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ABSTRACT

Substantial progress has been realized in the past
several years in our understanding of the molecular
mechanisms responsible for the expansions and
deletions (genetic instabilities) of repeating tri-,
tetra- and pentanucleotide repeating sequences
associated with a number of hereditary neurological
diseases. These instabilities occur by replication,
recombination and repair processes, probably acting
in concert, due to slippage of the DNA complement-
ary strands relative to each other. The biophysical
properties of the folded-back repeating sequence
strands play a critical role in these instabilities.
Non-B DNA structural elements (hairpins and slipped
structures, DNA unwinding elements, tetraplexes,
triplexes and sticky DNA) are described. The replica-
tion mechanisms are influenced by pausing of the
replication fork, orientation of the repeat strands,
location of the repeat sequences relative to replica-
tion origins and the flap endonuclease. Methyl-
directed mismatch repair, nucleotide excision repair,
and repair of damage caused by mutagens are dis-
cussed. Genetic recombination and double-strand
break repair advances in Escherichia coli, yeast and
mammalian models are reviewed. Furthermore, the
newly discovered capacities of certain triplet repeat
sequences to cause gross chromosomal rearrange-
ments are discussed.

INTRODUCTION

Approximately twenty hereditary neurological diseases are
linked to the expansions of triplet repeat sequences (TRSs).
Since the early 1990s, substantial progress has been made
in understanding the dynamic mutations involved in these

processes. The diseases [including myotonic dystrophy
(DM), Huntington’s disease, fragile X syndrome (FRAX),
and Friedreich’s ataxia (FRDA)] have been reviewed (1–
9) along with their inheritance patterns, chromosomal local-
izations, protein products and loci of the TRS. In some cases
(type 2 diseases), the repeat expansions are massive (thou-
sands of repeats) whereas in type 1 diseases, the TRS are in
coding regions and elicit an expansion of a polyamino acid
(usually glutamine) tract. The clinical observation of anticipa-
tion, the decrease in age of onset and increase in severity, is
observed with many but not all of these diseases. In general, a
more severe neurological syndrome is observed in patients with
longer repeat tracts. The clinical observations and human
genetic discoveries have been reviewed previously (4–8).

This review will focus on the molecular mechanisms of
the genetic instabilities. Substantial work in the past fourteen
years has demonstrated that the expansions and deletions are
mediated by DNA replication, repair and recombination, prob-
ably acting in concert [reviewed in (1–3,9)]. The slippage of
the repeating DNA complementary strands to form hairpin
loops, or slipped conformations, with differing relative stabil-
ities are important components in the mechanism. The inher-
ent conformational properties of the repeating sequences, such
as their high degree of flexibility, writhing and stability of
hairpin formation, facilitate the strand slippage. The unusual
DNA conformations affect DNA polymerase stalling, accen-
tuating the disease-causing mutagenesis. A number of other
genetic factors are likely to be involved including methyl-
directed mismatch repair (MMR), nucleotide excision repair,
single-strand DNA binding proteins, transcription and DNA
polymerase proofreading (2,3). Studies have been conducted
in bacterial cells, yeast, mammalian cell culture and transgenic
mice (3). Clearly, the majority of the molecular mechan-
isms have been established first in well-defined genetic-
biochemical systems (Escherichia coli and yeast) and then
these results extrapolated to other experimental systems.

This review focuses on the molecular mechanisms of
the expansion–deletion processes on work published within
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the past five years. Recent advances in our understanding
of the DNA structural properties of the repeat sequences
are described as related to genetic instabilities. Additionally,
investigations on instabilities mediated by replication, fol-
lowed by the involvement of DNA repair, and the influence
of double-strand breaks (DSBs) and recombination (gene
conversion) are discussed. The last section of this review
describes the involvement of non-B DNA conformations
formed by TRS in generating genomic rearrangements.

NON-B DNA STRUCTURES

The structural properties of repeating trinucleotide, tetranuc-
leotide and pentanucleotide DNA sequences, associated with
several hereditary neurological diseases, are proposed to be
major contributing factors to the genetic instabilities observed
in these diseases (1–3,10). Several DNA repeating sequences,
namely CTG�CAG, CGG�CCG, GAA�TTC, GAC�GTC,
CCTG�CAGG and ATTCT�AGAAT, have been shown
to form non-B DNA structures including hairpins,

Figure 1. Non-B DNA conformations associated with repeating sequences and mechanisms of instability.
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slipped-strand DNA, DNA unwinding elements (DUEs), tet-
raplexes, triplexes, and more recently, the novel structure,
sticky DNA (Figure 1). Almost all models involving replica-
tion, transcription, recombination and repair, hypothesize the
formation of non-B DNA secondary structures at these DNA
repeats (2,11–16). At least 10 non-B conformations (2,17) are
formed at specific motifs as a result of negative supercoil
density (15,18–20), replication and transcriptional polymerase
pausing (14,21–23). Interestingly, these secondary structures
have been shown to be targets for protein binding (24–26),
including several enzymes involved in DNA repair (27–33).

Hairpins and slipped structures

Hairpins and slipped structures occur at DNA sequences with
direct repeat (DR) symmetry (17). The cellular processes of
replication and transcription cause unwinding of the duplex
that renders the DNA single-stranded, thus giving the repeat
sequences the opportunity to fold back and form alternative
base pairs within the same DNA strand. The repeat sequences
that have been associated with neurological diseases, in par-
ticular, are prone to slipped-mispairing and hairpin formation
during replication and transcription (2,34,35). The formation
of these structures can presumably lead to expansions and
deletions of the repeating tract because of the stability of
the misaligned intermediates.

An order of hairpin stability, CGG > CTG > CAG > CCG,
was established using CD, optical melting, differential scan-
ning and calorimetry (36). The repeat sequence CTG�CAG
associated with myotonic dystrophy type 1 (DM1) has been
observed to form slipped structures and hairpins in a length
and orientation-dependent manner under physiological condi-
tions (34,37–39). The stability of hairpins in the CTG strand
was attributed to the T�T mismatch that stacked more effi-
ciently as opposed to the A�A mispair on the complementary
CAG strand. Studies using chemical modification, P1 nuclease
digestion and NMR have shown CGG�CCG repeats to form
hairpin structures; the stability of which is dependent on
the G–C content in each strand (2). More recently, the
CCTG�CAGG tetranucleotide repeats, associated with myo-
tonic dystrophy type 2 (DM2) (40), showed that the CAGG
strand had a greater propensity to form a more stable hairpin-
loop when compared to the CCTG strand.

Although the biological implications of hairpins and slipped
structure formation are not completely understood, they have
been shown to bind certain repair proteins such as MSH2 and
UvrA (24,29) and are even hypothesized to be recognized by
recombinational repair proteins in the event where structure
formation at specific loci leads to DSBs (41). In fact,
Wojciechowska et al. (41) showed a correlation between the
propensity for CTG�CAG repeats to form non-B structures,
such as hairpins, and the creation of DSBs near the sites of
structure formation, leading to gross deletions. Furthermore,
GAC�GTC repeats associated with skeletal dysplasias have
been shown to undergo small expansion and deletion events
due to slippage when transcription is inhibited and large
expansion and deletion events due to the hairpin forming pro-
pensity of the GTC strand in presence of transcription (2,42).

DNA unwinding elements

DUEs are A + T rich sequences commonly associated with
replication origins and chromosomal matrix attachment

sites (17). The pentanucleotide repeat ATTCT�AGAAT
associated with spinocerebellar ataxia 10 (SCA10) has been
reported to be a DUE (12,22,43). Recent studies found the
propensity for unwinding of this sequence allowed for access-
ibility to chemical probes within the region, as well as
oligonucleotide hybridization, which led to aberrant DNA
replication (12). The unscheduled DNA synthesis, as a result
of the DUE was proposed to be a critical factor in the instab-
ility of the sequence. Also, a DUE was found at the AAT�ATT
TRS in the surface glycoprotein gene of Trypanosoma
brucei (44).

Tetraplexes

Tetraplexes (four-stranded DNA) assemble at G-rich DNA
sequences forming a stable G-quartet. Although the ability
to form tetrads has been commonly reported for single-
stranded G-rich telomeric sequences (45), other residues were
also observed to form tetrads. For example, studies showed the
ability for base-pairing between hemi-protonated cytosines of
one C-rich duplex with cytosine residues of a second duplex,
forming a stable tetraplex structure, known as the i-motif
(46,47). For this reason, the CGG�CCG repeats, associated
with the FRAX, were suggested to form tetraplexes (either
G-quartets or i-motifs) as demonstrated by circular dichroism,
NMR and UV spectroscopy (46–50). Studies from several
laboratories in the past decade on the biological conditions
for tetraplex formation have concluded that different ionic and
pH conditions, as well as repeat lengths, influence structural
conformations within the CGG�CCG sequence (46,47,50).
The stability of the G-quartet conformation has been implic-
ated in the mediation of chromosomal degradation and
condensation at telomeres (17,51), and has been suggested to
play a role in blocking DNA replication (52,53) or inhibiting
transcription (17,54).

Triplexes

Triplex DNA conformations have been studied for many
decades. Since 1957, this structure has been observed both
in vitro and in vivo in prokaryotes and eukaryotes by several
laboratories (3,17,31,33,55,56). Long stretches of purine�
pyrimidine (R�Y) mirror repeat sequence can readily form
these three-stranded structures where the duplex DNA pairs
with a third strand by Hoogsteen pairing with the purine strand
of the duplex (17). Additional factors that influence the forma-
tion of triplexes include pH, binding of divalent metal ions
and negative supercoiling (17,57,58). The TRS GAA�TTC
has been observed to form both inter- and intramolecular
triplexes (55,56,59,60). Potaman et al. (56) recently studied
the propensity of these repeats to form an intramolecular
triplex (H-DNA) or a bi-triplex structure at very long repeats.
They proposed possible pathways to connect triplex forma-
tion with replication blockage and DNA template expansions.
Other studies have also shown R�Y sequences can act as
replication pause sites (17).

Several examples of R�Y sequences as protein binding sites
to regulate gene expression have also been studied (33,61).
Furthermore, triplex formation can affect nucleosome posi-
tioning (62–64). The structure formed by the GAA�TTC
repeating sequence has been implicated to regulate gene
expression (65–67) and genetic recombination (11).
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Sticky DNA

A novel non-B DNA structure termed sticky DNA was discov-
ered in 1999 by Sakamoto et al. (15). Sticky DNA is an intra-
molecular structure adopted by two long GAA�TTC repeating
tracts in one DNA molecule (15,68) to give a dumbbell-shaped
conformation in bacterial plasmids (Figure 1). It was first
observed during studies on the genetic instability of the
GAA�TTC repeats associated with Friedreich’s ataxia in
plasmid DNA in E.coli. Upon endonucleolytic cleavage of
the plasmid external to the repeat tract, a retarded band was
observed during insert analysis by gel electrophoresis (15).
Since the DNA band ran with mobility much higher (up to
7-fold) compared to linear DNA, it indicated the presence of a
stable alternative structure. Although the exact conformation
of sticky DNA has yet to be elucidated, there are specific
requirements for its formation, including the presence of two
GAA�TTC tracts within the same molecule in a DR orienta-
tion, neutral pH, negative supercoiling and the presence of
Mg2+ ions (15,68). Some of these conditions are similar to
those required for an R�R�Y triplex, which may be indicative
of the actual conformation. However, sticky DNA can only be
formed by an intramolecular reaction and cannot be disasso-
ciated easily, even by heating to 80�C for 60 min (69). In situ
nitrogen mustard crosslinking and electron microscopy of
the digested plasmid, confirmed a stable interaction between
the two tracts (15,18). Furthermore, sticky DNA has not been
observed with GAA�TTC lengths <60 repeats. Long tracts
of the GAA�TTC sequence have been shown to inhibit
replication and transcription in E.coli, yeast and eukaryotic
cells suggesting that sticky DNA may be a regulator of gene
expression and DNA metabolism (21,67). Napierala et al. (11)
observed a decrease in homologous recombination (HR) with
increasing lengths of GAA�TTC. This decrease in frequency
was attributed to sticky DNA formation in vivo. When novo-
biocin was used to decrease the negative supercoil density of
plasmid DNA, which inhibits structure formation, the expec-
ted positive correlation between repeat tract length and
recombination was restored.

Whereas conclusive proof of the role of sticky DNA in the
etiology of FRDA remains to be demonstrated, substantial
studies (11,15,18,21,67–72) are consistent with this concept.

REPLICATION

Replication slippage is generally considered to be a major
factor influencing the genetic instabilities of the various
TRS including CTG�CAG, GAA�TTC, CGG�CCG and
GAC�GTC, which are implicated in several hereditary neuro-
logical diseases (1,3,38,42,73–78). More recently, replication
was shown to influence the genetic instabilities of the
CCTG�CAGG tetranucleotide repeats associated with DM2
(14). Although other factors such as repair and recombination
(discussed below) also play an important role in these instabil-
ities, replication is believed to be the first step in involving
these other cellular processes.

Replication pausing

Numerous studies have shown the propensity of repeating
sequences to fold back and form several non-B DNA

structures including hairpins, triplexes, tetraplexes and sticky
DNA (discussed above). It is believed that these secondary
structures cause significant impediments for replication fork
progression that leads to pausing of the DNA polymerase,
finally causing replication fork collapse and involvement of
the repair and recombination machinery to help restart rep-
lication. Both in vitro as well as in vivo studies have shown a
variety of human, bacterial and phage replication polymerases
to pause within the repeats in a length- and sequence-
dependent manner (21,23,53,75,79–81). Recent 2D gel elec-
trophoresis studies of replication intermediates from an in vivo
yeast system showed a length- and sequence-dependent rep-
lication attenuation within the CTG�CAG, CGG�CCG and
GAA�TTC repeats (21,82). The repeat expansions were pro-
posed to occur when the replication fork attempts to escape
from the pause site.

Orientation of repeat sequences

Studies on TRS show an orientation bias (relative to the rep-
lication origin) where repeats in one orientation are more
stable than in the other. This orientation dependence is attrib-
uted to the ability of the repeat containing strand to form
folded-back slipped structures. When the more stable structure
is formed on the newly synthesized Okazaki fragment, expan-
sions are generated. Alternatively, deletions are favored when
the structure-prone strand is the template for replication
(1,3,38,49,73,74,76,77,83,84). This is the case for all the TRS
as well as the CCTG�CAGG tetranucleotide repeats (14).
However, as shown in Figure 2 the essential difference
between the DM1 CTG�CAG sequence and the DM2
CCTG�CAGG tetranucleotide repeats is that the CAGG strand
forms a more stable hairpin-loop structure as compared its
complementary CCTG strand (14). Alternatively, in the case
of the triplet repeats, the CTG strand forms a more stable
structure (36,38,39,85–88). This leads to a reversed behavior
of the CCTG�CAGG sequence with respect to the orientation,
where orientation I (CCTG on the leading strand template) is
prone to delete and orientation II (CAGG on the leading strand
template) expands (Figure 2). More interestingly, in contrast to
the TRS where the orientation that yields deletions is con-
sidered to be unstable (deletions are the predominant products
in most studies), the CCTG�CAGG repeats are unstable in
the orientation prone to expand (14). Thus, the tetranucleotide
repeats are different from the TRSs since they are better able
to mimic the human instability behavior in the prokaryotic
(E.coli) and eukaryotic (COS-7) model systems (14).

Location of repeat sequences

In addition to the direction of replication, studies have also
shown that the distance of the repeats from the origin of rep-
lication plays an important role in the amount of instability
observed (14,38,74,77,89,90). The repeats cloned proximal
to the replication origin are more prone to genetic instabilities
as compared to the same repeats cloned distal to the origin. For
the CCTG�CAGG repeats, we proposed that the initiation
event occurring at the replication origin would render the
repeats single-stranded for a sufficient period of time to give
them the opportunity to form folded-back structures and thus
lead to instability (14). Also, a model was suggested that the
ability of the repeats to form non-B DNA structures would
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differ, depending on the location of the priming of the Okazaki
fragment within the repeats, and this in turn would determine
the amount and type of instability (77).

Flap endonuclease

Most models propose that the repeating tracts have a greater
opportunity to form non-B DNA structures on the newly syn-
thesized lagging strand, due to its single-stranded nature, than
for the leading strand. Thus, Okazaki fragment maturation
has been implicated in the expansions and contractions of
these repeat sequences. One of the factors that has the most
pronounced effect on genetic instability is the human flap
endonuclease 1 (FEN-1) and Rad27 in yeast. FEN-1/Rad27
is involved in processing the 50 ends of the Okazaki fragments
(91–95). Previous studies have shown that mutations in FEN-1/
Rad27 lead to destabilization of the repeating tracts resulting
in expansions (76,96–101). This instability is attributed to the
ability of the TRS to form folded structures in the 50 flap of the
Okazaki fragment, thus preventing processing of the flap and
annealing of these flaps with the adjacent Okazaki fragments
leading to expansions. Furthermore, the Rad27 mutants were
shown recently to influence both the stability as well as the

fragility of the CTG�CAG repeat tracts in a yeast system
(102). It has been proposed that the inability of the Rad27
mutant cells to process the flaps of the Okazaki fragments
causes breakage at the repeat sites, and their repair leads to
genetic instability. Moreover, the same group has proposed
a flap equilibration and endonuclease tracking model that
attributes the stability of the repeats not to the cleavage activity
of the endonuclease per se, but to the ability of the endo-
nuclease to capture a cleavable flap among the equilibrating
intermediates (103).

An in vitro study showed that the presence of the hFEN-1
was able to suppress repeat expansions of the GAA�TTC
tracts during replication (104). However, if the hFEN-1 was
added at a later stage during replication, it was unable to
suppress these expansions. Most of the previously mentioned
studies have been conducted in yeast, and not all of the fea-
tures observed in yeast models are able to explain the expan-
sions in human diseases. It has been shown that complete loss
of FEN-1 in mammals is embryonically lethal (105). Trans-
genic mice were created that are either heterozygous or homo-
zygous for FEN-1 and carry the Huntington disease causing
repeat sequence CAG�CTG (106). The heterozygous mice
showed an intergenerational expansion of the repeats when

Figure 2. Replication fork models to explain the orientation-dependent instability of the CTG�CAG and CCTG�CAGG repeats. (A) In the case of the CTG�CAG
repeats, orientation I shows expansions due to the ability of the CTG strand to form a more stable hairpin-loop structure on the newly synthesized lagging strand,
whereas the presence of the same structure on the lagging strand template in orientation II leads to deletions. (B) The CCTG�CAGG repeats exhibit a reversed
behavior where orientation II gives expansions and orientation I leads to deletions. Although the orientation effect is reversed here, the principle, of one of the two
strands forming a more stable fold-back structure, still remains the same.
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compared to the homozygous wild-type mice. Moreover,
human cells that were deficient in FEN-1 also gave rise to
instability further strengthening the protective role of FEN-1
in repeat tract expansions.

Polymerase switching in both prokaryotes and eukaryotes is
believed to contribute to the genetic instabilities of the repeats
associated with neurological diseases (14,23,107,108). More-
over, studies with mutants of other replication proteins such as
Dna2, RNase HI and DNA ligase that are thought to work
cooperatively with FEN-1/Rad27 had only a modest effect on
repeat stability (102). Recently, the Srs2 DNA helicase was
identified in a genetic screen for inhibitors of expansions in
Saccharomyces cerevisiae and shown to block triplet repeat
expansion through its helicase activity in conjunction with
polymerase delta (109). The Bloom protein (BLM) was
recently identified as interacting with FEN-1 and suppressed
genomic instability by aiding FEN-1 cleavage of structure-
containing flaps (110).

DNA REPAIR

The molecular pathways involved in DNA repair exist to
protect the genomic integrity of the DNA sequence by pre-
venting the permanent incorporation or loss of nucleotides
within the genome, which would potentially create a deleteri-
ous mutation for the organism. These normally protective
pathways have been hypothesized to be involved in the genetic
instabilities of several microsatellites including trinucleotide
repeats. Studies have shown that several types of cancers
display microsatellite instabilities attributed to the loss of the
DNA repair machinery, a result which is consistent with a
possible role for DNA repair during the expansion of trinuc-
leotide repeats associated with hereditary neurological dis-
eases (111). The secondary structural properties of TRS (see
above) are probably substrates to be recognized by these repair
proteins. Herein, we discuss the ongoing research to determine
the potential role of these repair pathways as sources for
trinucleotide repeat instability.

Mismatch repair

Illegitimate incorporation of nucleotides during DNA replica-
tion resulting in a mismatch within the DNA sequence is a
dangerous consequence of DNA polymerase infidelity. The
MMR pathway is the main source for correcting these errors
(112). Since several of the secondary structures formed by
TRS result in the mismatching of bases within the structure
or in the flanking regions, the MMR pathway is likely to
recognize and act on these mismatches.

Jaworski et al. (30) first proposed MMR as a potential source
of instability; plasmids harboring expanded CTG�CAG
repeats in E.coli were more stable when grown in methyl-
directed MMR-deficient strains than in the parental back-
ground. The authors hypothesized that the MMR proteins
recognize three-base loops formed during replication. Repair
of the loops generated gaps in the DNA, which were bypassed
by DNA polymerase during resynthesis of the DNA. This
process results in deletion of part of the triplet repeat sequence.
Experiments with human MSH2 confirmed the preferential
binding of MMR proteins to looped-out secondary structures
formed by CTG�CAG repeats (29). The role of MMR was later

refined by experiments which showed that active mismatch
repair stabilized small instabilities (>8 repeats), but increased
the occurrence of large deletions (35,107,113,114). However,
experiments with human cell lines showed no increase in
instability, at the DM1 and FRAXA loci, in two cell lines
with mutations in different MMR proteins, MLH1 and
MSH2 (115).

Studies in mouse model systems have shown mixed effects
of mismatch repair on instability. Intergenerational instability
of (CTG�CAG)84 in the human DM1 context was not sti-
mulated in a MSH3- or MSH6-deficient background (116).
However, somatic tissues showed a substantial increase in
instability in the MSH6-deficient background. Interestingly,
the somatic instability normally observed with this sequence
was completely blocked in the MSH3-deficient background.
This differential effect was hypothesized to be due to the
competitive binding of MSH3 and MSH6 to MSH2 to form
a functional complex. Somatic instability and germline expan-
sions were found to be dependent upon MSH2 in Huntington
disease transgenic mice (117–119). In experiments with DM1
transgenic mice with >300 repeats, a strong dependence was
found on MSH2 for contractions during germline transmission
and in spermatogonia (120,121). Most recently, a MutL homo-
logue, Pms2, was determined to increase the somatic mosa-
icism of CTG�CAG repeats (122). These results support the
hypothesis that mismatch repair is a key player in genetic
instabilities, possibly through MSH2 or other downstream
proteins, but its precise role that results in the expansions
observed in the human diseases is still unclear.

Nucleotide excision repair (NER)

Nucleotide excision repair recognizes helical distortions in
DNA generally created by bulky adducts such as pyrimidine
dimers (123). The ability to recognize helical distortions also
results in the recognition and removal of DNA loops often
associated with the secondary structures formed by trinuc-
leotide repeats (see above). Mistakes that result during the
repair of the DNA gap naturally generated through the repair
process have been hypothesized to be a potential source of
expansions in human diseases.

Experiments in E.coli revealed that mutations in UvrA
dramatically increased the instability of the (CTG�CAG)175

repeats harbored on the plasmid (124). Transcription through
the repeat region stimulated deletions which were further
enhanced by mutations in uvrA. The authors hypothesized
that UvrA binds to secondary structures possibly formed on
the single-stranded DNA generated during transcription, sub-
sequently preventing replication bypass of the structure, which
would have resulted in a deletion. In contrast to the above
observations, experiments using a genetic selection system for
deletions showed a decrease in deletion rates in UvrA-deficient
strains (24). Additionally, the authors found that the UvrA
protein preferentially bound to repeat loops of 1, 2 or 17
CAG repeats. This suggested that UvrA may stimulate NER
repair of structures formed by trinucleotide repeats resulting
in genomic instability. Experiments in yeast have shown that
deletion of Rad1, which is partially involved in NER, does not
stimulate the instability of CTG�CAG repeats (76). Hence,
further work will be required to clarify the influence of NER
on trinucleotide repeat instability.
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Repair of damage caused by mutagens

The repair of DNA damage caused by chemical, radiation and
environmental mutagens and their influence on the genetic
instability of trinucleotide repeats has recently been explored.
Due to the propensity for trinucleotide repeats to adopt
secondary structures, certain non-paired nucleotides may be
highly susceptible to damage-inducing agents (125–127).
These nucleotide-adducts may stimulate a series of molecular
pathways that increase instability. Additionally, this suscept-
ibility to damage-inducing agents could be used as a potential
basis for developing therapeutic strategies to reduce the size of
the trinucleotide repeats within the affected gene, thus allevi-
ating the deleterious effects of the expanded repeat on normal
gene function.

The first experiments on this concept were conducted to
ascertain if abasic sites, an intermediate during base excision
repair, could induce expansions during DNA replication (128).
The authors found that a single abasic site located at the
50 end of the template strand induced dramatic trinucleotide
repeat expansions in their in vitro primer extension assay.
This instability was reduced when the site was relocated within
the repeat region and was completely absent when in the
primer region. These experiments implied that DNA damage
can play a role in generating expansion. This hypothesis was
later confirmed by Pineiro et al. (129) who found that the
influence of mutagenic stress caused by exposure to mitomy-
cin C increased expansions in a lymphoblastoid cell line at the
DM1 locus. However, experiments conducted by Hashem et al.
(130) found that mitomycin C, ethylmethanesulfonate (EMS),
mitoxantrone and doxorubicin induced deletions of the
CTG�CAG repeats at the DM1 locus.

Induction of deletions following treatment with DNA
damaging agents has been shown by several laboratories.
Along with the experiments conducted by Hashem et al.
(130), transgenic mouse spermatocytes treated with cyclo-
phosphomide or spermatocytes and stem cells treated with
radiation, all induced deletions in the expanded DM1 locus
(131). Additionally, spontaneous contractions were increased
following treatment with aphidicolin, hydroxyurea and gamma
radiation (132), observed using a selectable system for mon-
itoring CTG�CAG repeats in mammalian cells. Chemically
induced deletions were found using cytosine arabinoside, eth-
idium bromide, 5-azacytidine and aspirin in transgenic mice
kidney cell lines (133). Surprisingly, caffeine was found to
increase expansion rates by �60% in the same experiments.
The mechanism for the reduction of the size of the expanded
trinucleotide repeats is not entirely understood. However,
these experiments represent initial attempts to delete expanded
repeats as potential therapeutic strategies for the future.

GENETIC RECOMBINATION AND
DOUBLE-STRAND BREAK REPAIR

Double-strand breaks are very potent instigators of genetic
recombination (134). Proteins involved in the repair of the
DSBs also participate in the recombination processes. It has
been demonstrated, in different model systems, that TRS such
as CTG�CAG and CGG�CCG efficiently induce DNA strand
discontinuities that are repaired by the recombination
machinery [reviewed in (27,78,135,136)]. Therefore, the role

of DSB repair and recombination pathways in generating
repeat instabilities will be reviewed together.

Replication slippage was the dominant model in the 1990s
to explain microsatellite instability, since recombination (as
defined by the reciprocal crossing-over exchange) was not
revealed by studies of human cases (1). However, three
important facts argue against reciprocal exchange as a mech-
anism of TRS instability in patients; first, the lack of evidence
supporting the exchange of the flanking sequences, second,
no corresponding length changes of the second allele during
the expansion/deletion event occurring at the other allele, and
third, a simple reciprocal exchange cannot explain extremely
large expansions observed in some of the diseases. On the
other hand, data from the patients pointed towards gene
conversion (a non-reciprocal event) in the instability of
CGG�CCG repeats in the FRAX and CTG�CAG tracts in
the DM1 cases [reviewed in (135,136)]. Thus, gene conversion
could be in principle, the recombination pathway involved
in CTG�CAG, CGG�CCG repeat instabilities (Figure 3A).
It should be pointed out that the small expansions in the
polyalanine tracts (often encoded by different GCN triplets),
recently shown to cause at least nine human diseases, are
likely to arise from unequal crossing-over as the predominant
mechanism (137–139). Since polyalanine tracts are usually
encoded by imperfect trinucleotide repeats (i.e. by variants
of the alanine codons), a simple replication slippage model
cannot explain their instability (137–139).

Recombination studies in E.coli

In model systems from bacteria to mammalian cells, recomb-
ination, including both gene conversion and crossing-over
events, has been shown to be involved in TRS instability.
Additionally, repetitive sequences also promoted HR in both
prokaryotic and the eukaryotic systems presumably by virtue
of forming unusual, non-B DNA structures. Different di-,
tetra- and pentanucleotide repetitive sequences have previ-
ously been shown to stimulate recombination (140–144).
The results of intermolecular and intramolecular studies in
E.coli revealed that the frequency of crossing-over between
long DM1 CTG�CAG repeats was significantly elevated when
compared to the non-repeating controls (145,146). Stimulation
of recombination was also observed for GAA�TTC repeats
from the Friedreich’s ataxia gene (11), however, the intra-
molecular process between long repeats was significantly
hampered by formation of sticky DNA (see above). In the
case of the CTG�CAG repeats, the recombination frequency
was dependent on the orientation of the repeat tract relative to
the unidirectional origin of replication. When the CTG repeats
were present on the lagging strand template, the frequency
of recombination was substantially higher in both inter- and
intramolecular assays. The CTG�CAG tracts (as well as
CGG�CCG and GAA�TTC) are known to arrest replication
fork progression in vitro and in vivo (13,21,75,147), due to
their capabilities to adopt non-B DNA conformations. In the
case of CTG�CAG repeats, this occurs predominantly when
the CTG strand is located on the lagging strand template for
replication (75). In the model proposed to explain the orienta-
tion effect on recombination, stalling of the replication fork at
the secondary structures led to the formation of nicks and/or
DSB in the repeating tracts which stimulated their mutagenic
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repair via recombination (145,146). These studies also demon-
strated a high level of TRS instability resulting from the
recombination process in E.coli. A pronounced influence of
DSB repair on TRS instability was also detected in the experi-
ments, with transformation of break-containing plasmids into
E.coli (148). Repair of the DSB located in the CTG�CAG and
CGG�CCG repeats resulted in dramatic increase of TRS dele-
tions. Recently, Hashem et al. (28) showed using a genetic
system in bacteria that mutations in recA and recB, which
decrease the rate of recombination, had a stabilizing effect
on CTG�CAG repeats lowering the high rates of deletion
seen in recombination proficient cells. Thus, the recombina-
tion proficiency also correlated with the high rates of genetic
instability in the triplet repeats.

TRS instability during mitotic and meiotic
recombination in yeast

Eukaryotic model systems, especially yeast, have been proven
to be an excellent tool for the analysis of the involvement
of recombination in the TRS instability, since mitotic and
meiotic events can be analyzed separately in different genetic
backgrounds (27,78,149). Independent analyses of the mitotic
and meiotic processes may be crucial in order to understand

the timing of the events leading to the TRS expansion in
humans.

Recently, several studies in yeast have been aimed towards
understanding the role of DSB repair and recombination in
the instability of TRS tracts, primarily CTG�CAG repeats
[reviewed in (27,78,135)]. Initial results obtained with relat-
ively short TRS did not reveal a significant role of recomb-
ination in generating TRS instabilities (78). It has been
speculated that short CTG�CAG tracts may not be very effi-
cient in generating DSB in yeast or that the breaks induced
in the shorter repeats are repaired by pathways other than HR
(78,150). In addition, experiments with RAD52 mutants
suggested that TRS instability is due to defects in replication
rather than in recombination (78). However, elegant experi-
ments with long CTG�CAG tracts (up to 250 repeats) defin-
itively implicated DSBs and recombination as important
mechanisms of the repeat instability (76). Freudenreich et al.
(76) showed using both pulsed field electrophoresis of the
yeast chromosomes and genetic assays that long CTG�CAG
tracts (130–250 repeats) induce DSB in a length-dependent
manner, and that these sequences have a high propensity
for expansions during yeast transformation when the
recombination event is initiated next to the repeat tract. The
expansions of the CTG�CAG sequences in yeast were even

Figure 3. Inter-allelic and intra-allelic pathways in DSB repair leading to repeat instabilities. (A) Gene conversion without exchange of the flanking sequences.
(B) Synthesis-dependent strand annealing (SDSA). (C) Non-homologous end joining (NHEJ). (D) Single-strand annealing (SSA). Only pathways which do not
involve or do not alter the sequence of the second allele are presented. Note that strong likelihood exists for the repeats to form stable secondary structures
(e.g. hairpins) at any stage during the processes of DNA synthesis and annealing of the single-stranded DNA ends. Thus, non-B DNA structures formed by tandem
repeats, besides being an important cause of the DSB formation, are also a direct source of the repeat instabilities. Thicker red, grey and blue lines: repeat regions.
The blue line designates the newly synthesized DNA tracts.
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more pronounced during meiosis when compared to the
mitotic division (151–154). Jankowski et al. (153) attributed
these instabilities to DSB-induced recombination. Sequences
as short as (CTG�CAG)64 induced the spo11 dependent DSB
formation during meiosis (154). Their repair resulted in dele-
tions as well as in expansions of the CTG�CAG tract.

DSB were also artificially induced in yeast in vivo by use of
the homing endonuclease (HO) (155). In a study with short
CTG�CAG tracts, almost 20% of DSB-induced gene con-
version events led to TRS deletions (almost exclusively in
the recipient locus) (156). When longer repeats were used
[(CTG�CAG)98], gene conversion resulted in frequent expan-
sions (�30% of events) (157). In the absence of the HO
endonuclease, only contractions were observed. Interestingly,
no expansions were detected when CTG�CAG repeats were
replaced with the (CAA�TTG)87 tract, substantiating the role
of non-B DNA structures in the instability processes since
neither CAA nor TTG repeat tracts have been shown to
form stable hairpin structures (85).

Recently, Richard et al. (149) proposed a unifying model
for CTG�CAG instabilities observed during both mitotic and
meiotic gene conversion in yeast. This model is based on the
synthesis-dependent strand annealing (SDSA) pathway (158),
modified for the specificity of the repetitive sequences.
Four crucial considerations are accommodated into this
model: (i) the initial formation of the DSB in one of the
TRS tracts; (ii) the importance of the unusual DNA structures
in generation of the repeat instability; (iii) the absence of
evidence for crossing-over exchange; and (iv) no change in
the sequence of the donor/template DNA. The initial event
of the SDSA pathway is an invasion of one or both DNA
strands of the processed DSB ends into the DNA template
followed by DNA synthesis and dissociation of the newly
synthesized strands from the template (Figure 3B). Out-of-
register re-annealing of the unwound DNA strands together
with hairpin structure formation on either of the strands results
in the expansions or deletions of the TRS tract. Hence, the role
of the unusual DNA structures in the recombinational instab-
ility of TRS tracts is not only limited to the initiation of the
recombination event (via DSB induction), but it is also import-
ant at each of the subsequent synthesis and annealing steps,
where slipped structures can be formed.

TRS recombination and DSB repair
in mammalian models

The involvement of recombination and DSB repair in TRS
instability has not been extensively studied in mammalian
cells. Results of recent experiments in CHO cells demon-
strated the influence of long CTG�CAG repeats (98 and 183
repeats) but not (CTG�CAG)17 on the recombination between
two copies of the APRT gene (159). Meservy et al. (159)
examined the changes in the CTG�CAG repeats initiated by
HR between nearby APRT sequences. Long repeats underwent
frequent large deletions (10-fold increase due to recombina-
tion). The frequency of the recombination-associated rearran-
gements extending outside of the CTG�CAG region was
also increased over 50-fold. The presence of the CTG�CAG
repeats also had a reciprocal effect on the types of the
recombination events observed. In the cell lines harboring
(CTG�CAG)183 repeats, the rate of the gene conversion events

between the APRT loci was 3- to 4-fold lower and, in contrast,
the rate of crossing-over was 2- to 3-fold higher when com-
pared to the control cell lines lacking the repeats (159).

HR is a primary pathway of DSB repair in bacteria and
lower eukaryota including yeast (160). In mammalian cells,
non-homologous end joining (NHEJ) is the primary means of
DSB repair (134,161). The influence of the mammalian DSB
repair on the stability of CTG�CAG tracts was studied in
COS1 cells (162). The DNA breaks were artificially intro-
duced into the repeat region prior to transfection. The vast
majority of the DSB repair events resulted in deletion of the
TRS tracts, perhaps due to the structure formation at the
repeat-containing DNA ends (Figure 3C). It would be inter-
esting to analyze the TRS instability after in vivo induction of
the DSB in mammalian cells, since different pathways are
known to participate in the repair of the breaks generated
in vitro compared to those induced in vivo (163).

Mouse genetic experiments support the involvement
of DSB repair in CTG�CAG repeats instability. Savouret
et al. (120) tested the influence of several genetic products
in both HR and NHEJ (Rad52, Rad54 and DNA-PKcs) on
intergenerational and somatic instability of CTG�CAG repeats
in transgenic mice. No change in the repeat stability was
observed in Rad54 and DNA-PKcs knockouts eliminating
DSBR–HR as a likely mechanism of TRS expansions in
their system. However, lack of Rad52 led to a significant
decrease in the size of the expansions during intergenerational
transmission. This implicated the contribution of the single-
strand annealing (SSA, Figure 3D) pathway in the CTG�CAG
repeats instability in mice.

In summary, substantial evidence has accumulated to
support the following general model of DSB/recombination-
mediated TRS instability. Structures formed by TRS related
to the human neurological diseases are capable of blocking
DNA replication. They can also be recognized and subjected
to repair by endonuclease excision. These processes (arrest of
the replication fork progression as well as nucleolytic repair of
the ‘structural lesion’) may induce DNA strand discontinuities
(nicks/breaks), which are very efficient substrates for recom-
binational repair. The repair of the DSB by the intra-allelic as
well the inter-allelic (or ectopic) processes can lead to sub-
stantial TRS instability. It will be interesting to learn in the
future how these processes are conducted in humans.

NON-B DNA CONFORMATIONS, REPEAT
SEQUENCE MOTIFS AND GROSS
REARRANGEMENTS

This laboratory has recently discovered that certain types
of microsatellite sequences invoke gross deletions of the
microsatellite sequences as well as flanking regions. These
results document a new type of mutation caused by TRS.
Bacolla et al. (164) discovered that a long (2.5 kb) and highly
asymmetric (95% C + T in one strand) segment which adopts
unusual DNA conformations is recognized by NER. Next, we
broadened our attention to gross rearrangements which are
involved in human diseases. Genomic rearrangements are a
frequent source of instability, but the mechanisms involved
are poorly understood. The 2.5 kb poly R�Y sequence men-
tioned above induced long deletions and other instabilities
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in plasmids that were mediated by mismatch repair and, in
some cases, transcription (165). The breakpoints occurred at
predicted non-B DNA structures. Computer searches of the
locations of these features indicated a significant proximity of
alternating purine–pyrimidine and oligo (purine�pyrimidine)
tracts to breakpoint junctions in 222 gross deletions and trans-
locations, involved in human diseases. In 11 deletions ana-
lyzed, breakpoints were explicable by non-B DNA structure
formation. We concluded that alternative DNA conformations
trigger genomic rearrangements through recombination-repair
activities. Hence, the genomic rearrangements were appar-
ently caused by the presence of the non-B DNA structures.
Therefore, the sequences per se in the right-handed B structure
are not mutagenic; however, in the triplex, slipped structure,
tetraplex or cruciform conformations, they are mutagenic.

A representative pair of non-B DNA conformations that
mediate a large deletion are shown in Figure 4. Note that
the left DNA tract can be folded into a slipped structure
whereas the right tract is accommodated in a cruciform
conformation. The CC�GG region of homology is shown at
position 138 and 920, respectively. Also, the deleted segment
occurs precisely at the contorted regions (loops) of the
slipped structure and cruciform (41). These discoveries on
non-B DNA conformations, chromosomal rearrangements,
triplet repeat and other inherited diseases, and related phe-
nomena for class switch recombination have been recently
reviewed (127).

Other types of repeating DNA sequences which form non-B
conformations are also effective in generating these types
of mutations (41). The capacity of the long DM CTG�CAG
and the Friedreich’s ataxia GAA�TTC repeat tracts in plas-
mids to induce mutations in DNA flanking regions was evalu-
ated in E.coli (41). Long (CTG�CAG)n (where n = 98 and 175)
caused the deletion of most, or all, of the repeats and the
flanking GFP gene. Deletions of 0.6–1.8 kb were found as
well as inversions. Shorter repeat tracts (where n = 0 or 17)

were essentially inert, as observed for the (GAA�TTC)176-
containing plasmid. Under certain conditions, 30–50% of
the products contained gross deletions. DNA sequence ana-
lyses of the breakpoint junctions of 47 deletions revealed the
presence of 1–8 bp direct or inverted homologies in all cases.
In addition, the presence of non-B DNA folded conformations
(Figure 4) (i.e. slipped structures, cruciforms or triplexes) at or
near the breakpoints was predicted for all rearrangements.

This genetic behavior, which was previously unrecognized
for a TRS [reviewed in (127)], may provide the basis for a new
type of instability of the myotonic dystrophy protein kinase
(DMPK) gene in patients with a full mutation (41). Also, our
discovery (159) that long CTG�CAG tracts from DM1 induce
deletions and rearrangements during recombination at the
APRT locus in CHO cells supports this concept.

These results are particularly exciting since they reveal
a novel mechanism of mutagenesis elicited by certain TRS
as well as demonstrate critical biological and/or medical
functions for non-B DNA conformations. The latter has
been an elusive goal for numerous laboratories for many
years (1–3,17,26,39,52,57,61,111,127,160,162,166).

CONCLUDING REMARKS

Studies over the past fifteen years have provided remarkable
advances in our knowledge of the molecular mechanisms
involved in the genetic instabilities of repeating tri-, tetra-
and pentanucleotide sequences involved in the etiology of
hereditary neurological diseases. Whereas a number of factors
including transcription, DNA repair, ligases, unwinding
proteins and other factors, participate in the replication and
recombination-mediated events, little is known about the tem-
poral and spatial interrelationships of these factors. Also, we
obviously want to understand these processes during different
developmental phases in humans in order to comprehend the

Figure 4. A representative pair of non-B DNA conformations that mediate a large deletion by recombination repair [see Figure 3 in (41)].
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disease progressions. For the most part, these studies remain to
be carried out in the future. The knowledge generated by the
composite investigations will provide a basis for considering
therapeutic strategies for ameliorating the devastating con-
sequences of the diseases for the patients and their families.

The role of non-B DNA conformations in genetic instabil-
ities has been an integral part of this field since its inception in
the 1990s. Virtually, all workers have agreed that the capacity
of the simple repeating sequences to adopt slipped struct-
ures, triplexes and other unusual conformations is an important
component in mechanisms involved in expansions and dele-
tions. Our inability to investigate these unusual conformations
in living eukaryotic cells has been a substantial impediment
for progress in this field. However, a major advance has been
realized with the discovery that non-B DNA conformations
serve as breakpoints for gross rearrangements (deletions,
insertions, inversions and duplications) associated with a range
of genetic diseases [reviewed in (127)]. Also, these studies
(165) reveal a biological function for non-B DNA structures.

Due to the intrinsically interesting biological concepts
involved and the medical implications of this field, a number
of extremely talented and dedicated investigators have been
attracted to generate important results. Thus, we have every
reason to be optimistic that significant advances will be real-
ized in the future.
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