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Abstract: We have synthesized quinoxaline analogs (1–25), characterized by 1H-NMR and
HREI-MS and evaluated for thymidine phosphorylase inhibition. Among the series, nineteen
analogs showed better inhibition when compared with the standard inhibitor 7-Deazaxanthine
(IC50 = 38.68 ± 4.42 µM). The most potent compound among the series is analog 25 with IC50 value
3.20± 0.10 µM. Sixteen analogs 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 21 and 24 showed outstanding
inhibition which is many folds better than the standard 7-Deazaxanthine. Two analogs 8 and 9 showed
moderate inhibition. A structure-activity relationship has been established mainly based upon the
substitution pattern on the phenyl ring. The binding interactions of the active compounds were
confirmed through molecular docking studies.
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1. Introduction:

Thymidine phosphorylase (TP), an enzyme involved in catabolism, exists in both prokaryotic and
eukaryotic organisms [1–3]. TP speeds up the initial step in catabolism and converts thymidine
nucleoside into thymine and 2-deoxy-D-ribose-1-phosphate by cleaving glycoside bond [4,5].
The intermediate obtained through dephosphorylation is 2-deoxy-D-ribose, which plays a significant
role in prompting the tumor angiogenesis and hence favors cancer metastasis [6–8]. With respect to
tumor angiogenesis, TP plays a major role, in that it helps in the proliferation process of endothelial cells
throughout the body in cancer metastasis [9,10]. TP performs the same function as platelet endothelial
cell growth factor (PD-ECGF) [11,12]. TP belonging to mammalians shares 39% sequence similarity
with TP of E. coli, while the enzyme of mammalians also shares 65% resemblance with the active sites
of residues of E. coli enzyme [13]. The production of 2′-deoxy-D-ribose can be limited through TP
inhibitors which in turn suffocate the growth of tumor cells [14,15]. Therefore, medicinal chemists have
tried to synthesize novel inhibitors of thymidine phosphorylase which have the potential to overcome
the formation of new blood vessels and arrest the growth of tumor cells. Various attempts have been
made to developed TP inhibitors [16–23]. The most potent inhibitor belonging to human TP known up
to now is 5-chloro-6-[1-(2-iminopyrrolidinyl)methyl] uracil hydrochloride (TPI), while 7-deazaxanthine
(7DX) is the first purine analog labeled as a TP inhibitor [24–26].

Nitrogen-containing heterocycles have attracted considerable attention due to their wide range of
pharmacological importance [27,28]. Quinoxaline has a six-membered cyclic ring with two nitrogen
atoms inside the cyclic ring. Quinoxaline and their analogs have attracted medicinal chemists over the
decades and are used as antimicrobial [29], antibacterial [30], antifungal [31,32], anti-protozoan [33],
anti-inflammatory, antianalgesic [34], anti-cancer [35,36], antidiabetic, and anti-proliferative
agents [37,38]. Our research group has been working on the design and synthesis of heterocyclic
compounds in search of potential lead compounds for many years and has found promising
results [39–49].

In the past, several derivatives having six-member ring with two nitrogen reported to showed
excellent inhibition of TP such as (a) to (f) in Figure 1 [9]. They showed outstanding activity which
induced us to synthesize compounds having similar type of structure with low cast synthesis and
simple chemistry to make synthesis adaptable for large scale synthesis. We report in this study
new derivatives of quinoxalines with fused triazole and thiadiazole ring VII. The structure of our
compounds is very close to the standard drug Deazaxanthine but our compounds have fused triazole
and thiadiazole ring as well, which show much better activity than the standard.
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with fused triazol and thiazole ring (g). 

Figure 1. Structures of some thymidine phosphorylase inhibitors (TPIs) (a–f) along with quinoxalines
with fused triazol and thiazole ring (g).
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2. Results and Discussion

2.1. Chemistry

Synthesis of quinoxaline derivatives (1–25) started with treating quinoxaline-2-carbohydrazide (I)
with potassium thiocyanate in the presence of acid to form quinoxaline thiosemicarbazone (II) which
was treated with a basic solution to cyclize and form 5-(quinoxalin-3-yl)-4H-1,2,4-triazole-3-thiol (III)
which was treated with different substituted phenacyl bromide to afford (1–25) target compounds.
The crude product was washed with water and recrystallized in methanol to afford pure product
in 80–75%. All synthesized compounds (Scheme 1) were characterized by different spectroscopic
methods (see Supplementary Materials for full structures with activities).
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Scheme 1. Synthesis of 2-(5-arylthiazolo[2,3-c][1,2,4]triazol-3-yl)quinoxaline 1–25 derivatives.

2.2. In vitro Thymidine Phosphorylase Inhibitory Activity

We have synthesized 25 analogs of 5-phenyl-3-quinoxalin (1–25) and screened for inhibitory
potential against thymidine phosphorylase enzyme. With respect to inhibitory potential, many analogs
of the series showed a variable degree of inhibition with IC50 values ranging between 3.50 ± 0.20 to
56.40± 1.20 µM when compared with standard 7-Deazaxanthine (IC50 = 38.68± 1.12 µM). The analogs
1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 21, 24, and 25 showed excellent inhibitory potential with IC50

values 13.60 ± 0.4, 26.10 ± 0.70, 18.10 ± 0.50, 27.40 ± 0.60, 33.40 ± 0.80, 24.40 ± 0.60, 34.70 ± 0.80,
33.20 ± 0.75, 18.30 ± 0.55, 13.20 ± 0.40, 15.20 ± 0.50, 3.50 ± 0.20, 24.20 ± 0.70, 16.90 ± 0.60, 26.20
± 0.50, 13.10 ± 0.30 and 3.20 ± 0.10 µM respectively by comparing with standard 7-Deazaxanthine.
Two analogs 8 and 9 showed moderate inhibitory activity with IC50 values 47.50 ± 0.90 and 56.40
± 1.20 µM respectively, while six analogs 10, 11, 19, 20, 22, and 23 were found inactive. Structure
activity relationship has been established for all compounds, mainly based on substituents pattern of
phenyl ring.

Compound 25, a 2,3-dihydroxy analog was found to be the most active analog among the series
with IC50 value 3.20 ± 0.10 µM. When comparing analog 25 with other dihydroxy analogs like 14,
a 2,4-dihydroxy analog (IC50 = 13.20 ± 0.40 µM) 15, a 2,5-dihydroxy analog (IC50 = 15.20 ± 0.50 µM)
and 16, a 2,4-dihydroxy analog (IC50 = 3.50 ± 0.20 µM), analog 25 was found to be superior. Although
all the four analogs have two hydroxyl groups at the phenyl ring, the position of attachment on phenyl
ring are different. The difference in inhibitory activity of these four analogs seems due to the different
position of the hydroxyl group on the phenyl ring, as seen in Figure 2.
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Figure 2. Dihydroxy substitutions at different positions affect their activity.

When comparing dihydroxy analogs with monohydroxy analog like 12, 13, 17, 18, 21, and 24 the
dihydroxy analogs were found to be more potent. This greater potential seems to be due to the greater
number of hydroxy groups on the phenyl ring.

Similarly, a pattern was also observed in flourine substituted analogs like 1, 2, and 3 IC50 value
13.60 ± 0.4, 26.10 ± 0.70 and 18.10 ± 0.50 µM respectively. All three analogs possess flouro group at
the phenyl ring, but the analog 1 shows greater potential than analogs 2 and 3. The difference in the
inhibitory potential in analog 1, 2 and 3 seems due to attachment of flouro group at various positions
on the phenyl part, as seen in Figure 3.
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Figure 3. Activity of fluorine substitutions at different positions.

The same trend of difference in inhibitory activity was found in chloro substituted analogs 4, 5
and 6 with IC50 value 27.40 ± 0.60, 33.40 ± 0.80 and 24.40 ± 0.60 µM respectively. All three analogs
have chloro group but their attachment on phenyl ring differs from each other, and the difference
in inhibitory activity seems to be due to the attachment of chloro group at variable positions on the
phenyl part Figure 4.
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Figure 4. Activity of chlorine substitutions at different positions.

So, it was concluded that in our designed molecules the position, nature, and number of
substituent play critical role in thymidine phosphorylase inhibition.

2.3. Molecular Docking

The IC50 values of quinoxaline derivatives as thymidine phosphorylase inhibitors are shown
in Table 1. The thymidine phosphorylase inhibition by the synthesized derivatives is mainly due
to the type, number, and positions of the functional group in the substitute group R of the basic
skeleton (Table 1). For a better understanding of the enzyme inhibition by the synthesized compounds,
molecular docking study has been carried out to shed light on the established binding modes of the four
selected synthesized compounds 14, 15, 16, and 25. The selected compounds differ by the substitution
position of the hydroxyl group in the aromatic ring (Table 1). Compounds 16 and 25 with OH groups in
meta position to each other show higher activity than 14 and 15 where OH groups are in para position
to each other (Table 1). Table 2 summarizes the calculated binding energies of the stable complex’s
ligand thymidine phosphorylase, number of established intermolecular hydrogen bonding between
the synthesized compounds (14, 15, 16 and 25) and active site residues of thymidine phosphorylase.

Table 1. Different substituent of quinoxaline derivatives (1–25) and their thymidine phosphorylase
inhibitory activity.
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24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

15.20 ± 0.50

3

 

5 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

18.10 ± 0.50 16

 

6 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

3.50 ± 0.20

4

 

7 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

27.40 ± 0.60 17

 

8 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

24.20 ± 0.70



Molecules 2019, 24, 1002 6 of 18

Table 1. Cont.

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a)

5

 

9 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

33.40 ± 0.80 18

 

10 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

16.90 ± 0.60

6

 

11 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

24.40 ± 0.60 19

 

12 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

N. A.

7

 

13 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

34.70 ± 0.80 20

 

14 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

N. A.

8

 

15 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

47.50 ± 0.90 21

 

16 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

26.20 ± 0.50

9

 

17 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

56.40 ± 1.20 22

 

18 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

N. A.

10

 

19 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

N. A. 23

 

20 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

N. A.

11

 

21 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

N. A. 24

 

22 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

13.10 ± 0.30

12

 

23 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

33.20 ± 0.75 25

 

24 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

3.20 ± 0.10

13

 

25 

S.No. R IC50 (µM ± SEM a) S.No. R IC50 (mM ± SEM a) 

1 

 

13.60 ± 0.4 14 

 

13.20 ± 0.40 

2 

 

26.10 ± 0.70 15 

 

15.20 ± 0.50 

3 

 

18.10 ± 0.50 16 

 

3.50 ± 0.20 

4 

 

27.40 ± 0.60 17 

 

24.20 ± 0.70 

5 

 

33.40 ± 0.80 18 

 

16.90 ± 0.60 

6 

 

24.40 ± 0.60 19 

 

N. A. 

7 

 

34.70 ± 0.80 20 

 

N. A. 

8 

 

47.50 ± 0.90 21 

 

26.20 ± 0.50 

9 

 

56.40 ± 1.20 22 

 

N. A. 

10 

 

N. A. 23 

 

N. A. 

11 

 

N. A. 24 

 

13.10 ± 0.30 

12 

 

33.20 ± 0.75 25 

 

3.20 ± 0.10 

13 

 

18.30 ± 0.55 - - - 

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM 

 
  

18.30 ± 0.55 - - -

7-Deazaxanthine (7DX) 38.68 ± 4.42 µM

N.A. = Not active; SEM a = Standard error mean.

Table 2. IC50, docking binding energies, hydrogen bonding, and the number of closest residues to the
docked ligands in the active site of the selected quinoxaline derivatives 14, 15, 16, and 25 within the
active binding site of thymidine phosphorylase.

No. of Compound Free Binding
Energy (kcal/mol) H-Bonds (HBs)

Number of Closest
Residues to the Docked

Ligand in The Active Site
IC50 ± SEM

14 −7.71 5 10 13.20 ± 0.40
15 −7.61 3 8 15.20 ± 050
16 −8.05 3 8 3.50 ± 0.20
25 −8.25 4 8 3.20 ± 0.10

The complexes formed between the docked selected compounds and amino acids of the binding
active site of thymidine phosphorylase exhibited negative binding energies, which is a signpost
that the inhibition of thymidine phosphorylase by the selected compounds is thermodynamically
favorable (Table 2). As can be seen from the docking results in Table 2 and Figures 5 and 6, the highest
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activity of 16 and 25 compared with 14 and 15 mainly refers to the stability of the formed complexes
between the docked compounds (16 and 25) and thymidine phosphorylase compared with the formed
complexes between the docked compounds (14 and 15) and thymidine phosphorylase ones. The higher
activity of 25 compared with 16 may refer to the number of intermolecular hydrogen bonding formed
with substituted OH groups in the complex 25-receptor compared to 16-receptor one. Indeed, three
hydrogen bonds are formed between OH groups of 25 and SER 86 and HIS 85 of the active site of
thymidine phosphorylase of 1.71, 2.24, and 3.38 Å, respectively. However, two hydrogen bonds are
formed between OH groups of 16 and THR 120 of the active site of thymidine phosphorylase of 1.26
and 1.78 Å, respectively.
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3. Experimental Section

3.1. General Methods

All nuclear magnetic resonance experiments were carried out using on Avance Bruker 500 MHz
(Wissembourg, Switzerland)). Electron impact mass spectra (EI–MS) were recorded on a Finnigan
MAT-311A (Bremen, Germany). Thin layer chromatography (TLC) was performed on pre-coated
silica gel aluminum plates (Kieselgel 60, 254, E. Merck, Darmstadt, Germany). Chromatograms were
visualized by UV at 254 and 365 nm.

3.1.1. Thymidine Phosphorylase Assay

Since human TP is not easy to obtain, we used commercially available recombinant E. coli TP.
The primary sequence of TP is frequently preserved throughout evolution as mammalian TP is
reported to share 39% sequence resemblance with the TP of E. coli. The mammalian enzyme also
shared up to 70% resemblance with the active site residues, and three-dimensional structure of E. coli TP
enzyme [49]. The thymidine phosphorylase/PD-ECGF (E. coli) activity was determined by measuring
the absorbance at 290 nm spectrophotometrically. The method was described in [50,51]. In brief,
the total reaction mixture of 200 µL contained 145 µL of potassium phosphate buffer (pH 7.4), 30 µL
of enzyme (human and E. coli) at concentration 0.05 and 0.002 U, respectively, were incubated with
5 µL of test materials for 10 min at 25 ◦C in a microplate reader. After incubation, a pre-read at 290 nm
was taken to deduce the absorbance of substrate particles. The substrate (20 µL, 1.5 mM), dissolved
in potassium phosphate buffer, was immediately added to the plate and continuously read after 10,
20, and 30 min in a microplate reader (SpectraMax, Molecular Devices, CA, USA). All assays were
performed in triplicate.

3.1.2. Calculations

Reactions for above mentioned biological activities were carried out in triplicate. Results were
then processed using SoftMax Pro 4.8 software (Molecular Devices, San Jose, CA, USA) and then by
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Microsoft Excel. The percent inhibition for above mentioned biological activities was calculated by
following formula:

Percent Inhibition = 100 − (ODtest compound/ODcontrol) × 100 (1)

3.1.3. Synthesis of Quinoxaline Thiosemicarbazone (II)

Quinoxaline-2-carbohydrazide (5 g, 26.60 mmol), potassium thiocyanate (2.61 g, 26.90 mmol),
and 4 mL of conc. HCl in 40 mL of water were refluxed for 4 h. The reaction progress was monitored
by TLC. After completion of the reaction, the reaction mixture was left for cooling and white solid ppts
appeared then the solid was filtered and dried. Yield 5.62 g (85.6%); m.p. 289–290 ◦C.

3.1.4. Synthesis of 5-(quinoxalin-3-yl)-4H-1,2,4-triazole-3-thiol (III)

The 5-(quinoxalin-3-yl)-4H-1,2,4-triazole-3-thiol (III) was synthesized as reported in [52].

3.2. General Procedure for Synthesis of Quinoxaline Derivatives (1–25)

5-(quinoxalin-3-yl)-4H-1,2,4-triazole-3-thiol (III) (1 mmol) was refluxed with appropriate arylacyl
bromide (1 mmol) in 15 mL ethanol for 12 h. The reaction was monitored by TLC. After completion
of the reaction, the product was left for cooling. The solid was filtered and the crude products were
recrystallized from methanol (all synthesized compounds with their SMILE structures and activities
are provided in Supplementary Materials).

3.2.1. 5-(2-flourophenyl)-3(Quinoxalin-2yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 81%. m.p.: 299–300 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 8.32 (s, 1H), 8.02 (d, J = 8.0 Hz,
1H), 7.88 (d, J = 7.0 Hz, 1H), 7.70–7.67 (m, 3H), 7.52–7.48 (m, 2H), 7.30–7.26 (m, 2H). 13C-NMR (150 MHz,
DMSO -d6): δ 158.5, 155.5, 145.9, 145.4, 144.5, 142.4, 142.3, 141.11, 130.5, 129.8, 129.7, 129.5, 129.4, 129.3,
124.10, 123.7, 115.7, 114.9. HR-ESI-MS: m/z calcd for C18H10FN5S, [M]+ 347.0641; Found 347.0623.

3.2.2. 5-(3-flourophenyl)-3(Quinoxalin-2yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 80%. m.p.: 304–305 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.10 (s, 1H), 7.90 (d, J = 7.5 Hz,
1H), 7.67 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.50–7.46 (m, 2H), 7.22 (t,
J = 8.0 Hz, 1H), 7.18–7.16 (m, 1H); 13C-NMR (150 MHz, DMSO -d6): δ 162.2, 155.5, 145.9, 145.4, 144.5,
142.4, 142.3, 141.11, 134.8, 129.8, 129.7, 129.5, 129.4, 127.7, 115.7, 123.3, 115.10, 115.7. HR-ESI-MS: m/z
calcd for C18H10FN5S, [M]+ 347.0641; Found 347.0625.

3.2.3. 5-(4-flourophenyl)-3(Quinoxalin-2yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 77%. m.p.: 308–309 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.11(s, 1H), 7.90 (d, J = 7.5 Hz,
1H), 7.80 (d, J = 8.0 Hz, 2H), 7.72–7.68 (m, 2H), 7.50–7.45 (m, 2H), 7.24 (d, J = 7.5 Hz, 2H); 13C-NMR (150
MHz, DMSO -d6): δ 162.9, 155.5, 145.9, 145.5, 144.5, 142.4, 142.3, 141.11, 130.8, 130.7, 129.8, 129.7, 129.5,
129.4, 128.8, 116.3, 116.2, 115.7. HR-ESI-MS: m/z calcd for C18H10FN5S, [M]+ 347.0641; Found 347.0617.

3.2.4. 5-(2-chlorophenyl)-3(Quinoxalin-2yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 82%. m.p.: 280–281 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.50 (s, 1H), 8.12 (d, J = 7.0 Hz,
1H), 7.90 (d, J = 7.0 Hz, 1H), 7.72–7.68 (m, 3H), 7.54–7.49 (m, 2H), 7.42–7.38 (m, 2H); 13C-NMR (150
MHz, DMSO -d6): δ 155.5, 145.9, 145.4, 144.5, 142.4, 142.3, 141.11, 132.7, 132.4, 130.8, 130.3, 129.9, 129.8,
129.7, 129.5, 129.4, 128.9, 115.7. HR-ESI-MS: m/z calcd for C18H10ClN5S, [M]+ 363.0345; Found 363.0319.

3.2.5. 5-(3-chlorophenyl)-3(Quinoxalin-2yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 80%. m.p.: 285–286 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.90 (s, 1H), 8.57 (d, J = 6.5 Hz,
1H), 8.16 (d, J = 7.5 Hz, 1H), 8.05 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 7.5 Hz, 2H), 7.50–7.47 (m,
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2H), 7.42 (d, J = 8.0 Hz, 1H); 13C-NMR (150 MHz, DMSO -d6): δ 155.5, 145.9, 145.4, 144.5, 142.4, 142.3,
141.11, 134.9, 134.6, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 128.9, 125.8, 115.7. HR-ESI-MS: m/z calcd for
C18H10ClN5S, [M]+ 363.0345; Found 363.0323.

3.2.6. 5-(4-chlorophenyl)-3(Quinoxalin-2yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 89%. m.p.: 249–250 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.08 (s, 1H), 7.88 (d, J = 7.5 Hz,
1H), 7.70 (d, J = 8.5 Hz, 2H), 7.69–7.64 (m, 2H), 7.52–7.45 (m, 4H). 13C-NMR (150 MHz, DMSO -d6): δ
155.5, 145.9, 145.4, 144.5, 142.4, 142.3, 141.11, 134.5, 131.3, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 128.9,
127.9, 115.7. HR-ESI-MS: m/z calcd for C18H10ClN5S, [M]+ 363.0345; Found 363.0327.

3.2.7. 5-(2-nitrophenyl)-3(Quinoxalin-2yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 83%. m.p.: 310–311 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.26 (d, J = 7.0 Hz, 1H), 7.98 (d, J
= 7.5 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 7.0 Hz, 1H), 7.70 (d, J = 7.0 Hz, 1H), 7.63 (d, J = 7.0
Hz, 1H), 7.61 (d, J = 7.0 Hz, 1H), 7.50–7.46 (m, 2H), 7.43 (s, 1H); 13C-NMR (150 MHz, DMSO -d6): δ
155.5, 148.9, 145.9, 145.5, 144.5, 142.4, 142.3, 141.11, 135.5, 132.8, 129.9, 129.8, 129.7, 129.5, 129.4, 125.4,
124.6,115.7. HR-ESI-MS: m/z calcd for C18H10N6O2S, [M]+ 374.0586; Found 374.0568.

3.2.8. 5-(4-nitrophenyl)-3(Quinoxalin-2yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 81%. m.p.: 315–316 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.22 (d, J = 8.3 Hz, 2H), 8.18 (s,
1H), 7.98 (d, J = 8.0 Hz, 2H), 7.90 (d, J = 7.5 Hz, 1H), 7.70–7.65 (m, 2H), 7.54 (d, J = 7.0 Hz, 1H), 7.44 (s,
1H); 13C-NMR (150 MHz, DMSO -d6): δ 155.5, 147.9, 145.9, 145.4, 144.5, 142.4, 142.3, 142.1, 141.9, 141.8,
139.3, 129.8, 129.7, 129.5, 129.4, 126.4, 126.3, 124.6,124.5,115.7. HR-ESI-MS: m/z calcd for C18H10N6O2S,
[M]+ 374.0586; Found 374.0559.

3.2.9. 3-(quinoxalin-2-yl)-5-o-tolylthiazolo[2,3-c][1,2,4]triazole

Yield: 88%. m.p.: 265-266 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.40 (s, 1H), 7.89 (d, J = 8.0 Hz,
2H), 7.68 (d, J = 7.0 Hz, 2H), 7.48–7.42 (m, 2H), 7.35–7.22 (m, 3H), 2.49 (s, 3H); 13C-NMR (150 MHz,
DMSO -d6): δ 155.5, 145.9, 145.4, 144.5, 142.4, 142.3, 141.11, 136.9, 130.1, 129.9, 129.8, 129.7, 129.5, 129.4,
128.8, 126.4, 122.9, 115.7, 18.9. HR-ESI-MS: m/z calcd for C19H13N5S, [M]+ 343.0892; Found 343.0864.

3.2.10. 3-(quinoxalin-2-yl)-5-m-tolylthiazolo[2,3-c][1,2,4]triazole

Yield: 84%. M.P.: 270–271 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.08 (s, 1H), 7.90 (d, J = 8.0 Hz,
1H), 7.72–7.68 (m, 2H), 7.57 (s, 1H), 7.52 (d, J = 7.0 Hz, 1H), 7.43 (s, 1H), 2.46 (s, 3H); 13C-NMR (150
MHz, DMSO -d6): δ 155.5, 145.9, 145.4, 144.5, 142.4, 142.3, 141.11, 139.1, 133.1, 130.6, 129.9, 129.8, 129.7,
129.5, 129.4, 128.9, 124.6, 115.7, 21.8. HR-ESI-MS: m/z calcd for C19H13N5S, [M]+ 343.0892; Found
343.0871.

3.2.11. 3-(quinoxalin-2-yl)-5-p-tolylthiazolo[2,3-c][1,2,4]triazole

Yield: 81%. m.p.: 280–281 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.10 (s, 1H), 7.88 (d, J = 8.0 Hz,
1H), 7.71–7.65 (m, 4H), 7.47–7.42 (m, 2H), 7.27 (d, J = 7.9 Hz, 2H), 2.49 (s, 3H); 13C-NMR (150 MHz,
DMSO -d6): δ 155.5, 145.9, 145.4, 145.3, 144.5, 142.4, 142.3, 141.11, 130.2, 131.9, 129.9, 129.8, 129.7, 129.5,
129.4, 129.3, 125.9, 125.7, 115.7, 21.5. HR-ESI-MS: m/z calcd for C19H13N5S, [M]+ 343.0892; Found
343.0873.

3.2.12. 3-(3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazol-5-yl)phenol

Yield: 85%. m.p.: 289–290 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 9.05 (s, 1H, OH), 8.04 (s, 1H), 7.90
(d, J = 7.5 Hz, 1H), 7.70–7.65 (m, 2H), 7.49–7.43 (m, 2H), 7.25 (d, J = 7.5 Hz, 1H), 7.19–7.15 (m, 1H), 7.15
(d, J = 7.0 Hz, 1H), 6.81 (d, J = 7.0 Hz, 1H); 13C-NMR (150 MHz, DMSO -d6): δ 157.7, 155.5, 145.9, 145.4,
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144.5, 142.4, 142.3, 141.11, 134.6, 130.8, 129.8, 129.7, 129.5, 129.4, 120.3, 115.10, 115.9, 115.7. HR-ESI-MS:
m/z calcd for C18H11N5OS, [M]+ 345.0684; Found 345.0666.

3.2.13. 4-(3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazol-5-yl)phenol

Yield: 82%. m.p.: 297–298 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 9.82 (s, 1H, OH), 8.03 (s, 1H),
7.88 (d, J = 8.0 Hz, 1H), 7.65–7.62 (m, 2H), 7.58 (d, J = 7.5 Hz, 2H), 7.46–7.40 (m, 2H), 6.80 (d, J = 8.0
Hz, 2H). 13C-NMR (150 MHz, DMSO -d6): δ 158.7, 155.5, 145.9, 145.5, 144.5, 142.4, 142.3, 141.11, 129.8,
129.7, 129.5, 129.4, 128.9, 128.7, 125.7, 116.6, 116.4,115.7. HR-ESI-MS: m/z calcd for C18H11N5OS, [M]+

345.0684; Found 345.0661.

3.2.14. 4-(3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazol-5-yl)benzene-1,3-diol

Yield: 79%. m.p.: 299–300 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 10.70 (s, 1H, OH), 9.80 (s, 1H,
OH), 8.18 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.71–7.65 (m, 3H), 7.50–7.43 (m, 2H), 6.32 (d, J = 7.0, 6.0
Hz, 2H). 13C-NMR (150 MHz, DMSO -d6): δ 160.1, 156.2, 155.5, 145.9, 145.5, 144.5, 142.4, 142.3, 141.11,
133.4, 129.8, 129.7, 129.5, 129.4, 113.3, 109.0, 105.8, 115.7. HR-ESI-MS: m/z calcd for C18H11N5O2S, [M]+

361.0633; Found 361.0615.

3.2.15. 2-(3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazol-5-yl)benzene-1,4-diol

Yield: 87%. m.p.: 301–302 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 9.72 (s, 2H, OH), 8.30 (s, 1H), 7.88
(d, J = 8.0 Hz, 1H), 7.74–7.65 (m, 2H), 7.52–7.40 (m, 2H), 7.17 (d, J = 6.0 Hz, 1H), 6.75 (d, J = 8.0 Hz,
1H), 6.68 (d, J = 7.0 Hz, 1H); 13C-NMR (150 MHz, DMSO -d6): δ 155.5, 150.3, 147.9, 145.9, 145.5, 144.5,
142.4, 142.3, 141.11, 129.8, 129.7, 129.5, 129.4, 122.1, 117.9, 117.5, 115.7, 114.5. HR-ESI-MS: m/z calcd for
C18H11N5O2S, [M]+ 361.0633; Found 361.0617.

3.2.16. 4-(3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazol-5-yl)benzene-1,2-diol

Yield: 83%. m.p.: 293–294 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 9.30 (s, 1H, OH), 9.10 (s, 1H, OH),
7.96 (s, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.68(d, J = 6.0 Hz, 2H), 7.53–7.40 (m, 2H), 7.20 (s, 1H), 6.95 (d, J =
7.0 Hz, 1H), 6.70 (d, J = 8.0 Hz, 1H); 13C-NMR (150 MHz, DMSO -d6): δ 155.5, 147.5, 145.9, 145.7, 145.5,
144.5, 142.4, 142.3, 141.11, 129.8, 129.7, 129.5, 129.4, 127.2, 121.7, 116.4, 115.7, 114.5. HR-ESI-MS: m/z
calcd for C18H11N5O2S, [M]+ 361.0633; Found 361.0612.

3.2.17. 5-methoxy-2-(3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazol-5-yl)phenol

Yield: 86%. m.p.: 305–306 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 10.87 (s, 1H, OH), 8.30 (s, 1H),
7.82 (d, J = 7.5 Hz, 1H), 7.62 (s, 2H), 7.55 (d, J = 8.0 Hz, 1H), 7.46–7.40 (s, 2H), 6.51 (d, J = 8.0 Hz, 1H),
6.42 (d, J = 6.0 Hz, 1H), 3.75 (s, 3H); 13C-NMR (150 MHz, DMSO -d6): δ 162.2, 156.2, 155.5, 145.9, 145.5,
144.5, 142.4, 142.3, 141.11, 132.9, 129.8, 129.7, 129.5, 129.4, 115.7, 112.9, 107.6, 104.4, 55.9. HR-ESI-MS:
m/z calcd for C19H13N5O2S, [M]+ 375.0790; Found 375.0772.

3.2.18. 2-methoxy-5-(3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazol-5-yl)phenol

Yield: 83%. m.p.: 293–294 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 9.22 (s, 1H, OH), 8.04 (s, 1H), 7.88
(d, J = 8.0 Hz, 1H), 7.76–7.69 (m, 2H), 7.46–7.41 (m, 2H), 7.28 (d, J = 6.0Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H),
6.94 (d, J = 8.0 Hz, 1H), 3.77 (s, 3H); 13C-NMR (150 MHz, DMSO -d6): δ 155.5, 145.7, 147.5, 147.4, 145.5,
144.5, 142.4, 142.3, 141.11, 129.8, 129.7, 129.5, 129.4, 126.9, 121.7, 114.1, 115.7, 111.6, 56.3. HR-ESI-MS:
m/z calcd for C19H13N5O2S, [M]+ 375.0790; Found 375.0768.

3.2.19. 5-(3-methoxyphenyl)-3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 75%. m.p.: 179–180 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.10 (s, 1H), 7.90 (d, J = 8.0
Hz, 1H), 7.70–7.59 (m, 3H), 7.46–7.40 (m, 2H), 7.30 (d, J = 6.5 Hz, 2H), 6.96–6.89 (m, 1H), 3.80 (s, 3H);
13C-NMR (150 MHz, DMSO -d6): δ 161.2, 155.5, 145.7, 145.5, 144.5, 142.4, 142.3, 141.11, 134.2, 130.3,
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129.8, 129.7, 129.5, 129.4, 119.9, 115.7, 114.1, 113.8, 55.9. HR-ESI-MS: m/z calcd for C19H13N5OS, [M]+

359.0841; Found 359.0843.

3.2.20. 5-(4-methoxyphenyl)-3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 87%. m.p.: 301–302 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.07 (s, 1H), 7.88 (d, J = 8.0 Hz,
2H), 7.70 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 7.0 Hz, 1H), 7.47–7.42 (s, 2H), 7.02 (d, J = 8.0 Hz, 2H), 3.81
(s, 3H); 13C-NMR (150 MHz, DMSO -d6): δ 160.8, 155.5, 145.7, 145.5, 144.5, 142.4, 142.3, 141.11, 129.8,
129.7, 129.5, 129.4, 128.7, 128.5, 125.5, 115.7, 114.9, 114.7, 55.9. HR-ESI-MS: m/z calcd for C19H13N5OS,
[M]+ 359.0841; Found 359.0819.

3.2.21. 4-methoxy-2-(3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazol-5-yl)phenol

Yield: 83%. m.p.: 308–309 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 9.98 (s, 1H, OH), 8.40 (s, 1H), 7.88
(d, J = 8.2 Hz, 1H), 7.72–7.67 (m, 2H), 7.47–7.42 (m, 2H), 7.30 (s, 1H), 6.82 (d, J = 2.0 Hz, 2H), 3.79 (s, 3H);
13C-NMR (150 MHz, DMSO -d6): δ 155.5, 153.9, 145.7, 147.5, 145.4, 144.5, 142.4, 142.3, 141.11, 129.8,
129.7, 129.5, 129.4, 121.7, 117.6, 115.7, 115.5, 112.9, 55.9. HR-ESI-MS: m/z calcd for C19H13N5O2S, [M]+

375.0790; Found 375.0772.

3.2.22. 5-(pyridin-3-yl)-3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 82%. m.p.: 276–277 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.42 (s, 1H), 8.12 (d, J = 8.0 Hz,
1H), 7.90 (d, J = 7.0 Hz, 1H), 7.70–7.65 (m, 4H), 7.51 (d, J = 7.0 Hz, 1H), 7.47–7.42 (m, 2H). 13C-NMR
(150 MHz, DMSO -d6): δ 147.9, 145.7, 147.5, 145.4, 144.5, 143.4, 142.4, 142.3, 141.11, 134.2, 133.2, 129.8,
129.7, 129.5, 129.4, 124.2,120.3. HR-ESI-MS: m/z calcd for C17H10N6S, [M]+ 330.0688; Found 330.0667.

3.2.23. 5-(pyridin-4-yl)-3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazole

Yield: 86%. m.p.: 276–277 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 8.60 (d, J = 7.0 Hz, 2H), 8.13 (s,
1H), 7.92 (d, J = 7.9 Hz, 1H), 7.74–7.66 (m, 4H), 7.50–7.42 (m, 2H). 13C-NMR (150 MHz, DMSO -d6): δ
149.9, 149.8, 145.7, 145.5, 144.5, 143.4, 142.4, 142.3, 141.11, 140.5, 129.8, 129.7, 129.5, 129.4, 121.5, 121.5,
120.3. HR-ESI-MS: m/z calcd for C17H10N6S, [M]+ 330.0688; Found 330.0670.

3.2.24. 2-(3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazol-5-yl)phenol

Yield: 82%. m.p.: 286–287 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 10.54 (s, 1H, OH), 8.20 (s, 1H),
7.90 (d, J = 7.5 Hz, 1H), 7.72 (d, J = 7.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.52–7.44 (m, 2H), 7.25–7.20 (m,
2H), 6.90 (d, J = 6.5 Hz, 1H). 13C-NMR (150 MHz, DMSO -d6): δ 155.5, 155.3, 145.7, 145.5, 144.5, 142.4,
142.3, 141.11, 131.7, 130.3, 129.8, 129.7, 129.5, 129.4, 120.7, 117.9, 121.7, 115.7. HR-ESI-MS: m/z calcd for
C18H11N5OS, [M]+ 345.0684; Found 345.0668.

3.2.25. 3-(3-(quinoxalin-2-yl)thiazolo[2,3-c][1,2,4]triazol-5-yl)benzene-1,2-diol

Yield: 82%. m.p.: 309–310 ◦C. 1H-NMR (500 MHz, DMSO-d6): δ 10.08 (s, 1H, OH), 9.35 (s, 1H,
OH), 8.40 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 6.0 Hz, 2H), 7.45–7.40 (m, 2H), 7.14 (d, J = 7.0 Hz,
1H), 6.80 (d, J = 7.0 Hz, 1H), 6.70 (t, J = 7.5 Hz, 1H); 13C-NMR (150 MHz, DMSO -d6): δ 155.5, 145.7,
145.5, 145.4, 144.5, 143.7, 142.4, 142.3, 141.11, 129.8, 129.7, 129.5, 129.4, 124.3, 123.4, 122.1, 117.5, 115.7.
HR-ESI-MS: m/z calcd for C18H11N5O2S, [M]+ 361.0633; Found 361.0605.

3.3. Molecular Docking Details

The intermolecular binding modes between the docked selected synthesized quinoxaline
derivatives and the active residues of thymidine phosphorylase have been explored using AutoDock
package (The Scripps Research Institute, La Jolla, CA, USA) [53]. The geometries of thymidine
phosphorylase and the original docked ligand 3′-azido-2′-fluoro-dideoxyuridine were obtained
from the Research Collaboratory for Structural Bioinformatics (RCSB) data bank website (PDB code
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4EAD) [54]. Water molecules were removed; polar hydrogen atoms and Kollman charge were added to
the extracted receptor using the automated tool in AutoDock Tools 4.2. The active site is identified based
on the co-crystallized receptor–ligand complex structure of thymidine phosphorylase. The re-docking
of the original ligand 3′-azido-2′-fluoro-dideoxyuridine into the active site is well reproduced with
an RMSD value less than 1.14 Å and a binding energy of −6.63 kcal/mol. The molecular structures
geometries of quinoxaline derivatives were minimized at Merck molecular force field 94 (MMFF94)
level44. The optimized structures were saved as PDB files. Nonpolar hydrogens were merged,
and rotatable bonds were defined for each docked ligand. Docking studies were performed by the
Lamarckian genetic algorithm, with 500 as a total number of the run for binding site for original ligand
the synthesized derivatives. In each set, a population of 150 individuals with 27,000 generations and
250,000 energy evaluations were employed. Operator weights for crossover, mutation, and elitism
were set to 0.8, 0.02, and 1, respectively. The binding site was defined using a grid of 35 × 35 × 35
points each with a grid spacing of 0.375 Å. The docking calculation has been carried out using an Intel
(R) Core (TM) i5-3770 CPU @ 3.40 GHz workstation.

4. Conclusions

Twenty-five quinoxaline analogs (1–25) were synthesized. All synthesized compounds were
reported first having novel structures. They were screened against thymidine phosphorylase. The result
profile showed that dihydroxyl substituted compounds showed excellent activity along with some
variation depending upon their position. The halogen groups, on other hand, showed a significant
inhibitory potential against thymidine phosphorylase. The fluorine substituents showed better activity
than the chlorines. The binding interactions of the most active analogs were determined by molecular
docking study. That confirms the binding interactions of active compounds with enzyme.

Supplementary Materials: The following are available online. Structures along with bioactivity.
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