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Introduction
A current research direction in cancer therapy involves the 
search for synergistic combinations of cancer immunothera-
pies aimed to modulate the immune system response. The 
rise of the immune-oncology field1 finds supports in the 
opportunities offered by next-generation therapeutic solu-
tions such as novel molecularly targeted agents2 and multi-
modal drug combinations. These latter solutions include not 
only small molecules3 but also epigenetic drug combinations 
and combined epigenetic and targeted therapies.4 Intuitively, 
a combination of agents may be expected to yield superior 
effects than those obtained by each agent alone, unless nega-
tive effects occur. Although parameters measurable at a clini-
cal level allow the possibility to control such outcomes, it is 
much harder to assess the presence and intensity, thus the 
influence, of both co-inhibitory and co-stimulatory effects 
due to synergistic therapies.

Osteosarcoma (OS) represents the most common primary 
bone tumor in children and young adults and the second 
highest cause of cancer-related death in this age group. 
Despite aggressive chemotherapy, disease-free survival has 
not improved significantly in the past 20 years, and 50%  
of the patients subsequently develop fatal pulmonary metas-
tasis.5 Therapies are needed, and a relevant role is played  
by the bone immunobiology, requiring integrative models 
that combine genetics, genomics and systems medicine 
approaches.6 Here, we reused data from evidence generated 
by both in vivo and in vitro characterization experiments on 
a panel of 22 OS cell lines that were phenotypically differen-
tiated.7 In particular, we are interested in detecting pheno-
type-specific regulatory influences of immunosystem-related 
processes. To allow for a thorough assessment of possible dif-
ferential features, we propose a network inference approach 

centered on gene coexpression dynamics associated with 
regulation drivers such as transcription factors and microR-
NAs underlying the immune-related influences.

Methods
Experimental data

Publicly available OS evidence (GSE28425) were recently 
derived from 22 cell lines, 19 of which were derived from 
patients with OS and 3 were supplemental cell lines (provided 
by Flannagan [University College London, UK], F Pedeutour 
[Nice University Hospital, France], and American Type 
Culture Collection [ATCC] [www.lgcstandards-atcc.org]). 
They all were used to compute differential expression in multi-
ple phenotypes. Differentially expressed genes (DEGs) were 
grouped according to the characteristics of the cell lines such as 
tumorigenic and nontumorigenic, colony and non–colony 
forming, invasive and noninvasive, and finally, proliferative and 
nonproliferative. The RPMI-1640 medium (Lonza, Basel, 
Switzerland) was used for culturing cell lines, whereas short 
tandem repeats DNA fingerprinting (Promega, Madison, WI, 
USA) were used for the verification of cell line identity, and 
then compared with the EuroBoNet8 and ATCC profiles. In 
vivo tumorigenicity of the cell lines was checked by injecting 
subcutaneously into locally bred NOD/SCID IL2R-gamma-0 
mice 1 × 106 cells in 100-μL serum-free RPMI-1640. Mice 
were killed when tumors reached a size of 1000 mm3. Tumor 
growth was assessed weekly, and only for six months for the 
lowly tumorigenic cell lines. Colony-forming assays were 
plated out in 12-well suspension plate of CELLSTAR (VWR 
International, West Chester, PA, USA) using standard protocol 
and GelCount system (Oxford Optronix, Oxford, England) 
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was used to quantify colonies larger than 50 μm. About 25 000 
cells (in duplicates) in RPMI-1640 were plated, containing 
fetal bovine serum (FBS), into 24-well invasion chambers with 
uncoated or Matrigel-coated membranes, 8.0-μm pores (BD 
Biosciences, Franklin Lakes, NJ, USA). About 10% FBS in 
RPMI-1640 in lower compartment was used as chemoattract-
ant. The numbers of cells were manually counted after taking 9 
pictures of each well/membrane stained with Hemacolor 
(Merck KGaA, Darmstadt, Germany). Live-cell imaging of 
IncuCyte system of Essen Bioscience (Birmingham, UK) was 
used to analyze the proliferation of cells. The cells were seeded 
in quadruplets in 96-well plates, containing 2000 cells per well, 
and 2-phase contrast photographs per well were taken every 
second for 5 days. Cell confluence (in %) over time (in hours) 
presented with the proliferation rates.

Bio-annotations

We performed with BiNGO9 the Gene Ontology (GO) analy-
sis of molecular functions aimed to report overrepresentation 
across DEGs. The procedure of Benjamin and Hochberg was 
used for multiple testing corrections (false discovery rate). 
Immune-related processes for DEGs were performed using 
ClueGO10 (the kappa score was tuned to high significance,  
and Bonferroni correction applied). Target gene-miRNA 
interactions were first extracted from the DEG lists using 
miRTarBase11 and TargetScan.12 Then the associated path-
ways were then extracted from NCI-PID (the Pathway 
Interaction Database)13–15 and finally integrated in the deliv-
ered association map to create a reference annotation context 
for the interactions.

Results
Profiling

We analyzed the profiles of DEG in the OS phenotypes. The 
significant detections for tumorigenic, invasive, colony-form-
ing, and proliferative phenotypes were, respectively, 124, 102, 
131, and 63 DEGs, with the log(FC) considered at a cutoff of 
±2. Profiling was done with limma (https://bioconductor.org/
packages/release/bioc/html/limma.html, from Bioconductor 
in R). Overall, only 4 genes, ie, ACTG2, KISS1, NPPB, and 
KRT17, showed negative regulation in all phenotypes. 
Supplementary file S1 reports the entire profiles obtained for 
phenotype.

Among these 4 listed genes, only 2 share some functional 
characteristics. The first gene, ACTG2, is an actin involved in 
a mediator of cell motility and in the maintenance of the 
cytoskeleton. KISS1, a gene known to suppress metastasis in 
some cancers (melanoma, breast cancer), is also putatively 
involved in cytoskeletal reorganization and cell adhesion, 
inhibiting invasion. The role of the other 2 shared genes  
is less clear with specific reference to OS is less clear. 
Concerning NPPB, member of the natriuretic peptide family, 

note that mutations have been reported in association with 
osteoporosis, whereas KRT17 encodes the type I intermediate 
filament chain keratin 17 which is involved, among other func-
tions, in tissue repair (Figure 1).

Bio-annotations

The DEGs in all phenotypes showed common functional 
aspects related to various binding activities. A few primary 
annotations emerged from the GO-annotated molecular func-
tions, here reported concisely (for details, see Supplementary 
file S2). The tumorigenic phenotype involved insulinlike 
growth factor binding and extracellular matrix (ECM) binding 
(significant P values). The invasive phenotype involved plate-
let-derived growth factor (PDGF) binding, plus other func-
tions seen with the tumorigenic phenotype, such as structure 
molecule activity. The colony-forming phenotype involved 
both oxidoreductase and antioxidant activities. The prolifera-
tive phenotype involved interleukin 1 receptor binding and 
both oxidoreductase and kynureninase activities. Of interest is 
also the possible overlap of annotated terms across phenotypic 
profiles. For instance, tumorigenic, invasive, and colony-form-
ing phenotypes shared molecular functions related to ECM 
structural constituents containing different members of the 
collagen family. The PDGF-binding molecular function was 
instead shared between colony-forming, invasive, and prolifer-
ative phenotypes. Among the major molecular functions shared 
between any pair of phenotypes, there were functions such as 
receptor binding, carbohydrate binding, kynureninase activity, 
and diuretic hormone activity. The absence of common molec-
ular functions between proliferative and other phenotypes, 
except colony forming, indicates a certain specificity of mecha-
nisms for proliferative phenotype (Figure 2).

Coexpression Networks
Immune-related processes

The 4 networks displayed in Figure 3 emphasize a variety of 
GO enrichments obtained by ClueGO.10 These network con-
figurations are obtained directly from the annotation tool and 
following the enabled features. The views shown here are called 
“gene distribution views,” following the ClueGO-CluePedia 
networks of terms. Genes can be seen at nodes, in particular 
relatively small or big hubs for enriched pathway terms. The 
size of the nodes refers to significance through P values and the 
links indicate gene participation to the pathway terms. The lat-
ter are clustered and colored to emphasize similarly annotated 
genes. Regarding the selection criteria, all DEGs in each phe-
notype contributed to the enrichments and in particular for the 
immune-related terms. In tumorigenic phenotype, both nega-
tive regulation of erythrocyte differentiation and regulation of 
neutrophil migration appear as relatively large communities, ie, 
interconnected nodes (annotated terms) cross-linked by gene 
sets. A minor group is formed around the type 1 interferon 

https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
http://journals.sagepub.com/doi/suppl/10.1177/1176935117721691
http://journals.sagepub.com/doi/suppl/10.1177/1176935117721691
http://journals.sagepub.com/doi/suppl/10.1177/1176935117721691
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signaling pathway. The invasive phenotype presents 3 different 
communities. One is enriched for leukocyte migration involved 
in inflammatory response. Another is enriched for neutrophil 
chemotaxis, and a third one for neutrophil migration.

A relatively minor group consists of regulation of myeloid 
leukocyte differentiation with a prominent role played by 
CDK6 and RBP1. The former (http://www.genecards.org) is a 
member of the cyclin-dependent protein kinase family and has 
been shown to phosphorylate, thus regulating the activity of 
tumor suppressor protein Rb (the expression of this gene is 
upregulated in some types of cancers). The latter is a Runx2 
coactivator in both U2OS OS cell models.7 The colony-form-
ing landscape is more interconnected than the previous ones. 
Regulation of myeloid leukocyte differentiation represents the 
largest community centered on MYC, well-known multifunc-
tional, nuclear phosphoprotein playing a role in cell cycle pro-
gression, apoptosis, and cellular transformation. By functioning 
as a transcription factor, it contributes to the regulation of leu-
kocyte differentiation induced by a large community centered 
on BMP4. This is a gene whose encoded protein is a secreted 
ligand of the transforming growth factor β superfamily of pro-
teins possibly involved in human cancers. Other minor terms 
appear annotated, but with marginal impacts.

The proliferative phenotype appears with a sparse landscape 
of annotated terms, being these however, very important. For 
instance, osteoclast differentiation involves MAFB, a gene 

which acts as a transcriptional activator or repressor involved 
either as an oncogene or as a tumor suppressor; FAM20C, a 
gene encoding a member of the family of secreted protein 
kinases playing a role in cell migration and adhesion; NDRG1, 
whose stress-responsive protein is involved in hormone 
responses, cell growth, and differentiation and is necessary for 
p53-mediated caspase activation and apoptosis. At the right 
side of the network configuration, it appears as major hub 
IL1B: the protein encoded by this gene is a member of the 
interleukin 1 cytokine family produced by activated mac-
rophages and important mediator of the inflammatory 
response, thus involved in a variety of cellular activities, includ-
ing cell proliferation, differentiation, and apoptosis. The tumor 
microenvironment (TME) signs are thus quite visible, particu-
larly in the proliferative phenotype.

Coregulation Networks
General pathway-driven influences

Figure 4 shows network integrative configurations building phe-
notype-specific contexts for functional assessment. In particular, 
the structure of such networks consists in co-expressed DEGs, 
whereas the functional relevance appears from the association  
of regulators such as transcription factors and miRNAs when  
target protein-coding genes are considered among the dis-
played DEGs. Mutations have also been mapped onto such 

Figure 1. Profiles showing distinct and shared differentially expressed genes across phenotypes.

http://www.genecards.org
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configurations; likewise, the pathway terms are shown according 
to the enrichment by the network genes. MiRNA-gene target 
interactions for DE miRNAs were extracted from miRTarBase11 
and TargetScan.12 In particular, miRTarBase (http://mirtarbase.
mbc.nctu.edu.tw/) contains only experimentally validated 
miRNA-gene target interactions using reporter assays, Western 
blots, and CLIP-seq, whereas TargetScan (http://www.targets-
can.org/vert_71/) matches seed region of the miRNA with 8mer, 
7mer, and 6mer sites for predicting gene-miRNA target interac-
tions. When searching with a gene symbol, the results appear by 
the different transcripts, classified by prevalence, and for each 
transcript, the sites with higher/lower probability of targeting by 
miRNAs appear too. This probability is estimated by including 
all the algorithms and parameters for each miRNA candidate. 
For instance, context++ is a model to rank miRNA target pre-
dictions in a conservative way (not many alternative 3′-UTR 
untranslated region isoforms). Therefore, an unbiased confidence 
score is built to assess miRNA targeting efficiency based on 14 

different features useful to reconstruct gene-miRNA target net-
works. The gene-pathway interactions which are displayed 
(regions marked in light blue) are associated exclusively with  
cancer annotations retrieved from the PID13 (https://github.
com/NCIP/pathway-interaction-database, now migrated to 
NDeX14,15; http://www.home.ndexbio.org/about-ndex/). Such 
experimentally verified associations have been mapped onto the 
gene-miRNA target networks.

Overall, pathway landscapes revealed commonalities across 
OS phenotypes due to the sharing of 32 cancer-related path-
ways (see Supplementary file S3). These comprise DEGs in 
part exerting distinct influences and in part resulting share 
between phenotypes. The best enriched pathways involve  
β 1-integrin and β 3-integrin cell surface interactions, which 
are both syndecan-1–mediated signaling events and targets  
of C-MYC transcriptional repression that contain genes from 
the col and cyclin D families, MYC and PLAU. Notably, cyclin-
dependent kinases (CDKs) influence cell cycle regulation, 

Figure 2. Molecular functions of differentially expressed genes: tumorigenic vs nontumorigenic (top-left panel), invasive vs noninvasive (top-right panel), 

colony forming vs non–colony forming (bottom-left panel), and proliferative vs nonproliferative (bottom-right panel).

http://mirtarbase.mbc.nctu.edu.tw/
http://mirtarbase.mbc.nctu.edu.tw/
http://www.targetscan.org/vert_71/
http://www.targetscan.org/vert_71/
https://github.com/NCIP/pathway-interaction-database
https://github.com/NCIP/pathway-interaction-database
http://www.home.ndexbio.org/about-ndex/
http://journals.sagepub.com/doi/suppl/10.1177/1176935117721691
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which is notoriously aberrant in human cancers, thus leading to 
uncontrolled proliferation. Conversely, the consequently altered 
activation of CDKs offers through their inhibitors both rea-
sons and opportunities for newly proposed anticancer drugs. 
On one hand, due to little specificity toward single CDKs, pan-
CDK inhibitors have been introduced, such as alvocidib and 
seliciclib.17 On the other hand, CDKs link cell cycle to cell 
metabolism, thus affecting cancer cells in multiple ways and 
offering an even stronger rationale for representing targets of 
therapeutic solutions.18

These pathways also refer to DEGs with confirmed somatic 
mutations. Especially, pathways related to the integrin proteins 
are highly relevant in OS because of the role in controlling 
interaction of tumor cells with their microenvironment. In par-
ticular, integrins mediate between the ECM and the cytoskel-
eton and they function as detectors of environmental signals, 
being thus involved across cancer hallmarks, thus in cell dif-
ferentiation, adhesion, migration, proliferation, and survival  
(a comprehensive review can be found in the study by 
Bianconi et al19). Clearly enough, all such processes are useful 

Figure 3. Immune-modulated networks. Phenotype-driven Gene Ontology biological processes. Node size varies according to significance, from 

smallest circle (p-value >.1, to the largest circle, p-value <.0005). The majority of nodes present significance between p-value intervals (.05-0.1) and 

(.005-.05) (source: ClueGO, http://apps.cytoscape.org/apps/cluego).

http://apps.cytoscape.org/apps/cluego
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Figure 4. Regulation influences from transcription factors and microRNAs (miRNAs) across pathway landscapes. Tumorigenic phenotype (top network) 

followed by invasive and colony-forming phenotypes, followed by proliferative phenotype (bottom network). The Weighted Gene Co-Expression Network 

Analysis (WGCNA) package was used.16 Blue labels indicate pathway terms, circles indicate miRNAs, rhomboids and hexagons indicate mutations 

(missense and coding silent), and red links indicate the presence as a connector of a transcription factor.



Sharma and Capobianco 9

for promoting invasiveness, acquiring drug resistance, and also 
shaping the TME in favor of cancer growth and metastasis.20

Our evidence refer to integrin interactors in these pathways, 
which directly or indirectly mediate interactions between cells 
and the ECM.21–23 Also, β 1-integrins are implicated in tumo-
rigenesis and chemokine stimulation by the CXCR4 receptor 
mediating cellular migration in OS.24 Note that the presence of 
DEGs referred to ITGA11 and RHO proteins involved in 
CXCR4-mediated signaling events that may indirectly influ-
ence chemokines, leading to irregular functioning and affecting 
cell surface interactions. Most of the signaling pathways that 
were mainly mediated by the Hedgehog (HIF-1-α) transcrip-
tion factor, syndecans, interleukins, and mTOR, were also 
shared between phenotypes. In particular, it is considerable 
that the relevance of targeting the Hedgehog signaling path-
way in OS is due to its promigratory effects observed in both 
OS cell lines and primary human specimens, suggesting the 
design of inhibitors to reduce cell proliferation and tumor 
growth.25

Finally, DEG-driven protein-protein interactions were 
observed as involved in various cancer-related pathways. More 
specifically, both tumorigenic and invasive phenotypes shared 
30 pathways mainly related to signaling, such as Aurora (closely 
linked to the mutated FBN1). These are kinases with a role in 
mitosis and cytokinesis. In particular, by phosphorylating and 
activating PLK1, it promotes CDK1 activation after DNA 
damage, and by stabilizing N-MYC, it prevents its proteasomal 
degradation. Several inhibitors targeting Aurora members are 
known, whereas others are under investigation.17

Furthermore, the main pathway shared by the colony-
forming phenotypes and the other phenotypes are the tran-
scription factors E2F and p73, plus various signaling pathways. 
FBXO32 and SGK1 proteins showed involvement in the 
FoxO family (translating the effects of environmental stimuli 
in gene expression and acting as tumor suppressor in multiple 
cancers, particularly through the Wnt/β-catenin pathway26), 
significantly in the tumorigenic phenotype. Instead, the inva-
sive phenotypes contained genes involved in the PDGF 
receptor signaling network (see the study by Takagi et al27) 
and circadian rhythm. Pathways specific to the colony-form-
ing phenotype comprised signaling pathways related to IL2, 
syndecan-3, and CD40/CD40L, whereas the proliferative 
phenotype showed nonspecific pathways. The tumorigenic 
phenotype pathways contained in particular CDK4 regulated 
by multiple miRNAs, such as highly overexpressed hsa-miR-
449a in validated targets of C-MYC transcriptional activa-
tion. Regulation of nuclear β-catenin signaling and target 
gene transcription involved in Notch and Wnt signaling was 
found regulated by lowly downexpressed hsa-miR-186, hsa-
miR217 and hsa-miR-590-3p. Note that these 2 major path-
ways are involved in OS in a complex way, and especially  
with Notch; here, the restoration of its signaling activity  
is a potential therapeutic strategy designed to eliminate  

tumor-initiating cells by promoting their differentiation.28,29 
Furthermore, the overexpressed hsa-miR-193-3p was found 
to regulate the highly overexpressed PLAU, related to 
β-integrin cell surface interactions, fibroblast growth factor, 
amb2 integrin, osteopontin-mediated, and validated tran-
scriptional targets of the AP1 family members Fra1 and Fra2. 
An example is the highly downexpressed hsa-miR-142-3p 
regulating IL1A involved in IL1-mediated signaling 
pathways.

The invasive phenotype-regulated genes were not directly 
implicated in cancer pathways except for CCND1, CDK6, 
and GAS1, involved in validated targets of C-MYC tran-
scriptional repression. Signaling events were mediated by 
Hedgehog and p73. Validated targets of C-MYC transcrip-
tional activation and repression were connected by CCND2 
and CCND1 regulated by overexpressed hsa-miR-646. 
CCND1 showed involvement in 16 different pathways such 
as integrin-related kinases and Notch and were regulated by 
numerous miRNAs. Pathways specific to the colony-forming 
phenotype included MYC and COL1A2, also involved in 
validated targets of C-MYC transcriptional activation path-
way. The downexpressed hsa-miR-516a-5p, hsa-miR-375  
and hsa-mir-125a-5p regulate MYC along with other lowly 
expressed miRNAs, whereas the overexpressed hsa-miR342-
3p and the down-expressed hsa-miR-569 regulate COL1A2. 
These genes appear to share integrins in angiogenesis, 
β-integrin-cell surface interactions, Notch signaling, and 
interleukin-mediated signaling events. In proliferative phe-
notype, pathways related to validated targets of MYC involve 
CCND2 and NDRG1, respectively, regulated by numerous 
DE miRNAs. High DE miRNA regulating these genes 
included downexpressed hsa-miR-153 and hsa-miR-139-5p 
in case of activation and overexpressed hsa-miR-182 for 
repression. Lowly expressed hsa-miR-186 regulates CCND2, 
TXNIP, CLDN1, and GFRA1 that were involved in many 
different pathways such as IL3 signaling mediated by STAT5. 
Signaling events by Ret tyrosine kinase and nectin adhesion 
pathways were regulated by numerous miRNAs, which indi-
cates potential biomarkers in bone metastatic diseases.30 
Figure 4 reports the pathway landscapes just described.

Discussion
Due to the particularly important microenvironmental proper-
ties of bones affecting immunology, targeted immunomodula-
tion therapies seem to represent promising paths toward OS 
treatment. This is especially true in the presence of genomic 
instability that might potentially affect the capacity to predict 
genes relevant to mestastasis.31 Because epigenetic alterations 
may precede cancer transformation, network approaches have 
been adopted also in previous applications focused on epige-
netic treatment in response to multidrug resistance.32,33 Here, 
instead, we show that through networks evidence is emerging 
from common dynamics at the pathway level for the examined 
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OS phenotypes and from distinct effects. The data were 
obtained by previous extensive work with experimentally 
characterized cell lines and considering previous studies.34,35 In 
particular, following research focused on miRNAs36 it appears 
that influences from these regulators that were identified 
across OS phenotypes clearly indicated a variety of patterns 
centered on different hub genes enriching cancer-specific 
pathway terms.

On one hand, it is clear that from the panel of OS cell lines, 
a pathway-unifying role is played by integrin proteins control-
ling TME interactions through the exchange with ECM. 
Consequently, translational programs to clinic need to address 
such highly complex tumor-stroma circuit whose centrality for 
cancer hallmarks is clear, and whose disruption fosters dys-
regulation toward OS (similar to other cancers) progression. 
These aspects are also key for therapy calibration toward both 
signaling molecules and enzymes, namely, Shh and FAK 
inhibitors.37

On the other hand, when distinct patterns are searched, of 
relevance becomes the role of targets of C-MYC transcrip-
tional repression referring to genes from the Col and Cyclin 
D families, such as MYC and PLAU, which appear especially 
from the colony-forming and invasive phenotypes. Several 
regulations from many significant DE miRNAs and rela-
tively few DE transcription factors were here assembled into 
network configurations, thus establishing their influences in 
the pathway landscapes of each OS phenotype. This is only a 
beginning step because it is clear that the need of deciphering 
the role of regulators such as miRNAs and possibly other 
noncoding RNAs when these are involved in the TME 
dynamics and cancer progression is influenced by their altered 
expression.38

In conclusion, the OS context here examined suggests 
that all the changes occurring due to mutation and microen-
vironmental factors reflect genetic, physiological, and spati-
otemporal heterogeneities that call for adaptive therapies.39 
Perhaps, and not surprisingly, the network-driven OS phe-
notype analyses that we have presented appear as enabling 
tools for the identification of novel targets for therapy. 
Assessing coregulation remains quite a difficult inference 
task, but networks approximate well the underlying dynam-
ics and allow transcription factor and miRNA regulators to 
be cast within pathway contexts. In particular, networks rep-
resent probably the best possible syntheses of such highly 
complex integrative contexts.
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