). This leads to an increased tumor population and enhanced tumor cell inva-

sion (Fig 7E). This increased invasiveness of the tumor cells is the result of the mutual interac-

tions between tumor cells in the upper well and the neutrophils in the lower well. For instance,

the NET/NE level increases as λ12 increases (Fig 7D). For a large λ12, the most of N1 TANs are

converted into the N2 phenotype (4th column (λ12 = 1.6 × 10−1) in Fig 7F), leading to efficient

tumor cell migration (Fig 7E). However, when this transition rate is small (λ12 = 1.6 × 10−4),

the less effective N1 TANs persist in the lower chamber (Fig 7B) with less population of the N2

phenotype (Fig 7C). This results in the slower (or close to zero) production of NE (Fig 7D) by

TANs, and lower secretion of both TGF-β and MMP by tumor cells, which in turn reduces

invasiveness of tumor cells by more than 48% (Fig 7E).

Fig 6. TGF-β-mediated cancer-TAN interplay can induce two types of phenotypic states: invasive and non-invasive types. (A) Conceptual

interaction network for the mathematical model. (B) Population of invasive tumor cells in the lower chamber as a function of TGF-β. (C,D) Populations

of N1 (C) and N2 (D) neutrophils as a function of TGF-β.

https://doi.org/10.1371/journal.pcbi.1008257.g006
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Application of the model

Blocking TGF-β and its receptors was shown to inhibit tumor growth [92, 93] and critical cell

invasion [34, 94, 95], decrease tumourigenic potential [92, 96], and reduce metastatic inci-

dence [97] through many different pathways [67, 98]. In order to investigate the effect of TGF-

β suppression on tumor cell invasion, we introduce a new variable A(x, t) for the TGF-β
anti-body and derive the following equations including the modified equation of TGF-β from

Eq (11)

@G
@t
¼ DGDGþ lGn � mGG � mAGAG; ð20Þ

@A
@t
¼ DADAþ lA � mAA; ð21Þ

where μAG is the consumption rate of TGF-β due to antibody reaction, DA is the diffusion coef-

ficient of the antibody, λA is the injection rate of the antibody, and, finally, μA is the natural

decay rate of the antibody. Fig 8A shows the (scaled) population of invasive tumor cells for var-

ious growth rates (r = 1.2, 1.3, 1.35, 1.4, 1.45, 1.5) and injection rates (λA = 0, 1.0 × 10−2,

1.0 × 10−1, 2.0 × 10−1, 3.0 × 10−1, 5.0 × 10−1, 6.0 × 10−1, 7.0 × 10−1, 1.0, 1.0 × 101) of the TGF-β
antibody. For a fixed growth rate of tumor cells, the TGF-β inhibitor treatment can effectively

reduce the invasiveness of tumor cells. For example, the invasive tumor population with a

high dose of antibody (λA = 10) is reduced by 62% compared to the case without the antibody

(λA = 0) when r = 1.5. However, the increasing growth rate can abrogate this antibody-induced

Fig 7. Effect of the N1!N2 transformation on tumor invasion and N1/N2 dynamics. (A) Tumor density profiles onO = [0, 1] at the final time

(t = 22 h) for various λ12’s (λ12 = 1.6 × 10−4, 1.6 × 10−2, 1.6 × 10−1). (B,C) Density profiles of the N1 and N2 TANs in the lower chamber ([0, 0.5]) for the

corresponding λ12’s in (A). (D) Time courses of NE levels for various values of the differentiation rate (λ12 = 1.6 × 10−4, 1.6 × 10−3, 1.6 × 10−2,

1.6 × 10−1). (E,F) Scaled population of invasive tumor cells and neutrophils (N1 and N2) at the final time (t = 22 h) for various λ12’s in (D).

https://doi.org/10.1371/journal.pcbi.1008257.g007
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reduction in tumor cell invasion for a fixed λA (r = 1.2! 1.3! � � � ! 1.5). DNase treatment,

the NE inhibitor, was shown to reduce the NE-mediated invasion of tumor cells (4T1 and BT-

549) experimentally [22] and theoretically (Fig 5). Thus, another effective therapeutic

approach to slowing tumor invasion is to apply DNase I for a combination therapy (TGF-β
inhibitor +DNase I) given its pivotal roles in tumorigenesis [4, 8, 22]. We test the efficacy of

the combination therapy in Fig 8B. The invasive tumor population is reduced by 36% in

response to a high dose of the TGF-β inhibitor (λA = 10; +Ab-D in Fig 8B) compared to control

(-Ab-D in Fig 8B). Our simulation shows that blocking NE-mediated proteolytic activity of

tumor cells near the membrane by DNase I in the presence of TGF-β inhibitor can further

reduce invasiveness of tumor cells (66% reduction) (Fig 8B).

Next, we tested if MMP inhibition by TIMP can effectively reduce the TAN-mediated inva-

sion through the transfilter. It has been shown that TIMP treatment can significantly reduce

(> 50%) the number of migratory breast cancer cells through 8-μm pores in a Boyden invasion

chamber assay [99]. In the mathematical model, inhibition of MMP is implemented by inject-

ing TIMP (λM> 0) in Eq (15) which abrogates MMP production through a term of degrada-

tion of MMPs, � mPM
PMm

Km
MþM

m, on the right hand side of Eq (14). We also tested if a combination

therapy (TIMP+TGF-β inhibitor) can further reduce the invasion potential of tumor cells. Fig

9 shows the (relative) MMP levels, ECM levels, and number of migratory tumor cells at final

time (t = 22 h) for control (-TIMP-Ab), TIMP alone (+TIMP-Ab), and combination treatment

(+TIMP+Ab). One can see that TIMP treatment can inhibit the tumor cell motility by 26%

(+TIMP-Ab in Fig 9C) through the significant reduction in MMP activities (82%; Fig 9A) and

relatively intact ECM level (Fig 9B). An introduction of the TGF-β antibody to the system in

addition to TIMP (+TIMP+Ab) significantly reduces the tumor cell migration through the fil-

ter (> 87%). Blocking tumor-TAN interactions by TGF-β inhibitor effectively lowered MMP

levels (Fig 9A) and induced the intact ECM levels on the membrane (Fig 9B) [94, 97], contrib-

uting to this anti-invasion effect.

Fig 8. The effect of TGF-β blocking (+Ab) and the combined therapy (+Ab+DNase I) on tumor cell invasion. (A) The (relative) population of

migrating tumor cells for various growth rates (r 2 [1.2, 1.5]) and injection rates (λA 2 [0, 10]) of the TGF-β antibody. When TGF-β activity is inhibited

by antibody (r = 1.5), fewer cells (62% reduction) invade the lower chamber. (B) Population of migrating tumor cells when the TGF-β antibody was

added in the absence (+Ab-D) and presence (+Ab+D) of DNase I relative to the control (-Ab-D). When proteolytic activity of tumor cells near the

membrane is blocked by DNase I, fewer cells (66% reduction) invade the lower chamber in the presence of TGF-β inhibitor.

https://doi.org/10.1371/journal.pcbi.1008257.g008
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We now investigate the effect of CXCL-8 on tumor growth and invasion in Fig 10. In our

model, CXCL-8 knockdown leads to critical reduction of chemotactic movement of the neu-

trophils, which in turn reduces tumor growth (blue curve; CXCL8 KO, Fig 10A) and invasion

(red; CXCL8 KO, Fig 10B) compared to control due to decreased activities of NE (*40%) and

TGF-β (*50%). These CXCL-KO-mediated reductions in invasive and proliferative potential

of tumor cells were consistently observed in experiments. Kumar et al. [100] showed that inhi-

bition of CXCL-8 leads to a drastic decrease (*14-fold) in proliferation of LS174T cells

(shCXCL8 in Fig 10A) and significant abrogation of tumor cell invasion (blue in Fig 10B) rela-

tive control.

Fig 9. The effect of MMP blocking (+TIMP-Ab) and combined therapy (+TIMP+Ab). (A,B) Levels of MMPs and ECM when MMP activity was

blocked by TIMP in the absence (+TIMP-Ab) and presence (+TIMP+Ab) of the TGF-β antibody relative to the control (-TIMP-Ab). (C) Population of

invading tumor cells corresponding to control (-TIMP-Ab), TIMP treatment (+TIMP-Ab), and combined therapy (+TIMP+Ab), respectively.

https://doi.org/10.1371/journal.pcbi.1008257.g009

Fig 10. Inhibition of CXCL8 reduces proliferation, viability and invasion (Experiments vs simulation results). (A) Time course of cell proliferation

shows a drastic decrease in the LS174T cell population with CXCL8 knockdown (shCXCL8; blue) compared to control (LS174T) in in vivo experiments

[100]. Model simulation shows a consistent, significant reduction of the tumor cell proliferation in the CXCL knockdown case (CXCL8-KO; blue)

compared to control, abrogating tumor growth. (B) CXCL8 knockdown significantly decreases the invasiveness of LS174T cells (blue) [100], as our

model simulation illustrates (red).

https://doi.org/10.1371/journal.pcbi.1008257.g010
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Discussion

TME plays an important role in regulation of tumor immunogenicity [101], tumor progres-

sion, invasion, and metastasis [3, 102]. In particular, the neutrophil-tumor interaction was

shown to promote tumor cell invasion, increasing metastatic potential of cancer cells [31]. The

invasion and metastasis processes of lung cancer cells may depend on many factors in tumor

microenvironment, including immune cells and their cytokines and chemokines [103, 104].

Therefore, targeting players in tumor microenvironment including tumor-associated neutro-

phils [105] as a therapeutic approach has become more and more important [101, 106]. Exper-

imental [22] and model simulations (Fig 4) suggest that the aggressive tumor invasion through

the filter can be promoted by the mutual interaction between tumor cells in the upper chamber

and neutrophils in the lower chamber. While the details of the N1!N2 transition of TANs are

still poorly understood, our model consistently suggests the pivotal role of TANs in promoting

tumor cell invasion in vitro (Figs 6 and 7) through chemotaxis (S4 Text) and haptotaxis (S4

Text). TAN-induced signaling pathways of NET and NE were shown to actively induce tumor

invasion and metastasis [71, 107, 108]. On the other hand, the presence of inhibitors of NET/

NEs and MMPs was experimentally shown to block tumor invasion [8, 22]. NET was shown to

trap the circulating tumor cells (CTCs) in a lung carcinoma model, promoting tumor cell

metastasis [19] by up-regulation of β1-integrin on NETs and cancer cells [109]. Thus, blocking

this TAN-assisted tumor invasion can be a critical step to decrease the metastatic potential of

the tumor cells. For example, DNase I treatment led to the down-regulation of NE and NET

activities and reduced the invasive and metastatic potential of tumor cells (Fig 5), which is in

good agreement with experimental studies [22]. Interestingly, impeding the formation of NET

by DNase I treatment was shown to halt the actuation of dormant cancer cells [110].

The role of MMPs in regulation of cancer cell invasion and metastasis is well-known [48,

74]. MMP2, for instance, can not only induce tumor cell invasion by degrading ECM but pro-

mote tumor cell proliferation by enhancing vessel maturation and function in brain tumors

[74]. In particular, inhibition of MMP activity can block cancer cell invasion by suppressing

cell-ECM tractions and inducing cell softening [48]. In our model, TIMPs were able to par-

tially block tumor cell invasion by heavy degradation of ECM (Fig 9A). However, when we

apply combined therapeutic strategies by TIMP and TGF-β antibody, this effectively inhibited

the tumor cell invasion through the filter (>87% reduction; Fig 9C). Recently, it was shown

that the invasiveness of cancer cells was regulated by MMP catalytic activity via modulation of

integrins-FAK signaling network [48]. Recently, TANs are shown to facilitate the metastasis to

liver by increased binding activity of CCDC25 to NET DNA [111, 112]. It would be interesting

to investigate the detailed mechanism of this signaling.

There are many factors that may change permeability of the narrow intercellular space for

cellular infiltration. Even though the permeability parameters are fixed in in vitro experiments,

the permeability through the narrow gap for cell invasion varies in the in vivo system and is

regulated by cells and their cytokines/chemokines, changing the invasive potential (S4 Text).

For example, TANs and NET can mediate cancer cell extravasation through TAN-CTC adhe-

sion and breaking endothelial cell (EC) barriers, leading to active metastasis [113]. The whole

process includes an initial strong adhesion process between a CTC and TANs involving selec-

tins/integrins/ICAM1, and a series of signaling networks for CTC-EC adhesion, increased per-

meability from physical contraction of ECs, and the final extravasation [104, 113, 114]. A

multi-scale model [115] may explain the fundamental mechanism behind this complex process

in more detail by taking into account specific cell-cell adhesion [116], ECM-cell interaction

[117], mechanical stress [81, 93, 95], fluid flow [118], and intracellular signaling of cellular pro-

cess [38, 93].
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Many studies showed that neutrophil to lymphocyte ratio (NLR) in blood can be an impor-

tant prognostic factor of cancer progression [119–122] including lung cancers [123, 124]. Our

simulation results suggest that the presence of a larger portion of TANs in a TME (or high

NLR in blood) can effectively stimulate tumor cell invasion and increase the metastatic poten-

tial through increased mutual interaction between tumor cells and N2 TANs (S4 Text). TGF-β
mediates this critical N1! N2 transition of TANs and promotes tumor growth and invasion

through the filter (Fig 6) by the phenotypic switch from non-invasive status to invasive status.

Therefore, the early detection of initial recruitment of TANs to the TME, for example by calcu-

lating NLR, may be an important step in decreasing metastatic potential in patients [8, 28, 122,

125]. Further studies on specific downstream pathways of this CCDC25-ILK-β-Parvin signal-

ling [112] would be needed for development of anti-metastatic drugs that target and block the

NET-cancer interaction.

Blocking TGF-β and its receptors was suggested to a therapeutic approach due to their abil-

ity to inhibit tumor growth [92, 93] and critical cell invasion [34, 94, 95], decrease tumouri-

genic potential [92, 96], and reduce metastatic dissemination [97] through various different

pathways including the SMADs family [67, 98]. We showed that inhibition of TGF-β can effec-

tively decrease migration potential of tumor cells through the transfilter by reducing the criti-

cal interaction between neutrophils and tumor cells (Figs 6 and 8). Model simulation and

experiments [100] consistently show that CXCL8 knockdown can reduce tumor growth and

invasion (Fig 10). These results illustrate the critical role of neutrophils in tumor cell invasion

and importance of inhibition of key players such as TGF-β and CXCL8 in suppressing cell

infiltration and metastasis potential.

A combined approach with TGF-β inhibitor and DNase I can further reduce the invasive-

ness of tumor cells through the filter (Fig 8). We note, however, that TGF-β treatment, not

TGF-β inhibition, can enhance anti-tumor efficacy through temporal immune suppression in

other approaches. For example, Han et al. [126] showed that pretreatment with TGF-β prior to

oncolytic virus (OV) therapy effectively inhibited tumor growth by suppressing resident

microglia and natural killer (NK) cells in glioblastoma therapy trial. In the same vein, Kim

et al. [39] also experimentally and theoretically showed that physical deletion of resident NK

cells (−NK) in the TME, unexpectedly, induced better anti-tumor efficacy relative to the con-

trol case in the OV-bortezomib combination therapy since residential NK cells, if not

removed, also killed infected tumor cells and depletion of NK cells significantly increased OV-

mediated tumor killing. It would be interesting to see how this TGF-β-mediated immune sup-

pression affects the tumor invasion and metastasis processes in these combination therapies.

We plan to investigate the role of the continuous spectrum of the N1!N2 transition and

the role of TANs in the regulation of NET-mediated metastasis in future work. Signaling

between cells is an integral process in controlling invasive and metastatic potential of tumor

cells due to unexpected mutations and chromosomal changes. This signaling often involves

indirect communications between various immune cells and spatially-separated tumor cells in

the TME. For example, the detailed communication between a tumor at a distant site and neu-

trophils in bone marrow is poorly understood. Intra-tumor heterogeneity from packing den-

sity of various cells in TME and large anisotropic transport through the tissue can affect the

signaling pathways [127], thus cancer treatment [128], but despite its importance, correspond-

ing experimental data on signaling are insufficient. Interestingly, the aging TME was recently

suggested to influence tumor progression including the critical tumor cell invasion [61]. Thus,

in silico studies on the effects of these critical interactions on cancer cell invasion, and on the

responsiveness of the predictions to physical parameters, can shed insights into guiding experi-

ments aimed at the development of new therapeutic strategies.
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