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Abstract

Background: Neoadjuvant chemotherapy is a promising treatment option for potential resectable gastric cancer,
but patients’ responses vary. We aimed to develop and validate a radiomics score (rad_score) to predict treatment
response to neoadjuvant chemotherapy and to investigate its efficacy in survival stratification.

Methods: A total of 106 patients with neoadjuvant chemotherapy before gastrectomy were included (training
cohort: n = 74; validation cohort: n = 32). Radiomics features were extracted from the pre-treatment portal venous-
phase CT. After feature reduction, a rad_score was established by Randomised Tree algorithm. A rad_clinical_score
was constructed by integrating the rad_score with clinical variables, so was a clinical score by clinical variables only.
The three scores were validated regarding their discrimination and clinical usefulness. The patients were stratified
into two groups according to the score thresholds (updated with post-operative clinical variables), and their
survivals were compared.

Results: In the validation cohort, the rad_score demonstrated a good predicting performance in treatment
response to the neoadjuvant chemotherapy (AUC [95% CI] =0.82 [0.67, 0.98]), which was better than the clinical
score (based on pre-operative clinical variables) without significant difference (0.62 [0.42, 0.83], P = 0.09). The rad_
clinical_score could not further improve the performance of the rad_score (0.70 [0.51, 0.88], P = 0.16). Based on the
thresholds of these scores, the high-score groups all achieved better survivals than the low-score groups in the
whole cohort (all P < 0.001).

Conclusion: The rad_score that we developed was effective in predicting treatment response to neoadjuvant
chemotherapy and in stratifying patients with gastric cancer into different survival groups. Our proposed strategy is
useful for individualised treatment planning.
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Background
Gastric cancer remains the third most frequent cause of
cancer-related death worldwide, resulting in 782,685
deaths annually [1]. Despite the improvement in screen-
ing, a large proportion of patients in China are diag-
nosed at advanced stage. For locally advanced cases, the
5-year survival rate ranged from 20 to 30% after curative
resection [2–4].
Given this poor prognosis, neoadjuvant chemotherapy

has been tried for this patient population in recent years.
After the promising results obtained with “MAGIC Trial”,
“FFCD Trial”, “ACCORD Trial”, and “AIO-FLOT3 Trial”,
neoadjuvant chemotherapy has become a promising treat-
ment option for potentially resectable or limited meta-
static gastric cancer with the improved 5-year survival
rates of more than 35% [5–10]. Despite the satisfactory ef-
ficacy of neoadjuvant chemotherapy, patients’ responses
varied between 30 and 60% [11]. A good response to neo-
adjuvant chemotherapy was associated with good survival
outcome, while non-responding patients could suffer from
adverse events and unnecessary costs and finally risk
tumour progression and even miss the chance to undergo
curative gastrectomy. Moreover, patients who are non-
responsive to neoadjuvant chemotherapy could be waiting
longer until surgery, and this extended time to surgery
may be correlated with poorer survival of gastric cancer.
Thus, early detection of those patients who are most likely
to respond to neoadjuvant treatment is critical to provide
them a chance for a timely surgery and to optimise the
treatment plans. However, the treatment efficacy of neo-
adjuvant chemotherapy can only be assessed after three
cycles of treatment. Therefore, exploring the pre-
treatment predictors of treatment efficacy is important to
determine the need for neoadjuvant therapy and the opti-
mal timing for surgical resection, thus improving pre-
treatment decision making.
Previous studies have investigated several imaging mo-

dalities such as contrast enhanced ultrasound, computed
tomography (CT), magnetic resonance imaging, and
positron emission tomography in the evaluation of pa-
tients’ response to chemotherapy for gastric cancer;
however conflicting results were obtained [12–18]. Add-
itionally, in these studies, analyses were only based on
imaging features extracted by naked eyes or quantitative
imaging parameters, and lacked a proper validation. Al-
though naked eyes provide valuable feature information,
some microcosmic imaging features relevant for clinical
outcomes might be lost due to the limited visual image
grey scales that can be detected by naked eyes. Radio-
mics is a rapidly growing discipline based on high-
throughput quantitative image analysis to characterise
tumours and their microenvironment. This approach
can extract far more features than manual extraction by
acquiring two-dimensional and high-dimensional

imaging features using computer algorithm [19]. Many
studies on other cancer types showed that radiomics fea-
tures, such as texture features, filter transformed fea-
tures, wavelet features, and so on, could not be visually
observed but were closely related to pathologic micro-
scopic structures and were effective in prognostic pre-
diction [20–23].
Computed tomography is the preferred imaging exam-

ination for gastric cancer in clinical practice, but no lit-
erature has been reported on the application of CT-
based radiomics technique to predict the response to
neoadjuvant chemotherapy in gastric cancer patients.
Therefore, we aimed to develop and validate a CT-based
radiomics score to predict the response to neoadjuvant
chemotherapy and stratify the survival for patients with
gastric cancer.

Methods
Patients
Consecutive patients diagnosed with gastric cancer be-
tween January 2010 and December 2017 were identified
by reviewing the database of the Center of Gastrointes-
tinal Surgery of the First Affiliated Hospital of Sun Yat-
Sen University. Patients were included according to the
following criteria: (1) histologically confirmed gastric
adenocarcinoma on gastroscopy; (2) potential resectable
gastric cancer at clinical stage of III, IV as determined
by pretreatment contrast-enhanced CT (patients with
M1 were those with only para-aortic lymph node metas-
tasis without any other risk of curative resection); (3) re-
ceived neoadjuvant chemotherapy of SOX regimen (S-1
plus oxaliplatin) as the initial treatment; (4) underwent
curative gastrectomy; (5) received contrast-enhanced CT
within one week before neoadjuvant chemotherapy; (6)
Eastern Cooperative Oncology Group performance sta-
tus between 0 to 1; (7) a life expectancy of > 3 months;
(8) adequate bone marrow, renal, and hepatic function
[platelets > 80 × 109/L, absolute neutrophil count ≥1.5 ×
109/L, serum creatinine≤1.5 mg/dL, total bilirubin level
within 1.5 × the upper limit of normal (ULN), and serum
transaminase ≤2.5× ULN]. The following exclusion cri-
teria were used: (1) history or presence of other malig-
nancies; (2) presence of other uncontrolled diseases or
severe infection; (3) received other anti-tumour therapies
before neoadjuvant chemotherapy; (4) incomplete clin-
ical data. The patient selection process is shown in Fig. 1.
Patients were randomly allocated to the training and val-
idation cohorts at the ratio of 7:3. Our Institutional Ethic
Review Board has approved the current study, following
the regulations outlined in the Declaration of Helsinki.

Neoadjuvant chemotherapy
Patients received the first-line neoadjuvant chemother-
apy of SOX regimen. S-1 was orally administered twice
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daily at concentrations based on body surface area (BSA):
BSA < 1.25m2, 80mg/d; 1.25m2 BSA < 1.50m2, 100mg/
d; and BSA ≥ 1.50, 120mg/d. On the first day, oxaliplatin
(130mg/m2) was administered via intravenous infusion,
followed by S-1 administered for 14 consecutive days,
followed by a 1-week break for a maximum of three cy-
cles, until tumour progression, presence of unacceptable
toxicity or treatment withdrawal by the patient or doctor.

Assessment of the response to neoadjuvant
chemotherapy
The treatment response to neoadjuvant chemotherapy
was evaluated via pathologic response. Haematoxylin

and eosin-stained slides were reviewed by two patholo-
gists with more than 10 years of experience in gastro-
intestinal pathology who were blinded to the clinical
data, and they graded the specimens for pathologic re-
sponse according to the Mandard tumour regression
grading (TRG) system [24]. TRG 1 was defined as
complete regression/fibrosis with no viable tumour cells,
TRG 2 was defined as fibrosis with scattered tumour
cells, TRG 3 was defined as fibrosis and tumour cells
with predominant fibrosis, TRG 4 was defined as fibrosis
and tumour cells with predominant tumour cells, and
TRG 5 was defined as tumour without evidence of re-
gression. Disagreement was resolved by discussion with

Fig. 1 Flow diagram of study population

Fig. 2 A female patient was diagnosed as gastric cancer (T4aN2M0). CT before neoadjuvant chemotherapy (a) showed a mass-type tumor
measured 25 mm in maximal depth and 80 mm in maximal length. CT after neoadjuvant chemotherapy (b) showed a shrunken mass measured
14mm in depth and 40 mm in length. CT before neoadjuvant chemotherapy (c) showed the ROI delineated manually on figure (a). Pathology
examination after surgery (d) showed residual tumor tissue (arrow) and infiltrated inflammatory cells (arrow head)
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Table 1 Clinicopathological characteristics of the training and validation cohorts

Factors Training cohort (n = 74) Validation cohort (n = 32) P value

Age (years, mean ± SD) 55.15 ± 11.43 54.13 ± 12.68 0.68

Gender 0.53

Male 48 18

Female 26 14

BMI (kg/m2) 21 ± 3 22 ± 3 0.12

Preoperative T stage 0.39

2 1 0

3 11 2

4 62 29

Preoperative N status 0.99

0 2 1

1–3 72 31

Preoperative M status 0.85

0 47 19

1 27 13

Postoperative T stage 0.83

1–2 11 6

3–4 63 26

Postoperative N status 0.06

0 35 8

1–3 39 24

Postoperative M status 0.90

0 53 24

1 21 8

Postoperative TNM stage 0.23

0 3 3

1 6 1

2 22 5

3 22 15

4 21 8

AFP (ng/mL) 9.25 ± 17.79 6.48 ± 8.33 0.40

CEA (IU/L) 0.23

Normal 50 26

Elevated 24 6

CA125 (IU/L) 0.08

Normal 73 29

Elevated 1 3

CA199 (IU/L) 1.00

Normal 64 27

Elevated 10 5

Operative duration (min) 349.46 ± 116.47 359.22 ± 111.98 0.69

Blood transfusion (ml) 347.92 ± 506.39 362.50 ± 458.43 0.89

Total number of dissected lymph node 40.81 ± 18.67 44.09 ± 17.77 0.40

Number of positive lymph node 5.27 ± 9.01 7.34 ± 10.42 0.30
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consensus. Responders were defined as TRG 1–2 and
non-responders were defined as TRG 3–5 [25].

CT images acquisition
The standard dynamic contrast-enhanced MDCT scan
(Aquilion 64; Toshiba Medical System, Tokyo, Japan) pro-
cedure was used. Briefly, after an unenhanced helical se-
quence scan from the liver dome to the symphysis pubis,
venous phase contrast-enhanced CT was performed after a
65-s delay following intravenous administration of 80–100
ml (1.5ml/kg) of iodinated contrast agent (Ultravist 300;
Schering, Berlin, Germany) administered via the antecubital
vein at a rate of 2.0–3.0ml/s. The following CT acquisition
parameters were used: 120 kV, 200–250 mAs, rotation time
of 0.5 s, collimation of 64mm× 0.5mm, slice thickness of
0.5mm, slice increments of 0.5mm, pitch of 0.9, field of
view of 350 × 350mm, matrix of 512 × 512, and reconstruc-
tion thickness of 2.5mm. CT images were retrieved from
the picture archiving and communication system (PACS)
(HP workstation XW8200, VitreaCore, version 3.7) for
image analysis. The display window width was 150–350
HU, and the window level was 50 to 80 HU. One such case
is presented in Fig. 2 with CT images before and after the
neoadjuvant chemotherapy and the image of response as-
sessment by pathology.

Radiomics feature extraction
Portal venous phase contrast-enhanced CT images were
used for radiomics feature extraction because of the bet-
ter differentiation between the tumour tissue and the ad-
jacent normal tissue of the gastric wall in the portal
venous phase than in arterial phase. A region of interest
(ROI) was delineated around the tumour outline for the
largest cross-sectional area while excluding the air area
by two independent radiologists with more than five
years of experience in gastrointestinal imaging, and any
disagreements were resolved by the consensus with arbi-
tration by a third author. For each ROI, a total of 1044
imaging features were extracted and analyzed by an in
house-made software: the A.K. software (Analysis-Kit,
version 2.0.0, GE healthcare), which included six kinds
of features (Supplemental Table 1): 42 histogram param-
eters, 10 texture parameters, 9 form factor parameters,

Table 1 Clinicopathological characteristics of the training and validation cohorts (Continued)

Factors Training cohort (n = 74) Validation cohort (n = 32) P value

Treatment response 0.25

TRG 1 3 3

TRG 2 34 14

TRG 3 24 10

TRG 4 10 4

TRG 5 3 1

Abbreviations: BMI body mass index, PS performance status, AFP alpha-fetoprotein, CEA carcinoembryonic antigen, TRG tumor regression grading

Table 2 Comparison of clinical variables and radiomics score in
the responding group and non-responding group in the
training cohort

Factors Responding
group

Non-responding
group

P value

Age (years, mean ± SD) 56.76 ± 11.42 52.85 ± 11.91 0.02

Gender 1.00

Male 24 24

Female 13 13

BMI (kg/m2) 21 ± 3 21 ± 4 0.42

AFP (ng/mL) 8.95 ± 13.51 7.86 ± 17.55 0.56

CEA (IU/L) 0.80

Normal 26 24

Elevated 11 13

CA199 (IU/L) 1.00

Normal 32 32

Elevated 5 5

CA125 (IU/L) 1.00

Normal 36 37

Elevated 1 0

Preoperative T stage 0.17

2 0 1

3 8 3

4 29 33

Preoperative N status 0.19

0 2 0

1 13 8

2 18 21

3 4 8

Preoperative M status 0.05

0 28 19

1 9 18

Radiomics score 0.54 ± 0.22 0.41 ± 0.22 < 0.01

Abbreviations: BMI body mass index, PS performance status, AFP alpha-
fetoprotein, CEA carcinoembryonic antigen
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432 grey level co-occurrence matrix (GLCM), 540 grey
level run-length matrix (GLRLM), and 11 grey level Size
Zone Matrix (GLSZM).

Feature reduction and model building
The included patients were divided into the training and
validation cohorts by a ratio of 7:3 using random-
stratified grouping. In the training cohort, support vector
machine (SVM) and principle component analysis (PCA)
were used to select significant radiomics features in the
tumour associated with patient response to neoadjuvant
chemotherapy [26, 27]. Based on the selected radiomics
features, the Extremely Randomised Tree (Extra-Trees)
method was applied to construct the radiomics score
(rad_score) [28, 29]. The detailed Extra-Trees method is
described in the Supplemental Materials. Then, the clin-
ical variables were selected for the univariable and multi-
variable logistic regression models based on the
backward selection with P-values less than 0.05 in the
training cohort. A clinical score was formulated based
on the clinical variables selected from the multivariable
model. The significant clinical variables and radiomics
score were integrated to establish the rad_clinical_score.

Model evaluation and comparison
All the three scores were applied to classify responders
and non-responders to neoadjuvant chemotherapy, and
the results were validated in the validation cohort. The
diagnostic ability of these scores was assessed with the
area under the characteristics operating curves (AUC),
accuracy, sensitivity, specificity, positive predictive value,
and negative predictive value. The comparisons of these
scores in predicting responders to neoadjuvant chemo-
therapy were performed using the AUCs and decision
curve analysis (DCA). DCA was conducted to determine
the clinical usefulness of these scores by quantifying the
net benefits at different threshold probabilities.

Survival analysis
In the whole cohort, the clinical score and rad_clinical_score
were updated with post-operative clinical variables. Univari-
able and multivariable Cox regression analyses were per-
formed to investigate the prognostic effects of rad_score,
updated clinical score, and rad_clinical_score. According to
the thresholds obtained when the Youden index was the lar-
gest, patients were stratified into high-score and low-score
groups respectively by the above three scores. Kaplan-Meier

Table 3 Association of the three scores with treatment response of neoadjuvant chemotherapy for gastric cancer

Cohorts Models Responding group Non-responding group OR (95% CI) P value

Training cohort rad_score 0.56 ± 0.26 0.38 ± 0.25 14.51 (2.40, 98.35) < 0.01

clinical_score 0.56 ± 0.11 0.47 ± 0.13 355.62 (7.98, 2.41*104) < 0.01

rad_clinical score −0.61 ± 0.29 −0.88 ± 0.34 12.22 (2.79, 64.65) < 0.01

Validation cohort rad_score 0.54 ± 0.12 0.42 ± 0.08 1.21*105 (52.25, 3.07*109) < 0.01

clinical_score 0.52 ± 0.12 0.48 ± 0.11 33.46 (0.07, 2.98*104) 0.28

rad_clinical score −0.38 ± 0.23 −0.56 ± 0.27 16.90 (1.04, 422.82) 0.06

Abbreviations: OR odds ratio, CI confidence interval

Fig. 3 Receiver operating characteristics curves of the three scores in the training and validation cohorts. a in the training cohort; b in the
validation cohort
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curves were plotted and survival rates were compared be-
tween two groups using log-rank tests.

Statistical analyses
The feature reduction and model building were performed
in Python (version 2.7.14), utilising ExtraTreesClassifier
from Scikit-learn. Other statistical analyses were performed
by R software version 3.2.3 (R Foundation for Statistical
Computing, Vienna, Austria, https://www.R-project.org/).
The continuous variables were presented as mean ± stand-
ard deviation or median and quartile, and the categorical
variables were presented as frequencies and percentage. In-
dependent sample t-test or Kruskal-Wallis (KW) nonpara-
metric rank sum test was used to compare the baseline
characteristics between the training and validation cohorts,
and between responding group and non-responding group
for continuous variables, while Chi-square test or Fisher
exact test for categorical variables. A two-sided P-value was
considered statistically significant if less than 0.05.

Results
Baseline characteristics
A total of 106 patients were included, with 74 patients
in the training cohort and 32 in the validation cohort.

These two cohorts were comparable in baseline charac-
teristics (Table 1). The median time interval between the
surgery and chemotherapy was 73 days (range, 70–77
days) in the training cohort and 74 days (range, 70–77)
in the validation cohort.

Model construction
In the training cohort, SVM and PCA analysis identified
25 radiomics features significantly associated with the
response to neoadjuvant chemotherapy. These features
were histogram parameters, GLCM, and GLRLM, with
GLRLM accounting for the majority (Supplemental
Table 2). A rad_score was established based on the
above 25 radiomics features using Extra-Trees method.
Age and preoperative M status were found to be signifi-
cantly different between responding group and non-
responding group (both P < 0.05) (Table 2), and thus a
clinical score was built based on them. By integrating
the rad_score and two clinical variables, a rad_clinical_
score was derived using SVM algorithm. Results showed
that the rad_score (Odds ratio [OR] = 1.21 × 105, 95%
confidence interval [CI]: 52.3–3.07 × 109, P < 0.01) was
significantly associated with the treatment response of
neoadjuvant chemotherapy (Table 3), and the rad_clin-
ical_score was marginally associated with treatment re-
sponse (P = 0.06), whereas the clinical score was not
(P = 0.28).

Model performance in response prediction and validation
The rad_score was effective in predicting responders to
neoadjuvant chemotherapy in the training cohort (AUC:
0.77, 95% CI: 0.65–0.88) and in the validation cohort
(AUC: 0.82, 95% CI: 0.67–0.98) (Fig. 3). Compared to
the rad_score, the clinical score was poorer in predicting
accuracy without significant difference (training: 0.70,
95% CI: 0.58–0.82, P = 0.15; validation: 0.62, 95% CI:
0.42–0.83, P = 0.09), and the rad_clinical_score did not
demonstrate an improved performance (training: 0.70,
95% CI: 0.58–0.82, P = 0.12; validation: 0.70, 95% CI:
0.51–0.88, P = 0.16) (Fig. 3). The DCA showed that the
rad_score had the higher overall net benefit compared
with the rad_clinical_score and clinical score across the
majority of the risk of responders (Fig. 4). Other detailed
predicting performance is described in Table 4.

Fig. 4 Decision curve analysis for the rad_score, clinical score and
rad_clinical score

Table 4 Predictive performance of the three scores in the treatment response of neoadjuvant chemotherapy for gastric cancer in
the validation cohort

Cut-off ACC SEN SPE PPV NPV

– ACC P SEN P SPE P PPV P NPV P

rad_score 0.516 0.81 – 0.75 – 0.88 – 0.86 – 0.78 –

clinical_score 0.462 0.63 0.11 0.75 1.00 0.50 < 0.01 0.60 0.02 0.67 0.32

rad_clinical score −0.651 0.69 0.26 0.88 0.18 0.50 < 0.01 0.64 0.04 0.80 0.84

Abbreviations: ACC accuracy, SEN sensitivity, SPE specificity, PPV positive predictive value, NPV negative predictive value
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Survival stratification by the models
In the whole cohort, univariable and multivariable Cox
regression analyses showed that the rad_score (Hazard
Ratio [HR] = 0.22, 95% CI: 0.11–0.42, P < 0.01) was sig-
nificantly associated with OS (Table 5). Univariable ana-
lysis showed that preoperative T status (HR = 2.59, 95%
CI: 1.03–6.53, P = 0.04), the total number of dissected
lymph nodes (HR = 1.03, 95% CI: 1.00–1.06, P = 0.04),
and postoperative N status (HR = 2.09, 95% CI: 1.48–
3.98, P < 0.01) were significantly associated with OS.
Based on these clinical variables, the clinical_score was
updated and also found to be significantly associated
with OS (HR = 2.65, 95% CI: 1.07–6.54, P = 0.03). Fur-
thermore, the rad_clinical_score was also updated by in-
tegrating the rad_ score with the new selected clinical
variables, and was found to be associated with OS (HR =
2.65, 95% CI: 1.07–6.54, P = 0.03). Based on the thresh-
old of rad_score of 0.59, patients were divided into
groups either with high-score or with low score. The OS
in patients from the high-score group was significantly
higher than that in patients from the low-score group
(P < 0.001) (Fig. 5a). Similarly, the high-score groups
stratified by the rad_clinical_score (P < 0.001) and

clinical score (P < 0.001) both achieved longer OS than
the low-score groups (Fig. 5b, c).

Discussion
Our study constructed and validated an effective CT-
radiomics score for predicting treatment response to
neoadjuvant chemotherapy in patients with potentially
resectable or limited metastatic gastric cancer. The rad_
clinical_score which was derived by combining clinical
variables with radiomics features, could not further im-
prove the predicting performance when compared to the
rad_score. Moreover, the rad_score was capable to strat-
ify patients into two groups with different survival
outcomes.
To the best of our knowledge, this is the first attempt

we develop radiomics scores to predict the response to
neoadjuvant chemotherapy in patients gastric cancer be-
fore treatment. Given the great therapeutic efficacy of
neoadjuvant chemotherapy for responding patients and
high risk of non-response in patients [11], the early iden-
tification of potentially responding patients who might
benefit from neoadjuvant chemotherapy is important to
maximise treatment efficacy and optimise personalised
therapy. Our established rad_score performed well in
this respect, indicating the possibility of radiomics in
predicting treatment response of neoadjuvant chemo-
therapy for gastric cancer. Several studies were con-
ducted previously on the texture or radiomics analysis in
the evaluation of treatment response in gastric cancer.
Jiang et al. developed a radiomics signature which was
effective in predicting chemotherapy efficacy in patients
with stage II and III gastric cancer [30]. Yoon et al.
showed that texture features on CT images were corre-
lated with the prognosis in patients with HER2-positive
advanced gastric cancer who received trastuzumab-
based treatment, with heterogeneous features suggestive

Table 5 Multivariable analysis of the three scores and
clinicopathological characteristics with overall survival

Factors HR 95% CI P value

Preoperative T stage 2.59 1.03–6.53 0.04

Total number of dissected lymph node 1.03 1.00–1.06 0.04

Postoperative N status 2.09 1.48–3.98 < 0.01

TNM stage 2.67 1.15–6.23 0.02

rad_score 0.22 0.11–0.42 < 0.01

clinical_score 2.65 1.07–6.54 0.03

rad_clinical_score 4.27 1.18–15.39 0.03

Abbreviations: HR hazard ratio, CI confidence interval

Fig. 5 Comparisons of the overall survivals between high-score group and low-score group respectively stratified by rad_score, clinical score and
rad_clinical score. a stratified by rad_score; b stratified by clinical score; c stratified by rad_clinical_score
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of better survival outcomes [31]. Therefore, the under-
lying reason for our good model performance might be
the fact that intratumoural heterogeneity reflected by
radiomic features was associated with tumour biology
and even cell cycle regulating pathways, which are strong
factors influencing the efficacy of neoadjuvant chemother-
apy [32–34]. The full mechanism behind the relationship
between radiomic features and neoadjuvant chemotherapy
has not been elucidated, and radiogenomics studies are
warranted to provide evidence in this issue [35]. Besides,
by integrating clinical variables with radiomics features,
the derived rad_clinical_score could not show superior
predicting performance to that of the rad_score. This indi-
cated that radiomics features were the stronger compo-
nent of this combined score while clinical data had limited
impact in elevating the performance.
In addition, our rad_score was capable to stratify pa-

tients into two groups with different risks of death,
which helped us identify the subgroup of patients with
poor prognosis for whom more intensified treatment
and closer follow-up schedule was needed. Low rad_
score was associated with poor prognosis, which made
sense because low rad_score was associated with no or
poor response to neoadjuvant chemotherapy. It was re-
ported that patients who responded to neoadjuvant
chemotherapy had a higher likelihood to receive curative
gastrectomy, and their survival was expected to be better
than that of non-responding patients [5–9]. The finding
that the rad_score developed using the outcome of treat-
ment response to neoadjuvant chemotherapy was effect-
ive in prognosis stratification, further confirmed its
clinical significance and usefulness. Instead of two
models, our single model could be used in both the pre-
diction of treatment response and survival stratification.
Previous studies have found that radiomics features

were closely related to tumour biology and microscopic
structure [36–39]. Our study identified 25 radiomic fea-
tures associated with treatment response to neoadjuvant
chemotherapy for gastric cancer. These were histogram
parameters, GLCM, and GLRLM with more than half of
the features being GLRLM. GLCM and GLRLM were
important markers of intra-tumour homogeneity, be-
cause they represented the level of signal heterogeneity
in a lesion in the manner of relative relationship between
the distribution and site of the gray level. These values
(GLCM and GLRLM) were higher in patients with no
response to neoadjuvant chemotherapy, which indicated
that the intratumoral heterogeneity was more apparent
in these patients than in the responding patients. Many
studies have reported that tumours with greater intratu-
moral heterogeneity tended to be more aggressive in
terms of proliferation, metastasis, and angiogenesis [22,
40], and thus might be more resistant to neoadjuvant
chemotherapy.

There are several limitations in our study. First, the
sample size was small considering the relatively large
number of variables. Therefore, Extremely Randomised
Tree method was used to minimise the bias because it
used the whole training sample rather than a bootstrap
replica to build a tree, and it included a random subset
of features and split nodes by choosing cut-points at
random within each tree. Second, our models lacked the
external validation, which reduced the confirmation
strength of the model accuracy.

Conclusion
The radiomics score developed in this study was effect-
ive in predicting treatment response to neoadjuvant
chemotherapy and stratifying patients’ prognosis for gas-
tric cancer. These findings may help clinicians in identi-
fying potentially responding patients and providing
personalised treatment.
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