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Congenital disorders of glycosylation (CDG) are a group of clinically heterogeneous

disorders characterized by defects in the synthesis of glycans and their attachment

to proteins and lipids. This manuscript aims to provide a classification of the clinical

presentation, diagnostic methods, and treatment of CDG based on the literature review

and our own experience (referral center in Poland). A diagnostic algorithm for CDG was

also proposed. Isoelectric focusing (IEF) of serum transferrin (Tf) is still the method of

choice for diagnosing N-glycosylation disorders associated with sialic acid deficiency.

Nowadays, high-performance liquid chromatography, capillary zone electrophoresis,

and mass spectrometry techniques are used, although they are not routinely available.

Since next-generation sequencing became more widely available, an improvement in

diagnostics has been observed, with more patients and novel CDG subtypes being

reported. Early and accurate diagnosis of CDG is crucial for timely implementation of

appropriate therapies and improving clinical outcomes. However, causative treatment is

available only for few CDG types.

Keywords: congenital disorders of glycosylation, clinical presentation, isoelectric focusing of serum transferrin,

next-generation sequencing, treatment

BACKGROUND

Congenital disorders of glycosylation (CDG), previously known as carbohydrate-deficient
glycoprotein syndromes, constitute a group of inborn errors of metabolism (IEM) characterized
by impaired synthesis and attachment of glycans to glycoproteins and glycolipids and impaired
synthesis of glycosylphosphatidylinositol. Two main types of protein glycosylation are depicted,
including N-glycosylation and O-glycosylation, while N-glycosylation is the most common type
in the human body. So far, more than 150 CDG subtypes have been reported, while the
phosphomannomutase-2 deficiency (PMM2-CDG) comprises the most common one (1–4).

Currently, CDG types are classified into defects in protein N-glycosylation, protein O-
glycosylation, glycosphingolipid, and glycosylphosphatidylinositol (GPI) anchor glycosylation
defects, and multiple glycosylation pathway defects (1–4).

CDG nomenclature is denoted by the affected gene name (non-italicized) followed by -CDG
(i.e., PMM2-CDG, phosphomannomutase-2 deficiency) (1–4).

Most CDG types are autosomal recessive in inheritance, but autosomal dominant (i.e.,
EXT1/EXT2-CDG, GANAB-CDG, PRKCSH-CDG, POGLUT1-CDG, POFUT1-CDG) as well as
X-linked (i.e., ALG13-CDG, PIGA-CDG, SLC35A2-CDG, ATP6AP1-CDG) forms have also been
described (1–4).
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This manuscript aims to provide a classification of the
clinical presentation, diagnostic methods, and treatment of
CDG based on the literature review and our own experience
(referral center in Poland). A diagnostic algorithm for CDG was
also proposed.

CLINICAL PRESENTATION

CDG are usually multisystem diseases with neurological
manifestation observed in most patients (5, 6). Like in other IEM,
depending on the disease severity (age of symptom onset), mild
to severe phenotypes could be observed.

Most CDG patients presenting with an early-onset
neurovisceral phenotype have some signs and symptoms
since birth. Thus, a detailed clinical analysis, including a physical
examination (i.e., craniofacial dysmorphia, birth body length,
weight, and head circumference) as well as family and pregnancy
history (i.e., regarding non-immune hydrops fetalis, NIHF), is
essential in the context of further biochemical and molecular
analyses. NIHF was commonly reported in PMM2-CDG, ALG9-
CDG, and ALG8-CDG, and the presence of NIHF is associated
with poor outcomes (7).

Neurological signs and symptoms include psychomotor
retardation, hypotonia, microcephaly, epileptic seizures,
ataxia, peripheral neuropathy, and stroke-like episodes (5, 6).
Deficiencies in several glycosylation pathways comprise the
cause of epilepsy, while in some of them (i.e., ALG1-CDG,
ALG3-CDG, ALG11-CDG, ALG13-CDG, DPM1-CDG,
DPM2-CDG, MPDU1-CDG, DPAGT1-CDG, RFT1-CDG,
PIGA-CDG, PIGW-CDG, and PIGQ-CDG) the severe epileptic
encephalopathies have been described (8–23). Besides cerebellar
and cerebral atrophy, most CDG patients with epilepsy do
not have characteristic brain malformations. However, O-
glycosylation disorders are associated with neuronal migration
defects, including lissencephaly, polymicrogyria, schizencephaly,
and neuronal heterotopia (24). The cerebellum is commonly
affected in PMM2-CDG, dystroglycanopathies, and SRD5A3-
CDG, while the course of cerebellar ataxia is not progressive
(25–28). Several CDG types, especially dystroglycanopathies, are
connected with congenital muscular dystrophy (29–33).

In the majority of CDG, liver involvement is observed
as a part of multisystem phenotype, presenting with elevated
serum transaminases (more often) and hepatomegaly (less often)
in early infancy/childhood, while serum transaminases could
normalize later in life (34–36). In the case of severe neurovisceral
phenotype leading to premature death, severe liver involvement
is observed as part of multiple organ failure (i.e., COG7-CDG,
ALG3-CDG) (37). There is also a group of CDG, including
MPI-CDG, CCDC115-CDG, and TMEM199-CDG, in which
the disease is expressed mainly in the liver (no neurological
manifestation) (38–43). There is no typical histologic pattern for
liver disease in CDG; liver fibrosis, or even cirrhosis, was reported
in PMM2-CDG, MPI-CDG, and TMEM199-CDG (44).

About 20% of CDG were reported to exhibit heart disease in
the form of pericardial effusion, cardiomyopathy, arrhythmias,
and structural abnormalities (45, 46). Structural (valvular

and septal) defects are predominant in patients with GPI-
anchor biosynthesis defects and COG-CDG (47–49). Pericardial
effusions are characteristic features of PMM2-CDG, while dilated
cardiomyopathy is typical for PGM1-CDG and DK1-CDG
(50–52).

Recurrent and severe infections as a part of immunodeficiency
phenotype were reported in ALG12-CDG, ATP6AP1-CDG,
EXTL3-CDG, G6PC3-CDG, MOGS-CDG, PGM3-CDG, and
SLC35C1-CDG (53–60).

Some types of CDG, including ALG3-CDG, ALG6-CDG,
ALG9-CDG, ALG12-CDG, PGM3-CDG, CSGALNACT1-
CDG, SLC35D1-CDG, and TMEM-165, were reported with
well-defined skeletal dysplasia (61–69). In addition, some
skeletal abnormalities are also unique for some types of
CDG, including Schneckenbecken dysplasia in SLC35D1-
CDG, brachytelephalangy in PIGV-CDG and PIGO-CDG,
pseudodiastrophic dysplasia in ALG12-CDG, Gillessen-
Kaesbach and Nishimura skeletal dysplasia in ALG9-CDG, and
Desbuquois dysplasia in PGM3-CDG (48, 70–72).

Some CDG also have unique characteristics in the form of
a constellation of clinical symptoms), which may facilitate their
recognition and shorten the diagnostic process, including:

• connective tissue involvement (cutis laxa in ATP6V0A2-CDG,
COG7-CDG; inguinal hernias in ATP6AP1-CDG) (73–76);

• midline malformations, including palate/uvula cleft in PGM1-
CDG; a constellation of congenital malformations, dilated
cardiomyopathy, liver involvement, variable endocrine, and
hematological abnormalities and no neurological disease in
PGM1-CDG (38, 77);

• inverted nipples and abnormal fat distribution in PMM2-
CDG; specific craniofacial dysmorphia in PMM2-CDG,
including microcephaly, prominent forehead, flat nasal bridge,
thin upper lip, and large ears; polycystic kidney disease and
hyperinsulinemic hypoglycemia in PMM2-CDG due to a
promotor defect (26, 78–80);

• cerebellar hypoplasia in PMM2-CDG, SRD5A3-CDG,
dystroglycanopathies (25, 28);

• cerebellar ataxia and variable eye malformations, including
optic disc hypoplasia and nystagmus in SRD5A3-CDG (28);

• achalasia and alacrima without adrenal insufficiency in
GMPPA-CDG (81);

• severe immunodeficiency accompanied by a skeletal dysplasia
in PGM3-CDG; immunodeficiency with the Bombay blood
phenotype and severe growth and psychomotor retardation
in leukocyte adhesion deficiency type II (known as SLC35C1-
CDG) (57–59, 82, 83).

DIAGNOSTIC PROCESS

Since the introduction by Jaeken et al. (84), isoelectric focusing
(IEF) of serum transferrin (Tf) is the method of choice for
diagnosis of hypo-N-glycosylation disorders associated with
sialic acid deficiency (1–4, 84, 85).

So far, several other laboratory techniques have been used for
the separation and quantification of serum Tf isoforms, including
high-performance liquid chromatography (HPLC), capillary
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FIGURE 1 | Diagnostic algorithm for CDG.

zone electrophoresis (CZE), and mass spectrometry (MS) (86–
94). Every diagnostic method has its own limitations. Both CZE
and HPLC techniques are universal with low maintenance cost
and suitable for CDG screening. An abnormal result should be
further investigated by serum Tf IEF. In addition, serum Tf IEF is
the most commonly used for diagnosis and monitoring of CDG,
and thus considered as the reference method. Other techniques,
including CZE and HPLC, can be adapted by the laboratories
based on their equipment accessibility.

IEF of serum Tf from dried blood spot (DBS) samples was
recently demonstrated as a reliable method for CDG screening
(95, 96). DBS is firmly established in the analysis of various IEM,
especially in the context of newborn screening programs across
the world. However, there is a number of CDG for which there
is no data regarding glycosylation abnormalities after birth and
thus further studies are needed.

Based on our own experience (referral center in Poland),
we create a diagnostic algorithm for CDG (Figure 1). We
recommend to perform serum Tf IEF for an initial screening of
glycosylation abnormalities in patients presenting with clinical
and biochemical features listed in Table 1.

Transferrin (Tf) is a plasma iron transport protein with
two asparagine N-glycosylation sites (Asn432 and Asn630),
and the dominated isoform in healthy individuals is tetrasialo-
Tf, while asialo- and monosialo-Tf isoforms are usually not
detectable. A type 1 pattern (CDG-I) is associated with an

TABLE 1 | Clinical and biochemical features requiring IEF of serum transferrin.

Non-immune hydrops foetalis (NIHF)

Inverted nipples, abnormal fat distribution

Connective tissue involvement (cutis laxa, inguinal hernias)

Unexplained multisystemic phenotype, including neurological manifestation

Non-progressive cerebellar ataxia

Severe epileptic encephalopathy

Elevated serum transaminases (especially with decreased antithrombin/protein C

and S activity)

Liver steatosis/fibrosis/cirrhosis of unknown etiology

Recurrent pericardial effusion

Cardiomyopathy

Skeletal dysplasia (especially features of pseudodiastrophic dysplasia,

Gillessen-Kaesbach and Nishimura skeletal dysplasia, Desbuquois dysplasia,

brachytelephalangy)

Immunodeficiency

increased asialo- and disialo-Tf, and decreased tetrasialo-Tf,
indicating an assembly or transfer defect of the dolichol-linked
glycan (85). A type 2 pattern (CDG-II) is associated with
increased asialo-, monosialo-, disialo-, and trisialo-Tf, indicating
a processing defect after glycan transfer in the ER or during Golgi
glycosylation (85). PGM1-CDG presents features of the both
types of serum Tf IEF patterns (mixed type, CDG-I/CDG-II).
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During CDG diagnostic process, it is important to exclude
secondary causes of N-hypoglycosylation as well as Tf gene
polymorphisms. Several Tf gene polymorphisms (i.e., transferrin
B2 presenting with an elevated pentasialo-Tf solely or transferrin
C2 resulting in increased trisialo-Tf solely) are known to result
in a shifted IEF pattern, caused by pI differences of the
polypeptide chain.

It is also known that untreated patients with classic
galactosemia (galactose-1-phosphate uridyltransferase
deficiency) and fructosemia (fructose 1-phosphate aldolase
deficiency) have secondarily an abnormal serum Tf isoform
profile that could resemble CDG-I. For example, Bogdańska
et al. reported a study on 19 pediatric patients with primary
liver disease and increased secondary asialo-Tf and monosialo-Tf
isoforms; none of the patients had an elevated level of trisialo-Tf
isoform (97). On the other hand, Jansen et al. published a study
about secondary glycosylation defects in 961 adult patients
qualified for LTx or with chronic liver disease. It showed that
247 patients (26%) had hyposialylation of serum Tf, while
the majority of them (70%) had an increase in the trisialo-Tf
isoform (98).

Normal serum Tf IEF profile does not exclude CDG—we
should consider targeted next-generation sequencing (NGS) or
whole-exome sequencing (WES) in case of a strong clinical
and biochemical suspicion. PMM2-CDG due to promotor
defect and several other CDG, like SLC35A1-CDG, SLC35A3-
CDG, SEC23B-CDG, and PGM3-CDG, could show normal N-
glycosylation profile. What is more, serum Tf IEF could be
normal as well as abnormal in several others CDG, like ALG13-
CDG, SLC35A2-CDG, RTF1-CDG, and SRD5A3-CDG (1–4, 85).

After the diagnosis of CDG-I based on serum Tf IEF,
phosphomannomutase-2 (PMM2) and phosphomannose
isomerase (PMI) activity should be measured in fibroblasts or
leukocytes in the proper clinical context (1–4, 85). PMM2-CDG
has the best-defined clinical phenotype and is by far the most
frequent N-glycan assembly defect (99). PMI activity should be
measured in case of clinical and biochemical presentation mainly
expressed by the liver. If the clinical phenotype is not typical for
PMM2-CDG and MPI-CDG, and in the case of normal PMM2
and PMI activity, plasma N-glycan analysis by MS (total plasma
and/or intact transferrin glycoprofiling) could be done (1–4, 85).
Nowadays, this is replaced by next-generation sequencing (NGS),
including targeted NGS (panel of genes known to be involved in
CDG) or whole exome sequencing (WES) (Figure 1). However,
since NGS became more widely available, an improvement in
diagnostics has been observed, with more patients and novel
CDG subtypes being reported. These molecular analyses could
take more time to result and be more expensive than laboratory
CDG screening, although the high-throughput methods (like
MS) are not routinely available (like in our center) and require
both a qualified staff and comprehensive equipment.

After the diagnosis of CDG-II, IEF of serum apolipoprotein
C-III (apoC-III) is recommended to perform (Figure 1) to
distinguish between an exclusive N-glycosylation defect and
a combined disorder of N- and O-glycosylation (1–4, 85).
This analysis was described by Wopereis et al. in 2003 as a
screening method for defects in the biosynthesis of the core 1

mucin-type O-glycans (100). However, some patients could also
have an abnormal biosynthesis of core 1 O-glycans, including
those with hemolytic uremic syndrome due to Streptococcus
pneumoniae. Therefore, other laboratory methods have been
developed parallel to serum Tf IEF, including serum apoC-
III CZE.

Protein-linked glycan analysis should next be performed in
attempt to identify the defective step, or targeted NGS, or
WES (94).

Molecular analysis is necessary to confirm the final diagnosis
of CDG and predict the possible genotype-phenotype correlation.
However, the combination of MS with clinical exome sequencing
(especially WES) is helpful to identify new CDG defects.

TREATMENT

An early diagnosis of CDG is crucial for the timely
implementation of appropriate therapies. However, causative
treatment is available only for few CDG types in the form
of specific monosaccharide supplementation therapy (i.e.,
galactose for PGM1-CDG, fucose for SLC35C1-CDG, Mn2+ for
TMEM165-CDG, or mannose for MPI-CDG) (101–103). For the
majority of patients, only symptomatic treatment can be offered.
The natural history for most CDG types is unknown (also due
to lack of long-term follow-up); however, cerebellar ataxia in
PMM2-CDG is not progressive, and patients could even slowly
improve with age (26, 27).

Several therapeutic strategies were developed for PMM2-
CDG, including mannose supplementation, inhibition of MPI,
pharmacological chaperones, proteostasis regulators (celastrol),
acetazolamide, and antisense therapy (104). To date, no causative
treatment for PMM2-CDG exists. However, acetazolamide was
reported to be well tolerated and effective for cerebellar syndrome
(105). In addition, Taday et al. recently published a study on long-
term oral mannose supplementation in 20 patients with PMM2-
CDG (106). The therapy was tolerated well, and biochemical
improvement was noted in the majority of patients.

Symptomatic treatment in PMM2-CDG includes:

• nutritional support (including percutaneous endoscopic
gastrostomy placement) in failure-to-thrive patients;

• regular albumin infusions, octreotide therapy, or a diet rich in
mid-chain fatty acids (MCTs) in protein-losing enteropathy;

• levothyroxine in the presence of decreased free thyroxine;
• fresh frozen plasma infusions to prevent bleeding episodes;
• pleural-pericardial window formation in recurrent pericardial

effusion (26, 36).

The administration of mannose in MPI-CDG improves the
clinical and biochemical outcome (including serum transferrin
isoforms); however, patients can still develop progressive
liver fibrosis (107–110). Mannose therapy in MPI-CDG was
also discontinued in a few patients due to side effects
(40). One reported patient with MPI-CDG required liver
transplantation due to chronic liver disease with the development
of hepatopulmonary syndrome (39).
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Two patients with CCDC115-CDG underwent LTx; one
rejected the transplant and died while the other is doing well,
showing biochemical improvement of liver function tests and
transferrin glycosylation profile (111).

Galactose therapy in PGM1-CDG is safe and associated
with a significant improvement of N-glycosylation and clinical
parameters (liver function tests, coagulation, blood glucose)
(38, 77). Four patients with PGM1-CDG underwent heart
transplantation, and all died due to cardiac disease-related
complications. Three other patients reported by Tegtmeyer et al.
were listed for heart transplantation (38).

Heart transplantation could be considered as a treatment
option in other patients with cardiac involvement. It was
performed in three patients with defects in dolichol synthesis
(DOLK-CDG, DK1-CDG), despite supportive heart failure
therapy (ACE inhibitors, β-blockers, and diuretics); one of them
died unexpectedly 2 years after transplantation at the age of 16.5
years (51).

Besides PGM1-CDG, galactose supplementation showed
promising results in SLC35A2-CDG, SLC39A8-CDG, and
TMEM165-CDG (112–114).

Fucose supplementation in SLC35C1-CDG was reported
to decrease infection rates, normalize neutrophil counts, and

improve psychomotor development. However, it should be
monitored carefully due to the risk of autoimmune and hemolytic
reactions (115–117).

Uridine supplementation in CAD-CDG patients was reported
to improve the clinical manifestation, including seizure cessation,
cognitive and motor development, and normalization of
biochemical parameters (118).

Hematopoietic stem cell transplantation was successfully
applied to treat CDG with immunodeficiency in PGM3-CDG
children (57).
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36. Bogdańska A, Lipiński P, Szymańska-Rozek P, Jezela-Stanek A, Rokicki D,
Socha P, et al. Clinical, biochemical and molecular phenotype of congenital
disorders of glycosylation: long-term follow-up. Orphanet J Rare Dis. (2021)
16:17. doi: 10.1186/s13023-020-01657-5

37. Spaapen LJ, Bakker JA, van der Meer SB, Sijstermans HJ, Steet RA, Wevers
RA, et al. Clinical and biochemical presentation of siblings with COG-7
deficiency, a lethal multiple O- and N-glycosylation disorder. J Inherit Metab

Dis. (2005) 28:707–14. doi: 10.1007/s10545-005-0015-z
38. Tegtmeyer LC, Rust S, van Scherpenzeel M, Ng BG, Losfeld ME, Timal S,

et al. Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J

Med. (2014) 370:533–42. doi: 10.1056/NEJMoa1206605

39. Janssen MC, de Kleine RH, van den Berg AP, Heijdra Y, van Scherpenzeel
M, Lefeber DJ, et al. Successful liver transplantation and long-term
follow-up in a patient with MPI-CDG. Pediatrics. (2014) 134:e279–83.
doi: 10.1542/peds.2013-2732

40. Damen G, de Klerk H, Huijmans J, den Hollander J, Sinaasappel
M. Gastrointestinal and other clinical manifestations in 17
children with congenital disorders of glycosylation type Ia,
Ib, and Ic. J Pediatr Gastroenterol Nutr. (2004) 38:282–87.
doi: 10.1097/00005176-200403000-00010

41. Girard M, Poujois A, Fabre M, Lacaille F, Debray D, Rio M, et al. CCDC115-
CDG: A new rare and misleading inherited cause of liver disease.Mol Genet

Metab. (2018) 124:228–35. doi: 10.1016/j.ymgme.2018.05.002
42. Vajro P, Zielinska K, Ng BG, Maccarana M, Bengtson P, Poeta M,

et al. Three unreported cases of TMEM199-CDG, a rare genetic liver
disease with abnormal glycosylation. Orphanet J Rare Dis. (2018) 13:4.
doi: 10.1186/s13023-017-0757-3

43. Jansen JC, Timal S, van Scherpenzeel M, Michelakakis H, Vicogne D,
Ashikov A, et al. TMEM199 deficiency is a disorder of Golgi homeostasis
characterized by elevated aminotransferases, alkaline phosphatase, and
cholesterol and abnormal glycosylation. Am J Hum Genet. (2016) 98:322–30.
doi: 10.1016/j.ajhg.2015.12.011

44. de Koning TJ, Nikkels PG, Dorland L, Bekhof J, De Schrijver JE,
van Hattum J, et al. Congenital hepatic fibrosis in 3 siblings with
phosphomannose isomerase deficiency. Virchows Arch. (2000) 437:101–5.
doi: 10.1007/s004280000185

45. Marques-da-Silva D, Francisco R, Webster D, Dos Reis Ferreira V,
Jaeken J, Pulinilkunnil T. Cardiac complications of congenital disorders of
glycosylation (CDG): a systematic review of the literature. J Inherit Metab

Dis. (2017) 40:657–72. doi: 10.1007/s10545-017-0066-y
46. Footitt EJ, Karimova A, Burch M, Yayeh T, Dupré T, Vuillaumier-Barrot S,

et al. Cardiomyopathy in the congenital disorders of glycosylation (CDG):
a case of late presentation and literature review. J Inherit Metab Dis. (2009)
32:S313–9. doi: 10.1007/s10545-009-1262-1

47. Knaus A, Pantel JT, Pendziwiat M, Hajjir N, Zhao M, Hsieh TC, et al.
Characterization of glycosylphosphatidylinositol biosynthesis defects by
clinical features, flow cytometry, and automated image analysis. Genome

Med. (2018) 10:3. doi: 10.1186/s13073-017-0510-5
48. Carmody LC, Blau H, Danis D, Zhang XA, Gourdine JP, Vasilevsky N,

et al. Significantly different clinical phenotypes associated with mutations
in synthesis and transamidase+remodeling glycosylphosphatidylinositol
(GPI)-anchor biosynthesis genes. Orphanet J Rare Dis. (2020) 15:40.
doi: 10.1186/s13023-020-1313-0

49. D’Souza Z, Taher FS, Lupashin VV. Golgi inCOGnito: From vesicle tethering
to human disease. Biochim Biophys Acta Gen Subj. (2020) 1864:129694.
doi: 10.1016/j.bbagen.2020.129694

50. Görlacher M, Panagiotou E, Himmelreich N, Hüllen A, Beedgen L, Dimitrov
B, et al. Fatal outcome after heart surgery in PMM2-CDG due to a rare
homozygous gene variant with double effects. Mol Genet Metab Rep. (2020)
25:100673. doi: 10.1016/j.ymgmr.2020.100673

51. Kapusta L, Zucker N, Frenckel G, Medalion B, Ben Gal T, Birk E, et al. From
discrete dilated cardiomyopathy to successful cardiac transplantation in
congenital disorders of glycosylation due to dolichol kinase deficiency (DK1-
CDG). Heart Fail Rev. (2013) 18:187–96. doi: 10.1007/s10741-012-9302-6

52. Fernlund E, AnderssonO, Ellegård R, ÅrstrandHK, GreenH, OlssonH, et al.
The congenital disorder of glycosylation in PGM1 (PGM1-CDG) can cause
severe cardiomyopathy and unexpected sudden cardiac death in childhood.
Forensic Sci Int Genet. (2019) 43:102111. doi: 10.1016/j.fsigen.2019.06.012

53. Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J,
Videira PA, et al. and immune response: From bedside to bench
and back. J Inherit Metab Dis. (2020) 43:90–124. doi: 10.1002/jimd.
12126

54. Monticelli M, Ferro T, Jaeken J, Dos Reis Ferreira V, Videira PA.
Immunological aspects of congenital disorders of glycosylation (CDG): a
review. J Inherit Metab Dis. (2016) 39:765–80. doi: 10.1007/s10545-016-
9954-9

55. Sturiale L, Bianca S, Garozzo D, Terracciano A, Agolini E, Messina A, et al.
ALG12-CDG: novel glycophenotype insights endorse the molecular defect.
Glycoconj J. (2019) 36:461–72. doi: 10.1007/s10719-019-09890-2

Frontiers in Pediatrics | www.frontiersin.org 6 September 2021 | Volume 9 | Article 715151

https://doi.org/10.1111/epi.16545
https://doi.org/10.1212/WNL.0000000000000389
https://doi.org/10.1002/jimd.12278
https://doi.org/10.1093/hmg/ddu030
https://doi.org/10.1002/jimd.12194
https://doi.org/10.1055/s-0034-1387197
https://doi.org/10.1002/jimd.12024
https://doi.org/10.1186/s13023-015-0358-y
https://doi.org/10.1093/brain/awq261
https://doi.org/10.1016/j.spen.2005.10.003
https://doi.org/10.1186/s13052-016-0289-9
https://doi.org/10.1111/jcmm.14218
https://doi.org/10.1016/j.mrrev.2018.09.002
https://doi.org/10.1016/j.gde.2011.02.001
https://doi.org/10.1007/s10545-016-0012-4
https://doi.org/10.1186/s13023-020-01630-2
https://doi.org/10.1186/s13023-020-01657-5
https://doi.org/10.1007/s10545-005-0015-z
https://doi.org/10.1056/NEJMoa1206605
https://doi.org/10.1542/peds.2013-2732
https://doi.org/10.1097/00005176-200403000-00010
https://doi.org/10.1016/j.ymgme.2018.05.002
https://doi.org/10.1186/s13023-017-0757-3
https://doi.org/10.1016/j.ajhg.2015.12.011
https://doi.org/10.1007/s004280000185
https://doi.org/10.1007/s10545-017-0066-y
https://doi.org/10.1007/s10545-009-1262-1
https://doi.org/10.1186/s13073-017-0510-5
https://doi.org/10.1186/s13023-020-1313-0
https://doi.org/10.1016/j.bbagen.2020.129694
https://doi.org/10.1016/j.ymgmr.2020.100673
https://doi.org/10.1007/s10741-012-9302-6
https://doi.org/10.1016/j.fsigen.2019.06.012
https://doi.org/10.1002/jimd.12126
https://doi.org/10.1007/s10545-016-9954-9
https://doi.org/10.1007/s10719-019-09890-2
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
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