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Abstract: At present, learning-based citrus blossom recognition models based on deep learning
are highly complicated and have a large number of parameters. In order to estimate citrus flower
quantities in natural orchards, this study proposes a lightweight citrus flower recognition model
based on improved YOLOv4. In order to compress the backbone network, we utilize MobileNetv3 as
a feature extractor, combined with deep separable convolution for further acceleration. The Cutout
data enhancement method is also introduced to simulate citrus in nature for data enhancement.
The test results show that the improved model has an mAP of 84.84%, 22% smaller than that of
YOLOv4, and approximately two times faster. Compared with the Faster R-CNN, the improved
citrus flower rate statistical model proposed in this study has the advantages of less memory usage
and fast detection speed under the premise of ensuring a certain accuracy. Therefore, our solution
can be used as a reference for the edge detection of citrus flowering.

Keywords: citrus flowering rate; light weight; deep learning; edge computing; YOLOv4

1. Introduction

The determination of the flowering period of citrus trees is an important phase for
citrus cultivation, as different agricultural activities are required in different growth periods.
The number of flowers within the statistical scales is the main factor for determining
the flowering period of citrus. At present, the determination of the citrus flowering
period is mainly measured by human beings. It is inefficient and easily interrupted by
subjective factors of observers. In recent years, with the improvement of convolutional
neural networks and the computing power of computers, image recognition based on deep
learning has been used in pedestrian detection [1], vehicle detection [2,3], fruit picking [4–8],
pest detection [9], etc. We believe that similar approaches can be adopted for estimating
the numbers of citrus flowers.

Citrus flower number estimation uses computer vision methods to identify, detect,
and count individual citrus flowers in the image data. Among them, deep learning models
can be divided into those established by target detection algorithms and instance seg-
mentation algorithms [10]. Deng Ying et al. [11] proposed a citrus flower recognition and
flower detection method based on instance segmentation. This method is based on the
optimized Mask R-CNN [12] model to detect and count the number of citrus flowers in the
image. Mask R-CNN is an instance segmentation algorithm, which requires a high level
of calculation. In fact, there is no direct correlation between the shape of citrus flowers
and the number of flowers. Therefore, the target detection method is a better choice for

Sensors 2021, 21, 7929. https://doi.org/10.3390/s21237929 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6417-4646
https://orcid.org/0000-0001-5588-3443
https://doi.org/10.3390/s21237929
https://doi.org/10.3390/s21237929
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237929
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237929?type=check_update&version=2


Sensors 2021, 21, 7929 2 of 15

the task of spending statistics. Target detection can be further divided into one-stage and
two-stage models. The two-stage model is represented by the Faster R-CNN [13–15] series;
the one-stage model is represented by the YOLO [16–18] series. Faster R-CNN has a slow
inference speed and is large in size, which is not suitable for mobile and embedded devices,
while YOLOv4 [19] has a video stream detection speed of 96 frames per second (FPS),
which can achieve the real-time detection effect, which is suitable for practical applications
and outdoor productions.

Target detection is among the most popular research topics and has always been the
focus of research in the industry [20]. In recent years, a variety of detection networks have
emerged, and the YOLO series has been widely recognized for its excellent performance.
However, in industrial applications, the existing detection network is difficult to directly
apply in the industry due to the limited resources of hardware equipment and high
requirements for speed and computation [21]. Therefore, when deploying large models
in resource-constrained devices, model compression is a common approach. Existing
model compression mainly includes model pruning [22,23], knowledge distillation [24],
and quantification [25,26]. Song H et al. [27] proposed a deep compression method to
streamline the network by deleting redundant connections, keeping the most informative
connections, and quantitatively analyzing the weights to share the same weights. This
method can be used to reduce the weight parameter while ensuring accuracy. However,
the training time has not yet been reduced. Additionally, the compressed weights also need
to be retrained to ensure accuracy.

Another effective approach to lightweight detection networks is to use a more lightweight
backbone network. The lightweight feature extraction network, which features SqueezeNet [28],
ShuffleNet [29,30], EfficientNet [31,32], GhostNet [33], and MobileNet [34–36], uses a
lightweight trunk network to improve computing speed while maintaining accuracy. Qin
et al. proposed ThunderNet [37], a mobile-oriented target detection network that uses
a lightweight feature extraction network, SNet (an optimized ShuffleNetV2 [30]), and a
proposed context enhancement module to integrate local and global features. To enhance
the network feature expression ability, the detection network can be applied on the ARM
platform to achieve the real-time detection effect. In 2020, Bochkovskiy A et al. proposed
the YOLOv4 target detection network, which has the advantage of achieving a balance
between speed and accuracy. However, its backbone network (CSPDarknet53) has a deep
layer, which still requires a large number of floating-point operations and storage space
in operation, and the resulting energy consumption has high requirements for the energy
supply of edge computing devices. Therefore, it is necessary to modify its backbone
network. The MobileNet series has been widely used for its excellent performance in
many lightweight feature extraction networks. Compared with ordinary convolution, the
deep separable convolution method proposed in MobileNet can greatly reduce the amount
of computation while ensuring accuracy. Pan S et al. [38] proposed a lightweight steel
surface defect detection method based on improved YOLOv3. The method modified the
backbone network of YOLOv3 to MobileNetv2 to reduce the weight of the model. The
improved model can detect speed on Raspberry Pi 3B. Compared with YOLOv3 [12,39] and
YOLOv3-tiny, it was increased by 2 and 46 times, respectively. However, the detected mAP
value only reached 60.24%. The current version of MobileNet [34–36] has been iteratively
developed into the third-generation MobileNetv3, and its detection speed and accuracy
have also been improved. Therefore, this study used MobileNetv3 as the feature extraction
network, based on the YOLOv4 framework, to achieve accurate statistics of the number of
citrus flowers, and compared the improved network with the original YOLOv4, YOLOv4-
tiny, and Faster R-CNN [12], from the mAP, F1 value, and detection speed. The results
were analyzed using evaluation indicators, such as the parameter amount.

Our contributions are as follows:

1. We modified the backbone network of YOLOv4 to MobileNetv3 and applied the
deep separable convolution method to the neck network, which greatly reduced the
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number of parameters, and the feasibility of this method was also proved in the
ablation experiment.

2. We used many methods to improve the detection accuracy, such as the k-means
clustering algorithm [40] and Cutout [41] data enhancement. The experimental results
prove that these methods have good performance.

3. The improved YOLOv4 performed well in terms of citrus flowering statistics, and the real-
time detection speed reached 11.3FPS, which meets the needs of practical applications.

2. Materials and Methods
2.1. Data Collection and Preprocessing

The data were collected in different ways, such as on-site shooting, internet collection,
and online shooting, on a smart agricultural cloud platform to obtain the required dataset;
the samples from different sources are shown in Figure 1. The main image data were
collected from Jinglongshui Village, Yangcun Town, Boluo County, Huizhou City, and
Guangdong Province, China, using a fixed camera shooting and an internet collection on a
smart agricultural cloud platform. Smartphones were also used to capture 2800 images
from different shooting angles; crawler technology was adopted to download 170 citrus
flower images from search engines, such as Baidu; after screening, 3000 pictures were
obtained, including a total of 9237 real citrus flower sample sets. The LabelImg labeling
tool was used to label all the data, where the flower was labeled as the “flower”, and the
flower bud was labeled as the “bud”. As the data collection time was limited to 3–4 months,
the sample size was not large enough, and the proportion of flowers in the data set was
greater than the proportion of flower buds.
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Figure 1. Images obtained in different ways.

2.2. Data Enhancement

To enlarge and balance the data set, the Skimage image processing library of Python
was introduced to perform random angle flipping, cropping, mirroring, translation, bright-
ness modification, and noise addition for the original 3000 pictures. Furthermore, a Cutout
data enhancement method was adopted, which defined a rectangle with a size of 100 × 100
to occlude the input image and simulate a phenomenon in which flowers in natural or-
chards were blocked, as shown in Figure 2. Within the rectangle, all pixel values were
filled with 0. Through the Cutout operation, the convolutional neural network can better
obtain the global information of the image, instead of relying on a small number of specific
visual features. Additionally, appropriately adjusting the proportion of categories, that is,
increasing the expansion proportion of the pictures containing flower buds, was performed
to balance the sample. Finally, the original data set was expanded to 9610, and the data set
was divided into a training set, validating set and test set in the ratio of 7:2:1, respectively.
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2.3. K-Means Border Clustering

In YOLOv4, the concept of the anchor box is introduced, and the size of the anchor
box is usually set to multiple fixed values. The selection of the size of the anchor box plays
an important role in later object recognition. To improve the efficiency of model training,
this study proposed the K-means clustering method to obtain the anchor box size suitable
for the citrus flower target before training. Figure 3 shows the relationship between k and
Avg IoU with the k range from 2 to 10. With the increase in the k value, the trend of Avg
IoU was close to stable, and the point with the largest slope was considered as the best k
value. Although an increase in the value of k also means an increase in the recall rate, the
slope of the point will gradually decrease. In order to balance the recall rate and the best k
value, k = 5 was selected as the number of anchor boxes. When the input image size was
608 × 608 pixels, the dimensions of these 5 anchor boxes were 23 × 22, 42 × 39, 64 × 62,
104 × 84, and 165 × 141, respectively.
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2.4. Lightweight YOLOv4 Model

The structure of YOLOv4 is composed of the backbone network CSPDarknet53, spatial
pyramid pooling (SPP), path aggregation network (PANet), and YoLohead, with many
network layers and a large number of model parameters. In order to speed up the de-
tection of the network while maintaining the detection accuracy for edge computing, the
original YOLOv4 was modified by replacing the backbone network with MobileNetv3 and
replacing ordinary convolution with deep separable convolution in the neck network. The
lightweight YOLOv4 network is shown in Figure 4.
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In backbone network optimization, unlike the original backbone network CSPDark-
net53, this study adopted MobileNetv3, which is composed of a series of neck structure
blocks and inverted residual units instead of the residual component used by CSPDark-
net53. The inverse residual component first uses pointwise convolution (PWC) to increase
the number of dimensionality channels, then uses depthwise convolution (DWC) for feature
extraction, and finally uses PWC for dimensionality reduction compression. This inverted
bottleneck structure enables feature extraction to be performed in high dimensions, so as to



Sensors 2021, 21, 7929 6 of 15

extract more feature information and reduce the number of parameters while maintaining
high precision.

In Figure 4, DWConv refers to the use of deep separable convolution; Mult refers to the
depth multiplication of the one-dimensional matrix obtained through two full connection
layers and the original matrix, that is, the application of an attention mechanism to each
channel of the characteristic matrix; Concat-operation refers to the Concat operation in
depth. The DBL (marked in purple) consists of a deep separable convolutional layer, batch
normalization, and Leaky_ReLU activation functions. The CBH (marked in white) consists
of a convolutional layer, batch normalization, and h_swish activation functions. The CB
(marked in brown) consists of a convolutional layer and batch normalization. DB consists
of a convolution layer and batch normalization. The CBL (marked in dark grey) module is
composed of a convolutional layer (Conv), batch normalization (BN), and a leaky ReLU
activation function.

In the convolutional optimization of the neck network, deep separable convolution
was applied to the neck network, which is composed of DWC and PWC. The channel
number of the convolution kernel was equal to that of the input feature matrix, and the
channel number of the output feature matrix was equal to one of the convolution kernels
used. The number of channels of the DWC convolution kernel was one; that is, for the
input feature layer, each channel used only one convolution kernel for deconvolution, so
the number of output channels was also equal to the number of input channels. PWC
used a 1 × 1 ordinary convolution kernel for convolution. After PWC, the number of
channels of the output feature matrix was equal to the number of PWC convolution
kernels used. Figure 5a,b show ordinary convolution and the process of DWC + PWC.
Equations (1) and (2) are the parameter quantities of ordinary convolution and DW + PW,
respectively, where Hi, Wi, and Di refer to the height, width, and depth of the input feature
matrix, respectively; Hk and Wk refer to the height and width of the convolution kernel,
respectively; Do refers to the depth of the output feature matrix.

q1 = Hi × Wi × Di × Hk × Wk + Di × Do × Hk × Wk (1)

q2 = Hi × Wi × Di × Do × Hk × Wk (2)

From Equations (1) and (2), it can be concluded that the ratio of the calculation amount
of the depth separable convolution and the standard convolution is as follows:

Hi × Wi × Di × Hk × Wk + Di × Do × Hk × Wk
Hi × Wi × Di × Do × Hk × Wk

=
1

Do
+

1
Hi × Wi

(3)

We studied the effect of the above methods on the number of parameters. When only
the backbone network of YOLOv4 was replaced by MobileNetv3, the number of parameters
was reduced by 93 MB, which is 38% less than the original. When the 3 × 3 ordinary
convolution in the original YOLOv4 was modified into deeply separable convolution, the
number of parameters was reduced by 108 MB, which is 44% less than the original. When
replacing the backbone network of YOLOv4 with MobileNetv3 and using deep separable
convolution in the neck, the number of parameters was reduced by 190 MB, which is
77% less than the original. It can be seen that modifying the backbone and using depth
separable convolution in the neck can greatly reduce the parameters.
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3. Experiments and Results
3.1. Experimental Environment Setting

The training environment was composed of a processor (Intel Xeon CPU E5-2620 v4;
Intel, Santa Clara, CA, USA) and Graphics Processing Unit (Nvidia Titan X; Nvidia, Campus
in Arizona, USA). The reasoning environment adopted edge computing equipment [42,43]
(Nvidia Jetson AGX Xavier; Nvidia, Campus in Arizona, USA) and a camera (DaiPu
DP-UK100; DaiPu, Beijing, China), as shown in Figure 6. The software environment was
composed of the Ubuntu18.04 operating system, Python programming language, Pycharm
compilation environment, and Pytorch1.7. deep learning framework.
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For comparison, Faster R-CNN [44], YOLOv4, and YOLOv4-tiny were adopted to
compare their schemes. To speed up the convergence of the model, the transfer learning
method [45,46] was adopted for the four models, and the weight files obtained from training
on the PascalVOC data set were used for pre-training. Mosaic data enhancement was used
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in the training process; that is, four pictures were loaded at a time, and operations such as
random rotation, color gamut change, and zooming were performed to regenerate new
images. The regenerated images fused the background information of different images,
reducing the dependence of the model on the location of the target and improving the
generalization ability of the model.

The four networks on the same training set were trained in the same way. The input
image size was 608 × 608, and each batch contained 32 images. The iteration time was
set to 75,000. The initial learning rate was set to 0.001. The cosine annealing was used
to adjust the learning rate, which made the model more diversified and produced better
training effects.

3.2. Model Evaluation

The prediction accuracy rate (P), recall rate (R), average precision (mAP), and F1 value
were used as evaluation indicators. The formulas of P, R mAP, and F1 scores are shown in
Equations (4)–(8).

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

where TP refers to the number of positive samples that were predicted correctly, FN refers
to the number of samples that were missed, FP refers to the number of samples that were
wrongly detected, and TN refers to the number of negative samples that were predicted to
be correct.

AP =
∫

PRdr (6)

mAP =
1
C

C

∑
i=1

APi (7)

F1 = 2 × P × R
P + R

=
2TP

2TP + FP + FN
(8)

where C refers to the number of categories, and APi is the AP value of the i-th category.

3.3. Ablation Experiment

In order to verify the optimization effect of each module used in the improved
YOLOvV4 on YOLOv4, this study conducted ablation experiments. First, the 3 × 3 convolu-
tion in the feature fusion part of YOLOv4 was replaced with a depth separable convolution;
then, MobileNetv3 and tiny structures were added separately on the basis of the model;
finally, the improved YOLOv4 algorithm was compared and verified. Table 1 shows the
results of ablation experiments on the improved YOLOv4. In the table, MobileNetv3 and
tiny represent the replacement of the CSPDarknet53 backbone network in YOLOv4 with
the MobileNetv3 structure and the tiny structure, and dw represents the replacement of all
3 × 3 convolutions in the feature fusion network with depth separate convolution. The
ablation experiments compared the performance with the mAP, parameter quantity, model
size, and real-time monitoring FPS under various model structure combinations.

Compared with the 244 M size of the original YOLO V4, the model size of YOLO
V4+dw decreased by 108 M after replacing the 3 × 3 convolution in the feature fusion
network with the depth separable convolution, while the mAP only decreased by 1.6%,
which proves the effectiveness of the separable convolution structure. After replacing
CSPDarknet53 with MobileNetv3 and tiny separately in the model of YOLO V4+dw, the
model size further decreased to only 53.7 and 22.4 M, respectively, but the mAP of the
tiny scheme decreased to 64.42%, which does not meet the accuracy requirement of citrus
flower detection; however, the mAP of the MobileNetv3 scheme was 84.84%, which only
decreased by 2.56% and reached the requirement of citrus flower detection accuracy, which
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means that a high mAP can be guaranteed while greatly reducing the size of the model
and the number of parameters.

Table 1. Improved YOLOv4 ablation experiment.

Network Model Mean Average
Precision/% Parameter Detection

Speed/FPS Weight/MB

YOLOv4 87.4 63,943,071 6.2 244
YOLOv4 + dw 85.8 35,690,655 11.1 136

YOLOv4 + dw + tiny 64.42 5,918,006 23.5 22.4
Improved YOLOv4

(YOLOv4 + dw + mobileNetv3) 84.84 11,309,039 11.6 53.7

The real-time detection speed comparison between the improved YOLOv4 and YOLOv4
is shown in Figure 7. The improved YOLOv4 real-time detection FPS was 11.6, while the
real-time detection FPS of YOLOv4 was only 6.2; that is, the frame rate per second of
the improved YOLO V4 was 46.5% higher than that of YOLOv4, greatly improving the
real-time target detection speed.
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3.4. Analysis of Training Loss and mAP

The overall loss values of the four models in Figure 8 show a downward trend,
indicating that the fitting degree of the model to the characteristics of the citrus flower
target gradually improved. The citrus flower detection model obtained by Faster R-CNN
training had the smallest loss value and the highest degree of fitting to the training set. The
improved YOLOv4 proposed in this study showed a more obvious decline in loss value
and a faster convergence rate than the original YOLOv4, indicating that the improved
YOLOv4 feature fitting is faster.

The changes in mAP of the four models with the increase in the number of iterations
are shown in Figure 9. In the training, the mAP of the four models all showed an upward
trend. Among them, Faster R-CNN performed best, and the improved YOLOv4 was similar
to YOLOv4 and was significantly better than YOLOv4-tiny.
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3.5. Comparison of Four Models

During the testing process, the weights of networks were saved every 3000 iterations,
and the saved weights were tested and evaluated in turn. Table 2 shows the test results
using the last saved weight. Compared with YOLOv4 and Faster R-CNN, the improved
YOLOv4 reduced the mAP by only 2.56% and 5.43%, but its detection speed increased
by 87% and 403%, respectively. The original YOLOv4 obtained a detection frame rate of
only 6.4FPS, which could not achieve real-time detection when deploying edge computing
devices. The speed of the improved YOLOv4 increased by 87.09%, basically realizing
real-time detection, and the parameters were only 20% of YOLOv4. The parameters
and detection speed of the improved YOLOv4 were slightly lower than those of the
YOLOv4-tiny algorithm, but its mAP was 20.42% higher than that of the YOLOv4-tiny
algorithm, and the false detection rate was high, which makes it difficult to meet the
actual requirements. The improved YOLOv4 achieved a better balance between detection
accuracy and light weight and achieved accurate detection while simplifying the model
and improving the speed.
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Table 2. Comparison of detection results of different models.

Network Model Mean Average
Precision/% F1 Score/% Detection

Speed/FPS Weight/MB

YOLOv4 87.4 87.0 6.2 244
Improved YOLOv4 84.84 81.0 11.6 53.7

YOLOv4-tiny 64.42 61.0 23.5 22.4
Faster R-CNN 90.27 91.0 2.3 108.0

3.6. Testing Results under Different Citrus Flower Densities

In the actual orchard environment, the flower density and flower occlusion affect the
recognition accuracy of the model. To test the improved YOLOv4’s detection performance
under different citrus flower densities, this study used 150 sparse, medium, and dense
citrus flower data sets for testing. The test results are shown in Table 3. In the case of
sparse and medium citrus flowers, the mAP of the improved YOLOv4 reached 95.5% and
88.1%, and the F1 value reached 94% and 87.5%, indicating that the improved YOLOv4
has a strong detection performance. In the case of dense citrus flowers, their mAP and F1
values were relatively lower. This is due to the fact that MoileNetv3 has limited feature
extraction capabilities, especially for small targets such as flower buds. One of the reasons
for the missed inspection of flower buds is that the total number of flower buds was small,
which led to insufficient features being learned by the model; another reason is that the
very small targets were not difficult to label during manual labeling.

Table 3. Test results under different citrus flower densities.

Density mAP@0.5/%
Mean Average Precision F1 Score/%

Few 87.4 87.0
Middle 84.84 81.0

Intensive 64.42 61.0

3.7. Testing Results under Different Environments

In the natural environment, due to the influence of the climate and camera angle, the
captured citrus flower images may be overexposed or not bright enough. To verify the
detection effect of the improved YOLOv4 under special circumstances, this experiment
selected three sets of images from the test set. The three sets of image data represent the
simple background, cluttered background, and low luminosity, respectively. Figure 10
shows the effect of four models under the above conditions. The detection boxes labeled
“flower” in the image indicate that the target detected is a citrus flower, and the detection
boxes labeled “bud” indicate that the target detected is a citrus bud. The number of
buds and flowers present in each image is shown in the upper left corner of each image.
Compared with YOLOv4, the proposed improved YOLOv4 method in this study detected
more buds for the simple background with many flowers and obtained a proximity effect
for the low-luminosity image; compared with YOLOv4-tiny, the proposed method showed
better detect performance, especially for low-luminosity cases; compared with Faster R-
CNN, the proposed network is light and has a high speed, as shown in Table 1, but at the
cost of a slightly inferior detection effect. From the comparison of Figure 9 and Table 1, a
good compromise was achieved through the proposed method in this study.
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Figure 10. The detection effects of different models under different conditions. (a) Original images.
(b) The detection results of YOLOv4. (c) The detection results of improved YOLOv4. (d) The detection
re-sults of YOLOv4-tiny. (e) The detection results of Faster R-CNN.
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4. Discussion and Conclusions
4.1. Discussion

Figure 7 shows that the improved YOLOv4 proposed in this study has faster conver-
gence and feature-fitting speed than the original YOLOv4. The improved YOLOv4 has an
accuracy rate of 84.84% and a detection speed of 11.6FPS, which meets the performance
requirements of practical applications. As regards YOLO-tiny, the detection speed of
YOLO-tiny is 23.5 FPS, which is faster than ours, but its accuracy is only 64.42% (20.42%
lower). Our solution achieves a better balance between accuracy and speed. Furthermore,
in Table 2, the tests under different densities (few, middle and intensive) show that the
model accuracy is 87.4%, 84.84%, and 64.42%. Our model is good enough to be applied
in automated agricultural robotics, but there is still room for improvement under highly
intensive scenarios.

The K-means clustering unsupervised learning method used to obtain the anchor
box size suitable for the citrus flower target improved the efficiency of model training. To
classify data that are not known in advance into several categories, unsupervised learning
can better perform data classification tasks. The data were aggregated into several groups
through cluster analysis, and clustering does not require data training or learning. As
shown in Figure 1, as the value of k increases, the value of IOU also increases, but the larger
the k-value, the greater the complexity of the model. In order to balance the accuracy and
complexity of the model, k = 5 was selected (the point with the largest slope) to be used as
the number of anchor boxes. In this study, there are still shortcomings in the application of
clustering unsupervised learning methods. In deep learning model training, the volume
of data required for training is massive, and some invalid data will interfere with the
accuracy of model recognition. Therefore, this study can use the clustering method to clear
the data before training, eliminate useless interference data, and optimize the accuracy of
model recognition.

In the construction of smart agriculture, the volume of data of edge equipment and
the demand for data transmission are massive. Using edge computing to analyze edge
data can effectively deal with data explosion and reduce network traffic pressure. In
this study, a lightweight citrus flower recognition model was deployed using an intelli-
gent station for citrus flower edge detection. This method reduces the data flow from
the equipment to the cloud data center, shortens the response time of the equipment,
realizes real-time identification, and provides a certain reference for the construction of
intelligent agriculture.

4.2. Conclusions

This study proposes an improved YOLOv4 method to estimate the number of citrus
flowers. We replaced MobileNetv3 with CSPDarknet53 in the backbone network and
replaced deep separable convolution with standard convolution in the neck. The resultant
model has a smaller footprint, lower overhead, and comparably higher accuracy.

(1) The improved YOLOv4 can maintain the detection performance of the original
YOLOv4. In the case of sparse and medium citrus flowers, mAP can reach 95.5% and
88.1%, the number of weights is compressed by four times, and the detection speed
is increased by 87%, indicating that the improved YOLOv4 can adapt to different
scenarios and has high robustness.

(2) The deployment experiment shows that the speed of video stream detection on Nvidia
Jetson AGX Xavier reached 11.3 FPS, indicating that the improved YOLOv4 has a
smaller overhead. Compared with YOLOv4-tiny, the proposed method can also satisfy
the practical requirement, while its mAP was 20.42% higher than the YOLOv4-tiny
algorithm.
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