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Abstract: Hepatocellular carcinoma (HCC) is the most common primary malignant tumor in the
world. Sorafenib is the first-line drug for patients with advanced HCC. However, long-term treatment
with sorafenib often results in reduced sensitivity of tumor cells to the drug, leading to acquired
resistance. Identifying biomarkers which can predict the response to sorafenib treatment may
represent a clinical challenge in the personalized treatment era. Niemann-Pick type C2 (NPC2), a
secretory glycoprotein, plays an important role in regulating intracellular free cholesterol homeostasis.
In HCC patients, downregulation of hepatic NPC2 is correlated with poor clinical pathological
features through regulating mitogen-activated protein kinase (MAPK)/extracellular signal-regulated
kinase (ERK) activation. This study aimed to investigate the roles of secretory NPC2-mediated free
cholesterol levels as biomarkers when undergoing sorafenib treatment and evaluate its impact on
acquired sorafenib resistance in HCC cells. Herein, we showed that NPC2 downregulation and free
cholesterol accumulation weakened sorafenib’s efficacy through enhancing MAPK/AKT signaling in
HCC cells. Meanwhile, NPC2 overexpression slightly enhanced the sorafenib-induced cytotoxic effect.
Compared to normal diet feeding, mice fed a high-cholesterol diet had much higher tumor growth
rates, whereas treatment with the free cholesterol-lowering agent, hydroxypropyl-β-cyclodextrin,
enhanced sorafenib’s tumor-inhibiting ability. In addition, sorafenib treatment induced higher NPC2
secretion, which was mediated by inhibition of the Ras/Raf/MAPK kinase (MEK)/ERK signaling
pathway in HCC cells. In both acquired sorafenib-resistant cell and xenograft models, NPC2 and
free cholesterol secretion were increased in culture supernatant and serum samples. In conclusion,
NPC2-mediated free cholesterol secretion may represent a candidate biomarker for the likelihood of
HCC cells developing resistance to sorafenib.

Keywords: Niemann-Pick type C2 (NPC2); free cholesterol; sorafenib resistance; hepatocellular carcinoma

1. Introduction

Liver cancer was the fourth leading cause of cancer deaths worldwide in 2018. It
was estimated that about 841,000 new cases are diagnosed and 782,000 deaths occur
annually [1]. Primary liver cancer includes hepatocellular carcinoma (HCC), intrahepatic
cholangiocarcinoma, and other rare types. In particular, HCC is the most common primary

Int. J. Mol. Sci. 2021, 22, 8567. https://doi.org/10.3390/ijms22168567 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9218-6532
https://orcid.org/0000-0003-4638-5412
https://orcid.org/0000-0002-9836-1503
https://doi.org/10.3390/ijms22168567
https://doi.org/10.3390/ijms22168567
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22168567
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22168567?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 8567 2 of 15

liver malignancy, comprising 75%~85% of all cases [2]. Chronic liver disease and cirrhosis
remain the main risk factors for developing HCC [3]. Major risk factors include chronic
infection with hepatitis B or C virus, heavy alcohol consumption, obesity, and type 2
diabetes [3]. Sorafenib is used to treat advanced HCC in numerous countries worldwide [4].
Sorafenib is an orally administered multikinase inhibitor that is able to increase the median
survival by 3 months compared to a placebo group [5]. Sorafenib is able to inhibit tumor
cell proliferation and angiogenesis by blocking the Ras/Raf/mitogen-activated protein
kinase (MAPK) pathway, vascular endothelial growth factor (VEGF) signaling pathway,
and platelet-derived growth factor receptor signaling [6]. However, it was reported that
only about 30% of patients are responsive to sorafenib treatment [7], and about 70% of
patients develop acquired resistance within 6 months [8]. Since sorafenib treatment only
prolongs survival for a few months and sorafenib resistance develops in most patients,
identifying novel biomarkers that can reflect the sorafenib response is urgently needed.

Previous studies found that disturbed cholesterol biosynthesis is considered a hall-
mark of cancer, and it is essential for the development and progression of a wide variety
of cancers [9,10]. The liver is the main organ for maintaining cholesterol homeostasis
by de novo synthesis, uptake, storage, and secretion to the blood circulation [11]. How-
ever, the role of cholesterol in the progression of HCC remains controversial. A previous
study showed that dietary cholesterol caused non-alcoholic steatohepatitis (NASH) and
accelerated HCC development [12]. Kim et al. found that increased mitochondrial choles-
terol levels were expressed by HCC patients, thereby contributing to chemotherapeutic
resistance [13]. Conversely, it was reported that high serum cholesterol levels increased
antitumor functions of natural killer cells and reduced the incidence and progression of
HCC in mice [14]. Yang et al. demonstrated that cholesterol significantly suppressed the
migration and invasion of HCC cells [15]. Meanwhile, suppression of cholesterol biosyn-
thesis by two different components of Chinese herbal medicines was reported to improve
the anticancer effect of sorafenib in HCC cells [16,17]. Although the role of cholesterol
in affecting HCC progression has been investigated for many years, how cholesterol in-
fluences sorafenib sensitivity or the acquisition of sorafenib resistance in HCC remains
unclear. The Niemann-Pick type C2 (NPC2) protein is a small soluble glycoprotein that
contains a 19-amino acid signal peptide, and it mainly resides within endosome and lyso-
some compartments [18,19]. Intracellularly, NPC2 binds free cholesterol and regulates
intracellular free cholesterol trafficking and homeostasis [19]. An NPC2 deficiency results
in the accumulation of free cholesterol in cells [20]. In our previous studies, we found that
NPC2 expression was downregulated in fibrotic liver tissues, thereby enhancing hepatic
stellate cell activation and proliferation [21,22]. In liver cancer tissues, NPC2 expression
was downregulated in HCC patients, and lower NPC2 expression was correlated with
higher vascular invasion and later stages of pathological grades [23]. In addition, we also
reported that NPC2 regulates HCC cell proliferation, migration, and tumorigenesis by
regulating extracellular signal-regulated kinase 1/2 (ERK1/2) activation [23]. However, it
is still unclear whether NPC2-mediated free cholesterol homeostasis affects the sensitivity
of HCC toward sorafenib treatment or the development of acquired sorafenib resistance.
In this study, we investigated the roles of secretory NPC2-mediated free cholesterol levels
as biomarkers in patients undergoing sorafenib treatment and evaluated its impacts on
acquired sorafenib resistance in HCC.

2. Results
2.1. NPC2 Downregulation Facilitates Free Cholesterol Accumulation which Weakened Sorafenib
Efficacy through Enhancing MAPK/AKT Signaling in HCC Cells

In our previous studies, we showed that NPC2 downregulation is related to the
development of nonalcoholic fatty liver disease, liver fibrosis, and hepatocellular carci-
noma [21,23,24] Nevertheless, the effects of NPC2 expression and intracellular free choles-
terol homeostasis on sorafenib sensitivity have not been explored in detail. To study
whether NPC2 downregulation influences sorafenib cytotoxicity, a lentivirus carrying
small hairpin (sh)RNA targeting NPC2 was used to infect SK-Hep1 cells (Figure 1a). Com-
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pared to the shLuc control, NPC2-knockdown (KD) attenuated the cytotoxic effects of
sorafenib in SK-Hep1 cells (Figure 1a). Since sorafenib is a multiple kinase inhibitor that
targets Raf/MEK/ERK signaling kinases [25], we identified possible mechanisms that
contribute to changes in NPC2 downregulation mediation of sorafenib’s cytotoxic effect.
Treatment with sorafenib decreased p-MEK and p-ERK expressions in shLuc control cells;
however, an NPC2 deficiency in cells enhanced the phosphorylation of MEK and ERK
(Figure 1b,c). On the other hand, treatment with sorafenib elevated p-AKT, p-JNK, and p-
p38 expressions in shLuc control cells, and these effects were more significant in NPC2-KD
cells (Figure 1b,c).
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Figure 1. Niemann-Pick type C2 (NPC2) downregulation attenuates sorafenib-induced cytotoxicity through enhancing
mitogen-activated protein kinase (MAPK)/AKT signaling in liver cancer cells. (a) Western blot analysis was used to confirm
the knockdown effect of NPC2. The relative NPC2 intensities are shown under western blot images after normalization with
shLuc control intensities. SK-Hep1 cells were treated with 0, 7.5, 10, and 15 µM of sorafenib for 48 h, and cell viability was
assessed with an MTT assay. (b) SK-Hep1 cells were treated with 0, 3, and 6 µM of sorafenib for 48 h, and protein expression
levels of AKT, MAPK kinase (MEK), extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK)
were detected by western blotting. α-Tubulin was used as an internal control. These experiments were repeated three times
with similar results. (c) Western blot images were quantified using Image J software. * p < 0.05, ** p < 0.01, *** p < 0.001
compared to shLuc cells.

Given that abnormal accumulation of intracellular free cholesterol is found in NPC2-
deficient cells [19], we next explored whether free cholesterol accumulation in HCC cells
affects sensitivity to sorafenib. As shown in Figure 2a, sorafenib treatment led to decreas-
ing cell viability in a dose-dependent manner. However, the combination with different
concentrations of U18666A (a free cholesterol transport inhibitor) [26] strongly decreased
sensitivity to sorafenib in a dose-dependent manner (Figure 2a). To further clarify the
molecular mechanisms that account for the effects of sorafenib treatment on free cholesterol
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accumulation in HCC cells, we analyzed changes in MAPK/AKT signaling pathways.
As shown in Figure 2b, treatment with sorafenib decreased p-MEK, p-p38, and p-ERK
expressions, whereas combined U18666A and sorafenib treatment promoted the phospho-
rylation of MEK, p38, and ERK (Figure 2b,c). In addition, significant activation of p-AKT
and p-JNK was found in U18666A-treated cells (Figure 2b,c). These data demonstrated that
NPC2 downregulation and free cholesterol accumulation attenuated sorafenib-induced
cytotoxicity through enhancing the MAPK/AKT pathways.
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Figure 2. U18666A treatment induces free cholesterol accumulation, which weakened sorafenib-induced cytotoxicity
through enhancing mitogen-activated protein kinase (MAPK)/AKT signaling in liver cancer cells. (a) HuH7 and SK-Hep1
cells were treated with sorafenib (0, 7.5, 10, and 15 µM) and U18666A (0, 1, and 10 mM) for 48 h and then harvested for an
MTT assay. (b) HuH7 and SK-Hep1 cells were treated with sorafenib (0, 3, and 6 µM) and U18666A (0 and 10 mM) for 48 h,
and protein expression levels of AKT, MAPK kinase (MEK), extracellular signal-regulated kinase (ERK), p38, and c-Jun
N-terminal kinase (JNK) were detected by western blotting. α-tubulin was used as an internal control. These experiments
were repeated three times with similar results. (c) Western blot images were quantified with the Image J software. * p < 0.05,
** p < 0.01, *** p < 0.001 compared to U18666A untreated cells.



Int. J. Mol. Sci. 2021, 22, 8567 5 of 15

2.2. NPC2 Overexpression Inhibits MAPK/ERK Signaling and Slightly Enhances
Sorafenib-Induced Cytotoxicity

We next examined whether NPC2 overexpression improved sorafenib-induced cyto-
toxicity. HuH7 cells were infected with a lentivirus carrying the NPC2 gene to overexpress
NPC2 (Figure 3a), and then cells were treated with different concentrations of sorafenib.
Cell viability of sorafenib-treated enhanced green fluorescent protein (eGFP)-controlled
cells decreased in a dose-dependent manner, whereas NPC2 overexpression slightly en-
hanced sorafenib-induced cytotoxicity (Figure 3a). Nonetheless, significant inhibition of
p-MEK, p-p38, and p-ERK was observed in sorafenib-treated NPC2-overexpressing cells
(Figure 3b,c). Meanwhile, p-AKT and p-JNK expressions did not differ between sorafenib-
treated eGFP and NPC2-overexpressing cells (Figure 3b). These data imply that although
NPC2 overexpression only slightly enhanced sorafenib-induced cytotoxicity, inhibition of
MAPK/ERK signaling was observed in NPC2-overexpressing cells.
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Figure 3. Niemann-Pick type C2 (NPC2) overexpression inhibits mitogen-activated protein kinase (MAPK)/extracellular
signal-regulated kinase (ERK) signaling and slightly affects sorafenib-induced cytotoxicity. (a) A western blot analysis
was used to confirm the effect of NPC2 overexpression. HuH7 cells were treated with sorafenib (0, 7.5, 10, and 15 µM)
for 48 h and then harvested for an MTT assay. (b) HuH7 cells were treated with 0, 3, and 6 µM of sorafenib for 48 h, and
protein expression levels of AKT, MAPK kinase (MEK), ERK, p38, and c-Jun N-terminal kinase (JNK) were detected by
western blotting. α-tubulin was used as an internal control. These experiments were repeated three times with similar
results. (c) Western blot images were quantified with Image J software. * p < 0.05, ** p < 0.01 compared to enhanced green
fluorescent protein (eGFP) cells.

2.3. Treatment with a Free Cholesterol-Lowering Agent Improves Sorafenib’s Ability to Inhibit
Tumors in High-Cholesterol Diet-Fed Groups

To explore the effects of a high-cholesterol diet on the tumor growth rate, NOD/SCID
mice were inoculated with HuH7 cells after 12 days of pre-feeding a normal diet or a
high-cholesterol diet (Figure 4a). During the diet-feeding period, water intake and food
intake did not significantly differ among the mice (Figure 4b). Compared to the group
fed a normal diet, the tumor growth rate was higher in the high-cholesterol diet group
(Figure 4c). To further evaluate whether treatment with a free cholesterol-lowering agent
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can improve sorafenib’s efficacy in mice fed a high-cholesterol diet, NOD/SCID mice were
inoculated with HuH7 cells after 12 days of high-cholesterol diet feeding, after which
the mice were treated with sorafenib the next day. Another group additionally received
HPBCD to reduce free cholesterol accumulation (Figure 4d). HPBCD is currently in phase
2 clinical trials investigating its effectiveness in treating NPC2 deficiency-associated free
cholesterol accumulation in NPC disease [27]. Throughout the treatment duration, the
water intake and food intake did not differ among these mice (Figure 4e). As shown in
Figure 4f, HPBCD and sorafenib co-treatment produced significant inhibition of the tumor
growth rate compared to that of sorafenib treatment alone. These data demonstrated that a
high-cholesterol diet promoted HCC tumor growth, while HPBCD treatment enhanced the
tumor-inhibiting ability of sorafenib under high-cholesterol diet feeding.
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Figure 4. Free cholesterol-lowering agent treatment improves sorafenib’s tumor-inhibiting ability in the group fed a
high-cholesterol diet. (a) Scheme of the experimental strategy of the effects of a normal diet (ND) and a high-cholesterol diet
(HCD) on tumor growth. (b,c) Average food intake, water intake, and tumor sizes of the mice. All values are expressed
as the mean ± SEM (n = 5). (d) Scheme of the experimental strategy of the effects of free cholesterol-lowering drug
(2-hydroxypropyl-β-cyclodextrin (HPBCD)) plus sorafenib in a hepatocellular carcinoma (HCC) xenograft model fed an
HCD. (e,f) Average food intake, water intake, and tumor sizes of mice. All values are expressed as the mean ± SEM (n = 5).

2.4. Sorafenib-Inhibited Raf Signaling Pathway Promotes Secretion of NPC2 and Free Cholesterol
in Cell Culture Supernatant

Since NPC2 plays an important role in regulating intracellular free cholesterol home-
ostasis via direct binding with free cholesterol and trafficking in intracellular compart-
ments [19] and can also secrete from liver cells [28], we next explored whether the secretion
of NPC2 and free cholesterol can be modulated by sorafenib treatment. After 48 h of
sorafenib treatment, the levels of the NPC2 protein and free cholesterol in the supernatant
had increased in four different HCC cell lines (Figure 5a,b). Since the Ras/Raf/MEK/ERK
signaling pathway is the main target by which sorafenib inhibits the proliferation of HCC
cells [29], we next evaluated whether NPC2 secretion is responsible for inhibition of this
pathway. We used the bRaf inhibitor, PLX-4720, to treat four different HCC cell lines. The
results showed that in combination with PLX-4720 treatment, the expression level of NPC2
in cultured medium significantly increased in sorafenib-treated HCC cells (Figure 5c). On
the other hand, activation of phosphatidylinositol 3-kinase (PI3K)/AKT is also involved
in most cancer-related proliferation signaling [30] and contributes to the development of
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acquired resistance to sorafenib in HCC [29]. Therefore, we used the PI3K/AKT inhibitor,
GDC-0941, to treat four different HCC cell lines. The results showed that while the p-AKT
downstream target was inhibited following GDC-0941 treatment, there were no significant
changes in NPC2 expression in culture media from four different HCC cell lines (Figure 5d).
These results demonstrated that sorafenib treatment induced higher NPC2 secretion which
was mediated by inhibition of the Ras/Raf/MEK/ERK signaling pathway in HCC cells.
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T-ERK, and α-tubulin was used as a loading control. p-bRaf, p-ERK band, and NPC2 intensities of PLX-4720 (−)/(+) pairs
are shown under western blot images after normalization with control intensities. These experiments were repeated three
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2.5. NPC2 and Free Cholesterol Levels Increase in the Culture Supernatant of Cells with Sorafenib
Treatment-Induced Acquisition of Sorafenib Resistance

Since higher NPC2 and free cholesterol levels are modulated by short-term treatment
with sorafenib (Figure 5a,b), we next compared the NPC2-mediated free cholesterol secre-
tion between parental and sorafenib-resistant cells. Hence, we established four sorafenib-
resistant HCC cell lines. As shown in Figure 6a, the cell viability of parental (P) HuH7,
Hep3B, HepG2, and SK-Hep1 cells decreased in a dose-dependent manner following so-
rafenib treatment. However, sorafenib-resistant (SR) cells were less sensitive to sorafenib
(Figure 6a). Notably, NPC2 and free cholesterol levels were elevated in culture supernatant
of sorafenib-resistant cells compared to that of parental cells (Figure 6b,c). This finding
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suggests that long-term sorafenib treatment-induced acquisition of sorafenib resistance
may be more responsible for NPC2 and free cholesterol secretion to the medium.
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2.6. Serum NPC2 and Free Cholesterol Levels Increase in Xenografts with Acquired
Sorafenib Resistance

Since secreted NPC2 and free cholesterol levels were associated with sorafenib re-
sistance in vitro, we next investigated relationships of circulating NPC2-mediated free
cholesterol levels between sorafenib-sensitive and sorafenib-resistant xenografts, to define
NPC2’s role as a possible circulating biomarker. To mimic the development of acquired
sorafenib resistance in advanced HCC patients, we subcutaneously inoculated NOD/SCID
mice with HuH7 or Hep3B cells and then treated them with sorafenib. As shown in
Figure 7a,b, the tumor growth rate was fastest in the untreated control group. In the
sorafenib-treated groups, some tumors grew slowly; thus, we defined them as sorafenib-
sensitive. Others grew quickly, which we, thus, defined as sorafenib-resistant (Figure 7a,b).
Next, we compared serum NPC2 and free cholesterol levels in these mice by western
blotting. As shown in Figure 7c, higher serum NPC2 levels were observed in the sorafenib-
resistant groups. In addition, sorafenib-resistant tumor-bearing mice also had higher serum
free cholesterol levels (Figure 7d).
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3. Discussion

Recently, much research has emphasized the effects of cholesterol accumulation on
cancer development [31]. Cholesterol accumulation is associated with increased cancer
cell survival, decreased cancer cell apoptosis ability [32,33], and enhanced tumor forma-
tion [34]. In this study, we showed that free cholesterol accumulation attenuated sorafenib’s
efficacy in HCC cells (Figure 2). Since higher cholesterol levels are associated with can-
cer progression, it was anticipated that lowering excess cholesterol in cancer cells may
act as an advantageous anticancer strategy. Several cholesterol-depleting agents showed
anticancer effects [35]. Methyl-β-cyclodextrin, a cholesterol-depleting agent, increased
the efficacy of tamoxifen chemotherapy in melanomas [36]. In our study, we showed
that HPBCD, a free cholesterol-lowering agent used to treat NPC disease, improved the
efficacy of sorafenib in a high-cholesterol diet-fed xenograft model (Figure 4d–f). Cur-
rently, sorafenib is still the first-line drug for advanced HCC patients. It is important to
note that sorafenib needs to bind to lipid membranes and is inserted into the lipid-water
interface of the bilayer. This embedding into the membrane disturbs the bilayer structure,
leading to increased permeability of the membrane by polar molecules. The extent of this
effect depends on the membrane’s lipid composition, such as phosphatidylcholine and
cholesterol [37]. In addition, recent publications showed that sorafenib treatment not only
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inhibited Ras-Raf/VEGF signaling, but also influenced other metabolic pathways, includ-
ing mitochondrial respiration and cholesterol metabolism. Sorafenib treatment activated
AMPK and acted as a mitochondrial uncoupler, which suppressed NASH progression [38].
The Chinese medicinal herb, emodin, sensitizes HCC cells to sorafenib treatment through
suppressing cholesterol metabolism [16]. Furthermore, upregulating stearoyl-CoA desat-
urase (SCD1), a lipogenesis pathway-related enzyme, was associated with the development
of sorafenib resistance [39]. These data imply that long-term sorafenib exposure may alter
lipogenesis-related gene expressions; on the other hand, the cholesterol status may also
affect sorafenib’s effectiveness.

Although α-fetoprotein (AFP) was reported to be an independent surrogate end point
for survival, which was evaluated together with the radiological response in sorafenib-
treated HCC patients, serum AFP levels are not a pretreatment characteristic which can
be used to predict responsiveness to sorafenib [40]. Serum lipid profile analyses found
that phosphatidylcholine, cholesterol ester, acylcarnitine, linoleic acid, and diacylglycerol
were associated with the response rate in sorafenib-treated patients [41,42]; however,
lipid metabolism-related proteins are rarely found in serum. The liver is the main organ
regulating cholesterol catabolism into bile [43]. Hepatic NPC2 is a free cholesterol-binding
protein that can be secreted into the plasma and bile [28]. In the present study, we found that
sorafenib treatment resulted in NPC2 and free cholesterol secretion by HCC cells (Figure 5),
suggesting that sorafenib administration may alter lipid catabolism in liver cells. Indeed,
some lipid metabolism-related proteins, such as SCD1 [39], sphingomyelin synthase [44],
and peroxisome proliferator-activated receptor-δ [45], were reported to predict the response
to sorafenib in HCC. In this study, we further demonstrated that the secretion of NPC2
and free cholesterol increased in long-term sorafenib treatment-induced acquired drug
resistance of cells and sera (Figures 6 and 7). Previous studies indicated that free cholesterol
can mobilize from lysosomes and the expression signal of vesicular lysosomal NPC2
diminishes; however, a certain amount of NPC2 is still present in cells [24,46]. Accordingly,
NPC2 may travel with free cholesterol through the cell and perhaps even be secreted
with it. Extracellular vesicles play important roles in intracellular and even intercellular
communication [47]. Exosomes are a subtype of extracellular vesicles that are released
by fusion of multivesicular bodies with plasma membrane [48]. Therefore, lysosome
dysfunction may trigger NPC2 or free cholesterol release by extracellular vesicles from
liver cells under the sorafenib-resistance condition. Extracellular vesicles have been found
to allow the transport of two major developmental signaling pathways: Hedgehog and
Wnt. These signaling undergo crucial post-translational lipid modifications, which anchor
them to membranes and impede their free release into the extracellular space [49]. Aberrant
Hedgehog signaling has been associated with tumorigenesis in many cancers [50,51], as
well as NPC disease [52–54]. Further research is required to examine the roles of Hedgehog
signaling in the secretion of NPC2 and free cholesterol in sorafenib resistant cells. Since
liver cells are the main source of plasma and biliary NPC2, the increased serum NPC2 in
sorafenib-resistant patients may be related to severe damage to hepatocytes when drug
resistance occurs. Our previous study also showed that changes in the glycosylated pattern
of NPC2 in serum were associated with cirrhosis and liver cancer [55]. These data imply that
secretory NPC2 and free cholesterol may potentially be useful for personalized precision
medicine in diagnosing the sorafenib response and developing anti-sorafenib-resistant
liver cancer pharmaceuticals.

4. Materials and Methods
4.1. Cell Culture and Treatments

The human Hep3B, HepG2, HuH7, and SK-Hep1 HCC cell lines were cultured in Dul-
becco’s modified Eagle’s medium (DMEM; Gibco, Grand Island, NY, USA) supplemented
with 10% fetal bovine serum (FBS) (HyClone, Logan, UT, USA), streptomycin (100 µg/mL),
penicillin (100 U/mL), nonessential amino acids (0.1 mM), and L-glutamine (2 mM) at 37 ◦C
in a 5% CO2 incubator. Both HuH7 and Hep3B belong to well-differentiated HCC lines,
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while HepG2 belongs to the hepatoblastoma line. In addition, HuH7 and Hep3B are posi-
tive for the presence of HCV replicon and HBV viral DNA, respectively. In contrast, there is
no evidence of a hepatitis viral genome in HepG2 cell. Since HuH7 cells express the lowest
level of NPC2 and SK-Hep1 express the highest level of NPC2, HuH7 cells was selected to
over-express NPC2 and SK-Hep1 was selected to knock down NPC2. The establishment of
cell lines with stable NPC2 overexpression and knockdown was previously described [23].

HCC cells were seeded in six-well plates and treated with indicated concentrations
of U18666A (Sigma-Aldrich, St. Louis, MO, USA) and sorafenib (ApexBio, Houston, TX,
USA) for 48 h. To study the secretion of NPC2, cells were treated with a bRaf inhibitor
(PLX-4720, 1 µM) or AKT inhibitor (GDC-0941, 1 µM). After 24 h, cells and culture medium
were collected for western blot analyses.

4.2. Generation of Sorafenib-Resistant (SR) Cells

Hep3B, HepG2, Huh-7, and SK-Hep-1 cells were exposed to a low concentration
(2.5 µM) of sorafenib. We enhanced the dose of sorafenib until the cells grew stably. Finally,
SR cells (Hep3B-SR, HepG2-SR, HuH7-SR, and SK-Hep1-SR) were cultured in medium
containing 7–9 µM sorafenib.

4.3. Western Blot Experiments

Cellular proteins (20 µg) or culture medium (50 µL) were loaded in each well, and then
separated by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred onto polyvinylidene difluoride (PVDF) membranes. The following antibodies
used in this study were purchased from Cell Signaling (Beverly, MA, USA): phosphorylated
(p)- and total (T)-AKT, ERK, c-Jun N-terminal kinase (JNK), p38, and MAPK kinase (MEK).
NPC2 was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The dilution
of primary antibodies is 1:1000. Bands were visualized by an enhanced chemiluminescence
(ECL) detection reagent (Millipore, Billerica, MA, USA), and immunoblot signals were
quantified by densitometric scanning (ImageJ software 1.47v, National Institutes of Health,
Bethesda, MD, USA).

4.4. Cell Viability Assay

Cell viability was monitored with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-
zolium bromide (MTT) assay. Cells were seeded in a 96-well plate at a density of
3 × 103 cells/well. After incubation with various concentrations of sorafenib for 48 h,
50 µL of the MTT solution (5 mg/mL) was added to the medium for further incubation
for 3 h. Then, 100 µL DMSO was added to each well. Absorbance of the colored solution
was measured at an optical density (OD) of 570 nm with a microplate reader.

4.5. Free Cholesterol Quantification

The free cholesterol level was measured with a Cholesterol Assay Kit (BioVision,
Milpitas, CA, USA) according to the procedure. Cells were treated with indicated doses of
sorafenib for 48 h, and lipids were extracted with 200 µL of a chloroform, isopropanol, and
NP-40 (7:11:0.1) mixture. After 10 min of centrifugation at 15,000 rpm, the organic phase
was dried at 50 ◦C for 10 min to remove chloroform and under a vacuum for 30 min to
remove the organic solvent. Dried lipids were dissolved with 200 µL of Cholesterol Assay
Buffer by sonication until the solution became cloudy. Mixed reagents were incubated for
60 min at 37 ◦C in the absence of light, and the absorbance was measured at 570 nm with
an enzyme-linked immunosorbent assay (ELISA) reader.

4.6. Animal Experiments

(A) In the first HCC xenograft model, we compared the tumor growth rates between
animals fed a normal diet and those fed a 2% high-cholesterol diet (Table 1). Six–seven-
week-old female NOD/SCID mice were purchased from the National Laboratory
Animal Center (Taipei, Taiwan). Mice were randomly divided into two groups: a
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normal diet and a high-cholesterol diet for pre-administration for 12 days, after which
HuH7 cells (106) were subcutaneously inoculated into each mouse (Figure 4a). The
tumor volume was measured three times per week using Vernier calipers.

(B) Next, we studied the effects of a high-cholesterol diet plus a free cholesterol-lowering
drug in a sorafenib-treated HCC xenograft model (Figure 4d). After 12 days of feed-
ing mice a high-cholesterol diet, HuH7 cells (106) were subcutaneously injected into
NOD/SCID mice. Then, the mice were divided into two groups: (1) sorafenib treat-
ment (intraperitoneal injection 25 mg/kg, six times per week) and (2) sorafenib (in-
traperitoneal injection 25 mg/kg, six days per week) combined with 2-hydroxypropyl-
β-cyclodextrin (HPBCD) treatment (intraperitoneal injection 4000 mg/kg, twice
weekly, Sigma-Aldrich). HPBCD is currently in phase 2 clinical trials for evaluation
of its effectiveness in treating NPC2 deficit-associated free cholesterol accumulation
in Niemann-Pick type C disease [27,56,57]. The tumor volume was measured three
times per week using Vernier calipers. Water intake and food intake were measured
twice a week.

(C) Xenograft HCC model of acquired sorafenib resistance. HuH7 and Hep3B cells (106)
were subcutaneously injected into NOD/SCID mice, and sorafenib (25 mg/kg) was
intraperitoneally injected every day. The tumor volume was measured three times
per week using Vernier calipers. After 25 (HuH7) or 28 days (Hep3B), animals were
sacrificed to collect tumor tissues and serum. Serum samples (100 µg) were subjected
to a western blot analysis.

All the individual tumor volumes (TV) were calculated using the formula: TV =
(L × W2)/2, wherein length (L) is the longest diameter and width (W) is the shortest
diameter perpendicular to the length. The researcher processed all the steps under the
same conditions.

Table 1. Composition of the normal and high-cholesterol diets.

Ingredient Normal Diet
g/kg

High Cholesterol Diet
g/kg

Cornstarch 465 440
Maltodextrin 155 155

Sucrose 100 100
Casein 140 140

L-Cysteine 2 2
Fresh soybean oil 40 40

Cellulose 50 50
Mineral mix (AIN-93M-MI) 35 35
Vitamin mix (AIN-93-VX) 10 10

Choline bitartrate 3 3
Cholesterol 20

Sodium cholate 5
Total 1000 1000

4.7. Statistical Analysis

Data are expressed as the mean ± standard deviation (SD) or standard error of the
mean (SEM). Statistical analyses were performed by a two-way ANOVA and Bonferroni
post hoc analyses to examine significant differences using SPSS v20.0 software (SPSS Inc,
Chicago, IL, USA). A statistically significant difference was considered at p < 0.05.

5. Conclusions

HCC is a major cause of cancer-related death worldwide. For late-stage disease,
sorafenib is the only first-line drug approved by the FDA for systemic therapy. Despite the
capacity of sorafenib to increase the survival of HCC patients, the development of resistance
to this drug has raised concerns in recent years. Therefore, identifying the secretable
biomarkers that can predict sorafenib response will provide a more precise treatment
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strategy for advanced HCC patients. NPC2, a secreted protein, plays an important role in
regulating intracellular free cholesterol homeostasis. In this study, we showed that NPC2
downregulation-mediated free cholesterol accumulation attenuated sorafenib-induced
cytotoxicity through enhancing MAPK and AKT signaling in HCC cells. In vivo, a high-
cholesterol diet enhanced the tumor growth rate, while HPBCD treatment, which reduced
free cholesterol accumulation, improved sorafenib’s tumor-inhibiting ability. To further
evaluate whether NPC2-mediated free cholesterol levels can act as a predictive factor for
sorafenib susceptibility, we showed that sorafenib treatment increased NPC2 and free
cholesterol secretion through inhibiting Raf/MEK/ERK signaling. Furthermore, NPC2
and free cholesterol levels increased in sorafenib-resistant cultured supernatant and in sera
of acquired sorafenib-resistant xenografts. Our cell-based and animal-based models may
provide more information on the diagnosis/prediction of the sorafenib response in each
advanced HCC patient and achieve the personalized precision medicine goal in the future.
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