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Abstract

Background: Mounting evidence has indicated that high-mobility group box 1 (HMGB1) is involved in cell activation
and migration. Our previous study demonstrated that methamphetamine mediates activation of astrocytes via sigma-1
receptor (0-1R). However, the elements downstream of o-1R in this process remain poorly understood. Thus, we
examined the molecular mechanisms involved in astrocyte activation and migration induced by methamphetamine.

Methods: The expression of HMGB1, o-1R, and glial fibrillary acidic protein (GFAP) was examined by western blot and
immunofluorescent staining. The phosphorylation of cell signaling pathways was detected by western blot, and cell
migration was examined using a wound-healing assay in rat C6 astroglia-like cells transfected with lentivirus containing
red fluorescent protein (LV-RFP) as well as in primary human astrocytes. The role of HMGB1 in astrocyte activation and
migration was validated using a siRNA approach.

Results: Exposure of C6 cells to methamphetamine increased the expression of HMGB1 via the activation of o-1R, Src,
ERK mitogen-activated protein kinase, and downstream NF-kB p65 pathways. Moreover, methamphetamine treatment
resulted in increased cell activation and migration in C6 cells and primary human astrocytes. Knockdown of HMGBI1 in

human astrocytes.

by methamphetamine.

astrocytes transfected with HMGB1 siRNA attenuated the increased cell activation and migration induced by
methamphetamine, thereby implicating the role of HMGBT1 in the activation and migration of C6é cells and primary

Conclusions: This study demonstrated that methamphetamine-mediated activation and migration of astrocytes
involved HMGB1 up-regulation through an autocrine mechanism. Targeting HMGB1 could provide insights into the
development of a potential therapeutic approach for alleviation of cell activation and migration of astrocytes induced
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Background

Despite the advances in intensive care and the development
of pharmacological agents that inhibit methamphetamine-
induced neurotoxicity, FDA-approved pharmacotherapies
for treatment of negative effects of methamphetamine are
still lacking. As an addictive pharmacological psychostimu-
lant, methamphetamine is one of the most commonly
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abused agents by illicit drug users [1, 2]. In addition to its
immediate stimulant effects, such as euphoria and en-
hanced energy, methamphetamine use also manifests
clinical psychiatric symptoms characterized by cognitive
deficits, depression, anxiety, psychotic symptoms, and
motor deficits because of its neurotoxic effect [2]. Accu-
mulated evidence suggests that there is a close relationship
between methamphetamine-induced neurotoxicity and ac-
tivated astrocytes. Previous studies from our group and
others have indicated that astrocyte activation is involved in
methamphetamine-mediated neurotoxicity [3, 4].
Astrocytes are the most abundant cell type within the
central nervous system (CNS) and may play diverse roles
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in regulating and maintaining CNS homeostasis [5, 6].
In addition to their normal physiological functions, astro-
cytes can be pathologically activated, and they are charac-
terized by abnormal morphology with reactive astrogliosis
[7-11]. One of the major cellular manifestations of astro-
cyte inflammatory responses is reactive astrogliosis, in
which astrocytes undergo rapid proliferation and enhanced
migration toward the site of inflammation and attempt to
mitigate collateral damage by isolating the damaged area [8,
12, 13]. Previous studies have demonstrated the presence of
astrocyte activation in the striatum of methamphetamine-
treated mice and rats in vivo [4, 14] as well as in in vitro
systems [15, 16]. Methamphetamine is known to exhibit
moderate affinity for sigma-1 receptor (o-1R), which is
expressed in most neuronal cells [17]. o-1R is a unique
drug-binding protein that is present in the CNS and in the
periphery [18]. Our previous study demonstrated that
methamphetamine-mediated activation of astrocytes in-
volves the up-regulation of o-1R through a positive feed-
back mechanism. However, the mechanisms underlying the
downstream pathways remain poorly understood.

High-mobility group box 1 (HMGB1) is a non-histone
DNA-binding protein that regulates gene expression and
nucleosome stabilization [19]. HMGBI is also a cytokine
that can activate monocytes and neutrophils involved in
inflammation. Currently, HMGB1 is thought to be a
cytokine-like molecule when it is released from activated
macrophages, dendritic cells, and natural killer cells
[20, 21]. A previous study has reported that HMGB1
promotes the proliferation and migration of glioma
cells [22]. In the CNS, HMGBI serves as a danger signal
that evokes inflammatory reactions by activation of various
immune-related cells, including microglia [23]. Moreover,
HMGBI1 secreted from astrocytes promotes endothelial
progenitor cell-mediated neurovascular remodeling and en-
hances the accumulation of endothelial progenitor cells
during stroke recovery [24, 25]. Hayakawa et al. also re-
ported that reactive astrocytes promote adhesive inter-
actions between the brain endothelium and endothelial
progenitor cells via HMGBI and -2 integrin signaling
[26]. Despite extensive studies, it is unclear whether
HMGBL plays a critical role in methamphetamine-induced
neurotoxicity. Based on these findings, we hypothesized
that methamphetamine activates astrocytes through an
autocrine mechanism(s) by up-regulating the expression of
HMGBI.

Thus, the present study sought to determine whether
HMGBI1 is involved in the astrocyte activation and mi-
gration induced by methamphetamine. In the current
study, we provide direct evidence that methampheta-
mine induces astrocyte activation and migration, thereby
contributing to neuroinflammation in drug abusers via a
previously unidentified autocrine pathway that leads to
increased HMGB1 expression.
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Methods

Cell culture

Rat C6 astroglia-like cells were obtained from the European
Collection of Cell Cultures. C6 cells were grown in
Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10 % heat-inactivated fetal bovine serum
(FBS) and 1 % penicillin/streptomycin. Primary human
astrocytes were purchased from ScienCell (Carlsbad,
CA, USA) and cultured in the astrocyte medium
(ScienCell). Cells were grown in a CO, incubator
(Thermocon Electron Corporation, Waltham, MA,
USA) at 37 °C in an atmosphere of 95 % air and 5 %
CO, with 98 % humidity.

Reagents

Methamphetamine was purchased from the National
Institute for the Control of Pharmaceutical and Biological
Products (Beijing, China). The specific Src kinase inhibitor
(PP2), ERK1/2 inhibitor (U0126), and Ikk-2 inhibitor
(SC514) were purchased from Calbiochem (San Diego, CA,
USA). The concentrations of these inhibitors were
based on the concentration-curve study and our previ-
ous reports [3].

MTT assay

The MTT assay was performed to measure cell viabil-
ity. Briefly, cells were seeded in 96-well plates, and
MTT dye was added 1.5 h before the termination of
experiment. Optical density (OD) was acquired at
570 nm by Synergy H1 Multi-Mode Reader (BioTek,
Winooski, VT, USA).

CCK8 assay

The cell viability was measured by Cell Counting Kit 8
(CCK8) from YEASEN (Shanghai, China). Cells were
plated at a density of 2 x 10* cells/well on 96-well plates.
After exposure to meth for 24 h, CCK-8 (10 ul) was
added to each well of 96-well plate and the plate was in-
cubated for 1.5 h at 37 °C. Viable cells were counted by
absorbance measurements at 450 nm using a Synergy
H1 Multi-Mode Reader (BioTek, Winooski, VT, USA).

Western blot

Total protein was isolated from C6 cells or primary human
astrocytes using ice-cold RIPA buffer. Total protein con-
centrations were measured with the BCA Protein Assay Kit
(Pierce, Rockford, IL, USA). Protein samples (30 pg per
lane) were separated using SDS-PAGE and transferred to
polyvinylidene difluoride (PVDF) membranes. Proteins
were detected by incubation with primary antibodies
(p-Src/Src, p-ERK/ERK, NF-kB p65, p-NF-kB p65, his-
tone H3, or GAPDH at 1:1000 from Cell Signaling,
Danvers, MA, USA; or o-1R at 1:500 from Invitrogen,
Carlsbad, USA) followed by secondary antibodies
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(horseradish peroxidase-conjugated to goat anti-mouse/
rabbit IgG at 1:2,000). Glial fibrillary acidic protein (GFAP)
and P-actin (1:1000; Sigma-Aldrich, St. Louis, MO, USA)
were employed as loading controls. Immunoblots were vi-
sualized using Millipore ECL Western Blotting Detection
System (Millipore, Billerica, MA, USA). Signals were
detected by chemiluminescence and imaged on the
Microchemi 4.2 (DNR, Israel) digital image scanner.
Quantification was performed by densitometry using
Image ] software (NIH).

siRNA experiment

Control siRNA, human o-1R siRNA (sc-42250), human Src
SiRNA (sc-29228), human NF-kB p65 siRNA (sc-29410),
and rat HMGBI siRNA (sc-270015) were obtained from
Santa Cruz Biotechnology (Dallas, TX, USA). Signal
Silence® p44/42 MAPK (Erk1/2) siRNA was purchased
from Cell Signaling (Danvers, MA, USA). The siRNAs were
prepared according to the transfection protocol for cell cul-
tures from Santa Cruz Biotechnology. Briefly, 1 ml of
siRNA transfection reagent mixture (transfection re-
agent, sc-29528; transfection medium, sc-36868) was
co-incubated with C6 cells for 5 hin a 5 % CO, incuba-
tor at 37 °C, and an equal amount of DMEM with 20 %
FBS was then added. An additional incubation was per-
formed for 18 h, and the procedure for conditioned
media was then performed.

Immunofluorescence staining

Cells were cultured on cover-slips and then treated with
methamphetamine for 12 h. Cells were fixed with 4 %
paraformaldehyde and then permeabilized with 0.3 %
Triton X-100 in phosphate-buffered saline (PBS). After
the cells were blocked with 10 % normal goat serum
(NGS) in 0.3 % Triton X-100, cells were incubated with
mouse anti-GFAP antibodies (1:800; Sigma-Aldrich, St.
Louis, MO, USA) overnight at 4 °C. Cells were then in-
cubated with the AlexaFluor 488-conjugated anti-mouse
IgG secondary antibody (1:250; Invitrogen, Carlsbad,
USA). GFAP expression was observed using a fluorescence
microscope (Zeiss, Carl Zeiss, Gottingen, Germany). The
quantification of fluorescence intensity was performed
using Image ] software.

Lentiviral transduction of C6 astrocytes

C6 cells were transduced with a lentivirus containing
red fluorescent protein (LV-RFP) from Hanbio Inc.
(Shanghai, China). The cells were trypsinized and
washed with DMEM (no FBS) twice. The cells (1 x 10°)
were then cultured with 8 pg/ml polybrene and 2 pl of
LV-RFP solution (3 x 10° IU/ml) in 500 pl of DMEM
(10 % FBS) in each well of a 24-well plate. After incuba-
tion at 37 °C in 5 % CO, for 24 h, the treatment medium
was replaced with fresh DMEM containing 10 % FBS. Once
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confluence greater than 50 % was reached, the transduced
cells were selected using 10 pg/ml puromycin. The cells
were subsequently washed twice with fresh DMEM
containing 10 % FBS. The pure, transduced cells were
expanded and stored in liquid nitrogen as previously
described [27].

Cell migration assay

The cell migration capability was examined using a
wound-healing assay. Cells were seeded in a 24-well
plate and incubated to 70-80 % confluence. A cell-free
straight line was then created in the center of the well
by scratching with a sterile 200-pl pipette tip. Similarly,
a second straight line was scratched perpendicular to the
first line to create a cross-shaped cellular gap in each
well. Cells were treated with methamphetamine and
then allowed to migrate into the cell-free wound for
24 h. Digital images of the cell gap were captured at dif-
ferent time points, and the gap width was quantitatively
evaluated using Image | software.

Statistical analysis

Statistical analysis was performed using SigmaPlot software
(SigmaPlot 11.0, Systat. Software Inc., San Jose, California,
USA). Data were presented as the mean + SD. Significance
of differences between control and samples treated with
various drugs was determined by one-way ANOVA, and
Tukey’s post hoc test and Bonferroni correction were used
for multiple comparisons. P values < 0.05 were considered
as statistically significant.

Results

Methamphetamine mediates the expression of HMIGB1 in
astrocytes

Because reactive astrocytes undergo rapid proliferation
[8, 12, 13], we first investigated the effect of metham-
phetamine on cell proliferation in C6 cells. Cells were
exposed to different concentrations of methampheta-
mine (15 pM, 150 pM, and 1.5 mM) for 24 h followed
by cell viability assessment. As shown in Fig. 1a, the cell
proliferation of astrocytes was significantly increased
with 150 pM methamphetamine, whereas cell viability
decreased after treating with 1.5 mM methamphetamine.
In addition to the MTT assay, the effect of metham-
phetamine on the cell viability of C6 cells was further
corroborated by CCKS cell proliferation assay. As shown
in Fig. 1b, treatment of C6 cells with 150 uM metham-
phetamine significantly increased the viability by 135 %.
To explore the potential target proteins involved in
astrocytic proliferation, the expression of HMGB1 was
detected by western blot analysis. As shown in Fig. 1c,
methamphetamine treatment resulted in increased expres-
sion of HMGBI1 with the peak response at 3 h. This find-
ing was further confirmed in primary human astrocytes,
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Fig. 1 Methamphetamine induced the expression of HMGB1 in astrocytes. Methamphetamine increased the cell proliferation of C6 cells. Cells
were exposed to different concentrations of methamphetamine (15 pM, 150 pM, and 1.5 mM) for 24 h followed by the MTT assay (a) and CCK8
(b). Methamphetamine-induced HMGB1 expression in a time-dependent manner in C6 cells (c) and primary human astrocytes (d). All the data are

presented as the mean + SD of three individual experiments. *p < 0.05 and **p < 0.01 compared with control group
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methamphetamine also induced the expression of HMGB1
(Fig. 1d). Therefore, methamphetamine treatment increased
cell proliferation and HMGBI1 expression in astrocytes.

Methamphetamine mediates the activation of the Src/ERK
MAPK pathway

Because methamphetamine increased the expression of
HMGBI1 in C6 cells and induces the activation of the
Src and ERK pathway in primary mouse astrocytes [3],
we next determined if the Src/ERK pathway regulates
HMGB1 expression in C6 cells. Exposure of C6 cells to
methamphetamine resulted in increased phosphorylation of
Src and ERK with a peak response at 15 min (Fig. 2a, b).
Our previous study indicated that o-1R is expressed in pri-
mary astrocytes [3]. Consistent with this finding, C6 cells
also expressed o-1R (Fig. 2¢). To investigate whether o-1R
is involved in methamphetamine-induced Src phosphoryl-
ation, C6 cells were pretreated with the o-1R antagonist
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BD1047 followed by methamphetamine treatment. As
shown in Fig. 2d, e, pretreatment of C6 cells with BD1047
(10 uM) significantly inhibited the phosphorylation of Src
and ERK. Moreover, we also tested if Src activation is
upstream of the ERK pathway. As shown in Fig. 2e,
methamphetamine-induced phosphorylation of ERK
was significantly inhibited by the Src inhibitor PP2
(10 uM). Consistent with our previous findings, meth-
amphetamine also induced the activation of the Src/
ERK MAPK pathway via o-1R in C6 cells.

Methamphetamine activates the NF-kB p65 transcription
factor

A previous study has indicated that NF-kB p65 activa-
tion is involved in HMGB1 expression [28]. Thus, we ex-
amined the effect of methamphetamine on the activation
of NF-kB p65. As shown in Fig. 3a, methamphetamine
treatment resulted in NF-kB p65 translocation into nucleus
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Fig. 2 Methamphetamine mediates the activation of the Src/ERK MAPK pathway. Methamphetamine induced a Src phosphorylation and b ERK
phosphorylation in a time-dependent manner in C6 cells. ¢ -1R was expressed in C6 cells. d Pretreatment of C6 cells with the o-1R antagonist
(BD1047; 10 uM) inhibited methamphetamine-induced expression of p-Src.
or the Src inhibitor (PP2; 10 uM) inhibited methamphetamine-induced expression of p-ERK. Representative immunoblots and the densitometric
analysis of p-Src/t-Src from three separate experiments are presented. All the data are presented as the mean + SD of three individual experiments.
*» <005 and **p < 0.01 compared with control group; #p < 0.05 compared with methamphetamine-treated group
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Fig. 3 Methamphetamine induces NF-kB p65 transcription factor
activation. a Effect of methamphetamine on translocation of NF-kB
p65 into the nucleus in C6 cells. b Effect of methamphetamine on
phosphorylation of NF-kB p65 in C6 cells. ¢ Pretreatment of C6 cells
with the o-1R antagonist (BD1047; 10 uM), the Src inhibitor (PP2;
10 uM), or the ERK inhibitor (U0126; 10 uM) significantly inhibited
methamphetamine-mediated translocation of NF-kB p65 into the
nucleus. Representative immunoblots and the densitometric analysis of
NF-kB p65/Histone H3 from three separate experiments are presented.
All the data are presented as the mean + SD of three individual
experiments. *p <0.05 and **p < 0.01 compared with control
group; #p < 0.05 compared with methamphetamine-treated group

with a peak response at 15 min, since NF-kB p65 activity
and nuclear translocation are regulated by their phosphor-
ylation. Therefore, we further examine the effect of meth-
amphetamine on the phosphorylation of NF-kB p65 in the
nucleus of cells. As shown in Fig. 3b, treatment of primary
human astrocytes with methamphetamine resulted in in-
creased the phosphorylation of NF-kB p65 in the nucleus.

Since we found that methamphetamine induced the
activation of the Src/ERK MAPK pathway via o-1R, we
next tested if these pathways are involved in NF-kB p65
translocation into the nucleus. As shown in Fig. 3c, the
methamphetamine-induced translocation of NF-kB p65
into the nucleus was significantly inhibited by pretreat-
ment with the o-1R antagonist (BD1047; 10 pM), the Src
inhibitor (PP2; 10 uM), and the ERK inhibitor (U0126;
10 pM). Taken together, these results suggested that
methamphetamine-mediated NF-kB p65 activation lies
downstream of the activation of the Src/ERK MAPK
pathway though o-1R.

Src/ERK/NF-kB p65 pathway is involved in
methamphetamine-induced HMGB1 expression

Because methamphetamine up-regulated the expression of
HMGBI and activated the Src/ERK/NF-kB p65 pathway,
we next investigated the link between HMGBI expression
and the Src/ERK/NF-kB p65 pathway. We pretreated C6
cells with the o-1R antagonist (BD1047), the Src inhibitor
(PP2), the ERK inhibitor (U0126), or the Ikk-2 inhibitor
(SC514) for 1 h followed by treatment with methampheta-
mine for an additional 3 h. As shown in Fig. 4, the
increased expression of HMGB1 mediated by metham-
phetamine was significantly inhibited by pretreatment with
the o-1R antagonist (BD1047; 10 puM), the Src inhibitor
(PP2; 10 uM), the ERK inhibitor (U0126; 10 uM), or the
Ikk-2 inhibitor (SC514; 10 uM) (Fig. 4a). Further validation
of the involvement of these pathways in this process was
confirmed by transfection of cells with siRNA o-1R, Src,
ERK, and NF-kB p65 followed by exposure to metham-
phetamine. As expected, methamphetamine-mediated in-
duction of HMGBI1 were attenuated by siRNA o-1R, Src,
ERK, and NF-«B p65 (Fig. 4b). Taken together, these find-
ings thus underscore the involvement of o-1R, Src, ERK,
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Fig. 4 Src/ERK/NF-B p65 pathway is involved in methamphetamine-
induced HMGBT1 expression. a Pretreatment of C6 cells with the o-1R
antagonist (BD1047; 10 uM), the Src inhibitor (PP2; 10 uM), the
ERK inhibitor (U0126; 10 uM), or the Ikk-2 inhibitor (SC514; 10 uM)
resulted in inhibition of the methamphetamine-mediated expression of
HMGB1. b Methamphetamine-induced HMGB1 expression was
attenuated by knockdown of o-1R, Src, ERK, and NF-kB p65 in
primary human astrocytes using specific siRNAs. Representative
immunoblots and the densitometric analysis of HMGB1/B3-actin
from three separate experiments are presented. All the data are
mean =+ SD of three individual experiments. *p < 0.05 and **p < 001
compared with control group; #p < 0.05 and ##p < 001 compared with
methamphetamine-treated group
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and NF-kB p65 cascade in methamphetamine-mediated in-
duction of HMGBI in astrocytes.

Methamphetamine-induced HMGB1 mediates the
activation of astrocytes

HMGB1 was up-regulated in astrocytes treated with
methamphetamine. Our previous study indicated that
methamphetamine induces the activation of astrocytes
[3]. Therefore, we next investigated the role of HMGB1
in the activation of astrocytes. Treatment of cells with
methamphetamine induced astrocyte activation as in-
dicated by the increased expression of GFAP with a
peak response at 6 h in both C6 cells (Fig. 5a) and pri-
mary human astrocytes (Fig. 5b). Moreover, the in-
creased expression of GFAP was significantly inhibited
by the o-1R antagonist (BD1047), the Src inhibitor
(PP2), the ERK inhibitor (U0126), and the Ikk-2 inhibitor
(SC514) (Fig. 5¢). Meanwhile, increased GFAP expression
induced by methamphetamine was also attenuated by
siRNA 0-1R, Src, ERK, and NF-kB p65 in primary human
astrocytes (Fig. 5d).

We next explored the role of HMGB1 in
methamphetamine-induced activation of astrocytes.
Transfection of C6 cells with HMGB1 siRNA success-
fully decreased the expression of HMGB1 as shown in
Fig. 5e. Notably, knockdown of HMGBI1 expression sig-
nificantly reduced the activation of astrocytes as deter-
mined by the expression of GFAP assessed using
western blot (Fig. 5e). This finding was further con-
firmed by immunostaining. As shown in Fig. 5f, g, meth-
amphetamine treatment increased the expression of
GFAP, which was attenuated by transfection with siRNA
HMGBI1. These findings clearly demonstrated that
HMGBI is involved in the activation of astrocytes in-
duced by methamphetamine.

HMGB1-mediated migration of astrocytes induced by
methamphetamine

In addition to the activation of astrocytes, reactive astro-
cytes also migrate to the injured sites and orchestrate
the inflammatory response. Therefore, we next deter-
mined the role of HMGBI in the migration of astrocytes
mediated by methamphetamine. A wound-healing assay
showed that methamphetamine increased astrocyte mi-
gration in a time-dependent manner in C6 cells (Fig. 6a)
as well as primary human astrocytes (Fig. 6b). Transfec-
tion of the cells with HMGB1 siRNA resulted in the in-
hibition of the methamphetamine-induced the migration
of C6 cells (Fig. 6¢, d), thereby supporting the role of
HMGB1 in this process.

Discussion
The present study demonstrated that (1) methampheta-
mine increases the expression of HMGB1 and that (2)
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(See figure on previous page.)

Fig. 5 Methamphetamine-induced HMGB1 mediates activation of astrocytes. Methamphetamine (150 uM) increased the expression of GFAP in C6
cells (@) and primary human astrocytes (b). ¢ Pretreatment of C6 cells with the o-1R antagonist (BD1047; 10 uM), the Src inhibitor (PP2; 10 uM),
the ERK inhibitor (U0126; 10 uM), or the Ikk-2 inhibitor (SC514; 10 uM) significantly reversed the increased GFAP expression induced by
methamphetamine. d Transfection of primary human astrocytes with siRNA o-1R, Src, ERK and NF-kB p65 resulted in attenuation of
methamphetamine-induced GFAP expression. e Transfection of C6 cells with HMGB1 siRNA successfully decreased the expression of HMGB1
(upper panel). Knockdown of HMGB1 expression significantly inhibited the activation of C6 cells as determined by GFAP expression using
western blot (lower panel). f-g Fluorescent intensity of GFAP was quantified in five areas using Image J software (f). Representative image of
GFAP staining in C6 cells transfected with siRNA control or HMGB1 followed by treatment with or without methamphetamine (g). Scale bars
all indicate 50 pum. All the data are mean + SD of three individual experiments. *p < 0.05 and **p < 0.01 compared with control group; #p < 0.05 compared
with methamphetamine-treated group in C6 cells or primary human astrocytes

HMGBI1 promotes the activation and migration of C6
astrocytes. Up-regulation of HMGBI in reactive astro-
cytes may contribute to the activation and migration of
astrocytes through an autocrine feedforward mechanism
that increases HMGBI expression, thus amplifying the
neuroinflammatory cascade induced by methampheta-
mine. Although previous studies have demonstrated that
HMGBI1 functions as a damage-associated molecular
pattern (DAMP) involved in inflammatory response, it is
still remained unclear whether HMGBI is involved in
methamphetamine-induced neuroinflammation.

In the current study, we demonstrated that metham-
phetamine exposure increased HMGBI1 expression in
astrocytes via the methamphetamine cognate receptor,
0-1R, which interacted with Src and activated the
downstream MAPK/ERK pathway and the NF-«B p65
transcription factor leading to HMGBI1 expression with
subsequent functional activation and migration of as-
trocytes. To the best of our knowledge, these results dem-
onstrated for the first time the critical role of HMGB1 in
methamphetamine-mediated activation and migration of
astrocytes. Thus, these findings imply that HMGB1 is a
promising therapeutic target for amelioration of the
methamphetamine-mediated neuroinflammation orches-
trated by astrocytes.

Additionally, our study is the first to demonstrate that
methamphetamine induced the expression of HMGBI in
astrocytes via 0-1R, as pretreatment of cells with the o-1R
antagonist BD1047 or knockdown of o-1R abrogated
increased expression of HMGB1 mediated by metham-
phetamine. Intriguingly, activation of o-1R with metham-
phetamine subsequently resulted in phosphorylation of the
Src tyrosine kinase. Our previous study indicated that
methamphetamine mediates the activation of Src through
activation of o-1R [3]. Inhibition of Src activation with the
Src inhibitor-PP2 as well as siRNA Src significantly blocked
the methamphetamine-mediated increased expression of
HMGBI, thereby suggesting that Src activation was
upstream of the methamphetamine-induced HMGB1
expression. To our knowledge, this is the first evidence
that Src activation is involved in the regulation of HMGB1
expression, which contradicts a previous study indicating
that Src activation lies downstream of HMGBI1 [29].

We also examined the signaling pathways involved in
methamphetamine-mediated up-regulation of HMGBI.
Our previous studies indicated that methamphetamine
induces ERK phosphorylation [30-32]. Using both
pharmacological and genetic approaches, our findings
demonstrated that the ERK pathway is involved in the
methamphetamine-mediated increased expression of
HMGBI1 (Fig. 4), which was consistent with a previous
study indicating that ERK activation is involved in the
expression of HMGBI1 induced by IL-1f in primary
cortical astrocytes [33]. However, Ding et al. demon-
strated that p38 MAPK, but not the ERK pathway, is
involved in the expression of HMGBI in lung injury in-
duced by LPS [34]. The different findings between
Ding et al. and our current study may be due to the dif-
ferent cell systems examined.

NF-kB p65 is a dimeric protein widespread in the
cytoplasm. Through gene products and downstream sig-
naling pathways, NF-kB p65 participates in numerous
pathological processes, such as inflammation, immune
response, apoptosis, cell differentiation, tumor regula-
tion, and cell cycle regulation [35-37]. Our previous
study indicated that methamphetamine induces activation
of NF-«B p65, a transcription factor that is downstream of
ERK activation [3]. Consistent with these findings, our
current study also indicated that methamphetamine
exposure induces translocation of NF-kB p65 into the
nucleus via 0-1R with subsequent activation of Src and
the MAPK/ERK cascade in rat C6 cells. Interestingly,
blockade of NF-«kB p65 signaling significantly inhibited
the methamphetamine-mediated up-regulation of HMGB1
(Fig. 5). This finding was consistent with the previous study
demonstrating that NF-kB p65 is involved in HMGBI1 ex-
pression [28]. However, increasing evidence has indi-
cated that NF-kB p65 lies downstream of HMGB1
resulting in enhancement of migration via the activa-
tion of MMP-9 [38].

It is well-recognized that astrocyte activation and mi-
gration are key features of reactive astrogliosis. Cell
migration and morphological changes are closely asso-
ciated with chronic activation of astrocytes. Activated
astrocytes often show characteristic changes in migratory
and morphological phenotypes, which are collectively
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Fig. 6 Methamphetamine induces HMGB1-mediated migration of astrocytes. The wound-healing assay showed that methamphetamine increased
cell migration in a time-dependent manner in C6 cells (a) as well as in primary human astrocytes (b). c-d Transfection of C6 cells with siIHMGB1
resulted in the inhibition of the methamphetamine-mediated induction of C6 cell migration. Scale bars all indicate 500 um. The gap width from
three separate experiments was quantitatively evaluated using Image J software. All the data are mean + SD of three individual experiments.
**p < 0.01 compared with control group; #p < 0.05 compared with methamphetamine-treated group in C6 cells

referred to as reactive astrogliosis. Molecular mechanisms
underlying reactive astrogliosis have been the subject of
intensive investigation [39]. The reaction of astrocytes is
characterized by early proliferation and increased expres-
sion of GFAP. A previous study has reported that HMGB1
promote the proliferation and migration of glioma cells
[22]. Moreover, HMGBI is involved in pulmonary artery
remodeling by enhancing proliferation and migration of
smooth muscle «cells [40]. Regarding the detailed

Methamphetamine

.

_0-1R

Activation Migration

Fig. 7 Schematic of signaling pathways involved in methamphetamine-
induced astrocyte activation via an autocrine mechanism of HMGB1
expression. Exposure of astrocytes to methamphetamine leads to
activation and migration of astrocytes via up-regulation of HMGBI1.
Inhibition of 0-1R, Src, or ERK MAPKs results in the subsequent
inactivation of the downstream NF-kB p65 transcription factor.
NF-kB p65 enhances HMGB1 expression and subsequently
induces astrocyte activation and migration, thereby amplifying
the methamphetamine response

mechanisms underlying the migration induced by HMGBI,
Nehil et al. reported that HMGB1 promotes tumor cell mi-
gration through epigenetic silencing of semaphorin 3A [41].
Our studies provide evidence for methamphetamine-
mediated activation of astrocytes with concomitant in-
creased expression of HMGBI in astrocytes (Fig. 5). The
significance of this study is that it is the first to provide
evidence using genetic approaches that HMGBI plays
a key role in methamphetamine-mediated astrocyte ac-
tivation and migration. Our study indicated that
HMGBI is involved in methamphetamine-mediated
activation and migration of astrocytes. However, in con-
trast to our finding, Zuo et al. reported that HMGB1 in-
hibits cell motility and metastasis by suppressing activation
of the transcription factor, CREB, and subsequent nWASP
expression [42]. A possible explanation for the different
function of HMGB1 may be attributed to the different cell
types in these studies.

HMGBI and its receptor, receptor for advanced glycation
end products (RAGE), are pivotal factors in the develop-
ment and progression of many types of tumors [43]. A pre-
vious study has indicated that HMGBI triggers neuronal
death by directly activating RAGE signaling cascades [44].
RAGE is a multi-ligand receptor and is involved in
various physiological processes, such as inflammation
and development [29]. RAGE is expressed in neurons,
glia, and endothelial cells. However, it needs to be fur-
ther investigated if RAGE signaling is involved in
HMGBI1-mediated astrocytic cell activation and migra-
tion. Moreover, although the present study provided
the detailed underlying mechanisms by which meth-
amphetamine increases the expression of HMGBI, the
precise mechanism by which HMGB1 promotes activa-
tion and migration needs to be elucidated.

Conclusions

In summary, our findings outlined the detailed molecular
pathway involved in methamphetamine-mediated activa-
tion and migration of astrocytes via o-1R with downstream
activation of Src and MAPK/ERK pathways and subsequent
activation of NF-kB p65 resulting in increased HMGBI1 ex-
pression (Fig. 7). These findings have implications for
activated astrocytes induced by methamphetamine.
Targeting HMGB1 can be considered as a therapeutic
strategy for treatment of methamphetamine-mediated
neuroinflammation.
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