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Abstract: Four previously undescribed iridoid glycosides neocornuside A–D (1–4), along with six
known ones (5–10), were isolated from Cornus officinalis fruit. Their structures were elucidated by
extensive spectroscopic (NMR, UV, IR, and MS) analysis and comparison with data reported in the
literature. All isolates were assessed for their antidiabetic activity on the relative glucose consumption
in insulin-induced insulin-resistant HepG2 cells. The results showed that compounds 1, 3, and 7
exhibited significant antidiabetic activities with EC50 values of 0.582, 1.275, and 0.742 µM, respectively.
Moreover, compounds 1, 3, and 7 could improve the ability of 2-NBDG uptake of insulin-induced
HepG2 cells.

Keywords: Cornus officinalis; iridoid glycosides; structure elucidation; antidiabetic activity

1. Introduction

Cornus officinalis (Cornaceae), known as “Shanzhuyu” in Chinese, is a frequently
used traditional Chinese medicine and widely distributed in eastern Asia, mainly in
China, Korea, and Japan [1]. As a medicinal and food-homologous traditional Chinese
medicine, previous phytochemical research demonstrated the occurrences of structurally
diverse iridoids, flavonoids, lignans, tannins, terpenoids, and phenolic acids [2–6], with a
wide range of pharmacological activities, including antidiabetic, anti-Alzheimer’s disease,
anti-inflammatory, anti-tumor, hepatoprotective, neuroprotective, anti-oxidative, and anti-
bacterial activities [7–13].

Diabetes mellitus (DM) is a major health problem for the people all over the world. In
recent years, the global incidence of diabetes has increased rapidly due to many factors such
as the improvement of living standards, changes in dietary structure, increasingly stressful
rhythm of life, a less active and more sedentary lifestyle, and diabetes has become the third
most serious chronic disease threatening human health after tumors and cardiovascular
disease [14,15]. It has been linked to oxidative stress, which arises mainly through oxidation,
oxidative degradation of glycated proteins, and nonenzymatic protein glycation [14]. Plant
products and their derivatives have been widely accepted to possess many pharmacological
activities, such as anti-inflammatory, antimicrobial, anticancer and antidiabetic activity.
Coptis chinensis Franch (Ranunculaceae) polysaccharide (CCPW) can produce antidiabetic
activity in rats with T2DM through its antioxidative effect, which is closely related to the
JNK/IRS1/PI3K pathway [16]. Three polysaccharides were extracted from Suillellus luridus
(Suilu.A, Suilu.C, and Suilu.S) which exhibited significant antidiabetic activity in diabetic
mice induced by streptozotocin [17]. Moreover, the methanolic extract of Geigeriaalata has
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antidiabetic activity and it is suggested that this antidiabetic activity is due to enhanced
insulin secretion, modulation of β-cell function, and improvement of antioxidant status [18].
Thus, traditional medicines have been proved to be a vital source of future drugs to
prevent and treat many diseases, including diabetes mellitus. Iridoids are one of the
major and characteristic ingredients of Cornus officinalis. The previous study proved the
reasonableness of using iridoids isolated from Cornus officinalis to treat diabetes [15,19].
C. officinalis extracts and pure compounds could ameliorate diabetes-associated damages
and complications. Oral administration of loganin and morroniside decreased fasting
blood glucose levels in diabetes mellitus mice. Ursolic acid exhibited the highest reactive
oxygen species scavenging activity and α-glucosidase inhibitory activity [7]. In addition,
loganic acid (LA) exhibited antioxidant properties in relation to STZ-induced DM. It may
indicate LA as one of the plant components in the development of new drugs that will treat
metabolic and functional disorders in leukocytes under diabetes [20]. In recent years, there
is growing interest in the utilization of natural products as potential therapeutic agents for
treating DM. Therefore, in order to find natural products with antidiabetic activity from
this plant, we systematically studied the fruits of Cornus officinalis. In our recent study,
four new iridoid glycosides (1–4) and six known ones (5–10) were obtained from Cornus
officinalis (Figure 1). In addition, the in vitro antidiabetic activity of the isolated compounds
was evaluated.
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Figure 1. Chemical structures of compounds 1–10 isolated from the fruits of Cornus officinalis.

2. Results and Discussion
2.1. Structure Elucidation

Compound 1 was assigned a molecular formula of C22H32O14, as determined from
HRESIMS (m/z: 543.1689 [M + Na]+) and 13C NMR data (Table 1). The 1H NMR and 13C
NMR spectrum displayed characteristic resonances for the H-1/C-1 of iridoid [δH 5.20 (1H,
d, J = 4.5 Hz, H-1), δC 95.3 (C-1)], and the down field of H-3 [δH 7.38 (1H, d, J = 1.0 Hz,
H-3)] indicated the presence of a 4-substituted enol-ether system. In addition, the 1D NMR
spectrum of 1 showed the presence of one methylene signal at [δH 2.72 (1H, dd, J = 15.6,
5.5 Hz, H-14a), 2.63 (1H, dd, J = 15.6, 6.9 Hz, H-14b); δC 39.3 (C-14)], one oxygenated
methine signal at [δH 4.39 (1H, dd, J = 12.3, 5.8 Hz, H-15); δC 67.0 (C-15)], one methoxy
signal at [δH 3.64 (3H, s, H-17); δC 51.8 (C-17)], and a β-D-glucopyranosyl [δH 4.46 (1H, d,
J = 7.9 Hz, H-1′); δC 98.7 (C-1′), 73.2 (C-2′), 76.8 (C-3′), 70.1 (C-4′), 77.4 (C-5′), 61.2 (C-6′)]
(Table 1). The sugar moiety of compound 1 was determined as D-glucose by chiral-HPLC
analysis after acid hydrolysis. The above information suggested 1 to be a iridoid glucoside,
which was similar to loganin [21], except for the appearance of one methylene [δH 2.72,
2.63 (H-14); δC 39.3 (C-14)], one oxygenated methine [δH 4.39 (H-15); δC 67.0 (C-15)], one
methoxy [δH 3.64 (H-17); δC 51.8 (C-17)], and two carbonyl carbons [δC 169.6 (C-13), 173.2
(C-16)]. From the 1H-1H COSY correlations of H-14 (δH 2.72, 2.63) with H-15 (δH 4.39),
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it can be deduced that H-14 was directly attached to H-15. In the HMBC spectrum of 1,
correlations of active hydrogen signal (δH 5.80, 15-OH) with C-15 (δC 67.0) and C-16 (δC
173.2) indicated that H-15 was connected to C-16. Moreover, the H-14 (δH 2.72, 2.63) and
H-17 (δH 3.64) were determined to be linked to C-13 and C-16 by HMBC correlations of
methylene protons at δH 2.72, 2.63 and methoxy protons at δH 3.64 to C-13 (δC 169.6), and
C-16 (δC 173.2), respectively. Finally, HMBC correlations from H-7 (δH 5.04) to C-13 (δC
169.6), suggested that the oxygenated methine H-7 was connected to C-13 (Figure 2). In
the NOESY spectrum, the correlations between H-1 and H-6 (δH 1.67)/H-8 indicated that
H-8 was α-oriented, Me-10 was β-oriented; the correlations between H-6 (δH 1.67) and H-7
indicated that H-7 was α-oriented. Meanwhile, the correlations from H-5 to H-9 and H-6
(δH 2.13) confirmed that H-9 and H-5 were β-oriented (Figure 3). Thus, compound 1 was
elucidated as shown in Figure 1, and named neocornuside A. More details are shown in
Supplementary Materials.

Table 1. 1H NMR (500 MHz) and 13C NMR (125 MHz) data (δ in ppm, J in Hz) for compounds 1–2.

1 a 2 b

Position 13C 1H (J in Hz) 13C 1H (J in Hz)

1 95.3 5.20 d (4.5) 97.5 5.29 d (4.9)
3 150.9 7.38 d (1.0) 152.6 7.43d (1.3)
4 111.4 113.1
5 30.7 2.94 m 32.6 3.10 q (8.0)

6 38.7 2.13 m
1.67 m 40.3 2.37 ddd (14.7, 8.0, 1.5)

1.76 ddd (14.7, 8.0, 5.0)
7 77.0 5.04 m 79.9 5.21 t (4.6)
8 38.9 1.97 m 40.9 2.14 m
9 45.2 1.92 m 46.9 2.07 td (8.9, 4.9)

10 13.1 0.95 d (6.7) 13.6 1.07 d (6.8)
11 166.8 169.3
12 51.1 3.62 s 52.3 3.69 s
13 169.6 174.1

14 39.3 2.72 dd (15.6, 5.5)
2.63 dd (15.6, 6.9) 68.8 4.52 dd (7.0, 5.2)

15 67.0 4.39, dd (12.3, 5.8) 40.0 2.83 dd (16.0, 5.2)
2.74 dd (16.0, 7.0)

16 173.2 172.4
17 51.8 3.64 s 51.7 3.70 s
1′ 98.7 4.46 d (7.9) 100.2 4.66 d (7.9)
2′ 73.2 2.97 m 74.7 3.19 m
3′ 76.8 3.15 m 78.0 3.37 t (8.9)
4′ 70.1 3.03 m 71.6 3.26 m
5′ 77.3 3.14 m 78.4 3.32 m

6′ 61.2 3.68 m
3.44 m 62.8 3.90 dd (11.9, 2.1)

3.65 dd (11.9, 6.2)
a In DMSO-d6; b In MeOD.
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Compound 2 possessed the same molecular formula as 1 according to its HRESIMS at
m/z 543.1685 [M + Na]+ (Calcd. 543.1684). To the structure of compound 2, except for the
chemical shifts of C-14 (2, δC 68.8; 1, δC 39.3) and C-15 (2, δC 40.0; 1, δC 67.0), other signals
were very close to those of 1 in the 1D NMR spectra (Table 1). The evident difference was
that the methoxy signal H-17 (δH 3.70) was connected to C-15 (δC 40.0) in compound 2
but not C-14 (δC 68.8). The deduction can be further supported by the HMBC correlations
between H-17 (δH 3.70) and C-15 (δC 40.0) (Figure 2). The sugar moiety in 2 was also
identified as D-glucose by acid hydrolysis and chiral-HPLC analysis. Thus, the structure of
compound 2 was defined as shown in Figure 1, and named neocornuside B. More details
are shown in Supplementary Materials.

The molecular formula of compound 3, C34H50O20, was determined based on its
HRESIMS at m/z 801.2795 [M + Na]+ and 13C NMR data (Table 2). The NMR data of 3
were consistent with those of cornuside L [21], except for the chemical shifts of C-7 (3,
δC 79.5; cornuside L,δC 75.1), C-8 (3, δC 44.3; cornuside L,δC 42.5), and C-10 (3, δC 17.6;
cornuside L,δC 13.8). All of the aforementioned information and signals of HMBC, COSY,
and HSQC confirm the planar structure of 3 was identical to cornuside L. However, the
NOESY correlations (Figure 3) showed that H-5, H-7, H-9, H-10, H-5′′, H-7′′, H-8′′, and H-
9′′ were β-oriented, whereas, H-1, H-8, H-1′′, and H-10′′ were α-oriented. Acid hydrolysis
and chiral-HPLC analysis suggested the sugar moiety was D-glucose. Thus, the structure
of compound 3 was determined and named neocornuside C, as shown in Figure 1. More
details are shown in Supplementary Materials.

The molecular formula of compound 4 was confirmed as C35H52O21 with 10 degrees
of unsaturation on the basis of HRESIMS (m/z: 831.2913 [M + Na]+) and 13C NMR (Table 2).
Its 1D NMR data (Table 2) were similar to those of cornuside I [21], with the difference of
chemical shifts of C-2′ (4, δC 73.5; cornuside I,δC 83.1) and C-3′ (4, δC 86.8; cornuside I,δC
76.6). The C-3′ of the 7β-O-methylmorroniside unit was linked to C-7′′ of the α-morroniside
unit by an ether linkage based on the HMBC correlations between H-7′′ at δH 4.80 and C-3′

at δC 86.8. The sugar moieties in 4 were also identified as D-glucose by acid hydrolysis and
chiral-HPLC analysis. Consequently, the structure of compound 4 was determined and
named neocornuside D, as shown in Figure 1.

Along with the above new compounds, six known iridoid glycosides were iso-
lated from fruits of Cornus officinalis and identified as 8-epiloganic acid (5) [22], 7α-O-
methylmorroniside (6) [15], 7-epiloganin (7) [23], 7-dehydrologanin (8) [24], 7β-O-methyl-
morroniside (9) [25], loganin (10) [21].

2.2. Cell Viability of Compounds 1–10 in Insulin-Induced HepG2 Cells

Compounds 1–10 had no cytotoxic effect on the cell viability of insulin-induced HepG2
cells in the concentration of 10 µM, which was observed by CCK-8 assay (Figure 4). Insulin
has mitogenic and anti-apoptotic properties, which promote the progression and metastasis
of many types of cancer cells [26,27]. Thus, the compounds and insulin promoted the
proliferation of HepG2 cells (Figure 4), and clinical management to counteract insulin
resistance and subsequent hyperinsulinemia should be taken to prevent the development
of hepatocellular carcinoma (HCC) [28].
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Table 2. 1H NMR (500 MHz) and 13C NMR (125 MHz) data (δ in ppm, J in Hz) for compounds 3–4 a.

3 4

Position 13C 1H (J in Hz) 13C 1H (J in Hz)

1 97.9 5.24 d (5.3) 95.4 5.91 d (3.2)
3 152.4 7.41 s 154.5 7.53 s
4 113.3 111.7
5 31.2 2.88 m 28.0 3.10 dt (12.9, 4.7)

6 41.9 2.51 dt (12.9, 7.4)
1.34 m 33.8 1.93 dd (13.9, 4.7)

1.52 td (13.9, 3.9)
7 79.5 3.68 m 99.5 4.74 d (3.7)
8 44.3 1.72 q (7.5) 66.3 4.29 qd (6.6, 2.1)
9 46.9 1.84 m 40.4 1.83 m

10 17.6 1.16 d (6.7) 19.6 1.34 d (6.9)
11 169.5 168.7
12 51.8 3.69 s 51.8 3.70 s
13 55.0 3.35 s
1′ 100.6 4.65 d (8.0) 99.7 4.87 d (8.7)
2′ 74.7 3.22 m 73.5 3.25 m
3′ 78.5 3.29 m 86.8 3.57 t (8.9)
4′ 71.0 3.40 m 70.4 3.38 m
5′ 78.0 3.38 m 78.0 3.37 m

6′ 68.7 4.02 m
3.93 dd (11.9, 1.5) 62.6 3.90 dd (12.2, 1.8)

3.87 dd (12.2, 6.5)
1′′ 95.9 5.82 d (9.2) 96.1 5.89 d (3.3)
3′′ 154.5 7.52 s 154.6 7.52 s
4′′ 110.8 110.8
5′′ 31.9 2.85 m 32.1 2.87 dt (12.9, 4.6)

6′′ 35.7 2.07 ddd (13.2, 4.6, 2.2)
3.65 td (13.2, 9.7) 35.4 2.26 ddd (13.4, 4.6, 2.4)

1.32 m
7′′ 104.0 4.71 dd (9.7, 2.2) 103.8 4.80 dd (9.7, 2.4)
8′′ 74.3 3.98 dd (6.9, 2.3) 74.5 4.05 qd (6.4, 1.7)
9′′ 40.1 1.81 m 40.0 1.81 m

10′′ 19.7 1.41 d (6.80) 19.7 1.45 d (6.8)
11′′ 168.6 168.6
12′′ 51.7 3.70 s 51.7 3.71 s
1
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Figure 3. The key NOESY correlations of compounds 1–4. 

The molecular formula of compound 4 was confirmed as C35H52O21 with 10 degrees 

of unsaturation on the basis of HRESIMS (m/z: 831.2913 [M+Na]+) and 13C NMR (Table2). 

Its 1D NMR data (Table2) were similar to those of cornuside I [21], with the difference of 

chemical shifts of C-2′ (4, δC 73.5; cornuside I,δC 83.1) and C-3′ (4, δC 86.8; cornuside I,δC 

76.6). The C-3′ of the 7β-O-methylmorroniside unit was linked to C-7″ of the α-mor-

roniside unit by an ether linkage based on the HMBC correlations between H-7″ at δH 4.80 

and C-3′ at δC 86.8. The sugar moieties in 4 were also identified as D-glucose by acid hy-

drolysis and chiral-HPLC analysis. Consequently, the structure of compound 4 was de-

termined and named neocornuside D, as shown in Figure 1. 

Along with the above new compounds, six known iridoid glycosides were isolated 

from fruits of Cornus officinalis and identified as 8-epiloganic acid (5) [22], 7α-O-methyl-

morroniside (6) [15], 7-epiloganin (7) [23], 7-dehydrologanin (8) [24], 7β-O-methylmor-

roniside (9) [25], loganin (10) [21]. 

2.2. Cell Viability of Compounds 1–10 in Insulin-Induced HepG2 Cells 

Compounds 1–10 had no cytotoxic effect on the cell viability of insulin-induced 

HepG2 cells in the concentration of 10 μM, which was observed by CCK-8 assay (Figure 

4). Insulin has mitogenic and anti-apoptotic properties, which promote the progression 

and metastasis of many types of cancer cells [26,27]. Thus, the compounds and insulin 

promoted the proliferation of HepG2 cells (Figure 4), and clinical management to coun-

teract insulin resistance and subsequent hyperinsulinemia should be taken to prevent the 

development of hepatocellular carcinoma (HCC) [28]. 
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The molecular formula of compound 4 was confirmed as C35H52O21 with 10 degrees 

of unsaturation on the basis of HRESIMS (m/z: 831.2913 [M+Na]+) and 13C NMR (Table2). 

Its 1D NMR data (Table2) were similar to those of cornuside I [21], with the difference of 

chemical shifts of C-2′ (4, δC 73.5; cornuside I,δC 83.1) and C-3′ (4, δC 86.8; cornuside I,δC 

76.6). The C-3′ of the 7β-O-methylmorroniside unit was linked to C-7″ of the α-mor-

roniside unit by an ether linkage based on the HMBC correlations between H-7″ at δH 4.80 

and C-3′ at δC 86.8. The sugar moieties in 4 were also identified as D-glucose by acid hy-

drolysis and chiral-HPLC analysis. Consequently, the structure of compound 4 was de-

termined and named neocornuside D, as shown in Figure 1. 

Along with the above new compounds, six known iridoid glycosides were isolated 

from fruits of Cornus officinalis and identified as 8-epiloganic acid (5) [22], 7α-O-methyl-

morroniside (6) [15], 7-epiloganin (7) [23], 7-dehydrologanin (8) [24], 7β-O-methylmor-

roniside (9) [25], loganin (10) [21]. 

2.2. Cell Viability of Compounds 1–10 in Insulin-Induced HepG2 Cells 

Compounds 1–10 had no cytotoxic effect on the cell viability of insulin-induced 

HepG2 cells in the concentration of 10 μM, which was observed by CCK-8 assay (Figure 

4). Insulin has mitogenic and anti-apoptotic properties, which promote the progression 

and metastasis of many types of cancer cells [26,27]. Thus, the compounds and insulin 

promoted the proliferation of HepG2 cells (Figure 4), and clinical management to coun-

teract insulin resistance and subsequent hyperinsulinemia should be taken to prevent the 

development of hepatocellular carcinoma (HCC) [28]. 
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The molecular formula of compound 4 was confirmed as C35H52O21 with 10 degrees 

of unsaturation on the basis of HRESIMS (m/z: 831.2913 [M+Na]+) and 13C NMR (Table2). 

Its 1D NMR data (Table2) were similar to those of cornuside I [21], with the difference of 

chemical shifts of C-2′ (4, δC 73.5; cornuside I,δC 83.1) and C-3′ (4, δC 86.8; cornuside I,δC 

76.6). The C-3′ of the 7β-O-methylmorroniside unit was linked to C-7″ of the α-mor-

roniside unit by an ether linkage based on the HMBC correlations between H-7″ at δH 4.80 

and C-3′ at δC 86.8. The sugar moieties in 4 were also identified as D-glucose by acid hy-

drolysis and chiral-HPLC analysis. Consequently, the structure of compound 4 was de-

termined and named neocornuside D, as shown in Figure 1. 

Along with the above new compounds, six known iridoid glycosides were isolated 

from fruits of Cornus officinalis and identified as 8-epiloganic acid (5) [22], 7α-O-methyl-

morroniside (6) [15], 7-epiloganin (7) [23], 7-dehydrologanin (8) [24], 7β-O-methylmor-

roniside (9) [25], loganin (10) [21]. 

2.2. Cell Viability of Compounds 1–10 in Insulin-Induced HepG2 Cells 

Compounds 1–10 had no cytotoxic effect on the cell viability of insulin-induced 

HepG2 cells in the concentration of 10 μM, which was observed by CCK-8 assay (Figure 

4). Insulin has mitogenic and anti-apoptotic properties, which promote the progression 

and metastasis of many types of cancer cells [26,27]. Thus, the compounds and insulin 

promoted the proliferation of HepG2 cells (Figure 4), and clinical management to coun-

teract insulin resistance and subsequent hyperinsulinemia should be taken to prevent the 

development of hepatocellular carcinoma (HCC) [28]. 
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The molecular formula of compound 4 was confirmed as C35H52O21 with 10 degrees 

of unsaturation on the basis of HRESIMS (m/z: 831.2913 [M+Na]+) and 13C NMR (Table2). 

Its 1D NMR data (Table2) were similar to those of cornuside I [21], with the difference of 

chemical shifts of C-2′ (4, δC 73.5; cornuside I,δC 83.1) and C-3′ (4, δC 86.8; cornuside I,δC 

76.6). The C-3′ of the 7β-O-methylmorroniside unit was linked to C-7″ of the α-mor-

roniside unit by an ether linkage based on the HMBC correlations between H-7″ at δH 4.80 

and C-3′ at δC 86.8. The sugar moieties in 4 were also identified as D-glucose by acid hy-

drolysis and chiral-HPLC analysis. Consequently, the structure of compound 4 was de-

termined and named neocornuside D, as shown in Figure 1. 

Along with the above new compounds, six known iridoid glycosides were isolated 

from fruits of Cornus officinalis and identified as 8-epiloganic acid (5) [22], 7α-O-methyl-

morroniside (6) [15], 7-epiloganin (7) [23], 7-dehydrologanin (8) [24], 7β-O-methylmor-

roniside (9) [25], loganin (10) [21]. 

2.2. Cell Viability of Compounds 1–10 in Insulin-Induced HepG2 Cells 

Compounds 1–10 had no cytotoxic effect on the cell viability of insulin-induced 

HepG2 cells in the concentration of 10 μM, which was observed by CCK-8 assay (Figure 

4). Insulin has mitogenic and anti-apoptotic properties, which promote the progression 

and metastasis of many types of cancer cells [26,27]. Thus, the compounds and insulin 

promoted the proliferation of HepG2 cells (Figure 4), and clinical management to coun-

teract insulin resistance and subsequent hyperinsulinemia should be taken to prevent the 

development of hepatocellular carcinoma (HCC) [28]. 
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The molecular formula of compound 4 was confirmed as C35H52O21 with 10 degrees 

of unsaturation on the basis of HRESIMS (m/z: 831.2913 [M+Na]+) and 13C NMR (Table2). 

Its 1D NMR data (Table2) were similar to those of cornuside I [21], with the difference of 

chemical shifts of C-2′ (4, δC 73.5; cornuside I,δC 83.1) and C-3′ (4, δC 86.8; cornuside I,δC 

76.6). The C-3′ of the 7β-O-methylmorroniside unit was linked to C-7″ of the α-mor-

roniside unit by an ether linkage based on the HMBC correlations between H-7″ at δH 4.80 

and C-3′ at δC 86.8. The sugar moieties in 4 were also identified as D-glucose by acid hy-

drolysis and chiral-HPLC analysis. Consequently, the structure of compound 4 was de-

termined and named neocornuside D, as shown in Figure 1. 

Along with the above new compounds, six known iridoid glycosides were isolated 

from fruits of Cornus officinalis and identified as 8-epiloganic acid (5) [22], 7α-O-methyl-

morroniside (6) [15], 7-epiloganin (7) [23], 7-dehydrologanin (8) [24], 7β-O-methylmor-

roniside (9) [25], loganin (10) [21]. 

2.2. Cell Viability of Compounds 1–10 in Insulin-Induced HepG2 Cells 

Compounds 1–10 had no cytotoxic effect on the cell viability of insulin-induced 

HepG2 cells in the concentration of 10 μM, which was observed by CCK-8 assay (Figure 

4). Insulin has mitogenic and anti-apoptotic properties, which promote the progression 

and metastasis of many types of cancer cells [26,27]. Thus, the compounds and insulin 

promoted the proliferation of HepG2 cells (Figure 4), and clinical management to coun-

teract insulin resistance and subsequent hyperinsulinemia should be taken to prevent the 

development of hepatocellular carcinoma (HCC) [28]. 
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The molecular formula of compound 4 was confirmed as C35H52O21 with 10 degrees 

of unsaturation on the basis of HRESIMS (m/z: 831.2913 [M+Na]+) and 13C NMR (Table2). 

Its 1D NMR data (Table2) were similar to those of cornuside I [21], with the difference of 

chemical shifts of C-2′ (4, δC 73.5; cornuside I,δC 83.1) and C-3′ (4, δC 86.8; cornuside I,δC 

76.6). The C-3′ of the 7β-O-methylmorroniside unit was linked to C-7″ of the α-mor-

roniside unit by an ether linkage based on the HMBC correlations between H-7″ at δH 4.80 

and C-3′ at δC 86.8. The sugar moieties in 4 were also identified as D-glucose by acid hy-

drolysis and chiral-HPLC analysis. Consequently, the structure of compound 4 was de-

termined and named neocornuside D, as shown in Figure 1. 

Along with the above new compounds, six known iridoid glycosides were isolated 

from fruits of Cornus officinalis and identified as 8-epiloganic acid (5) [22], 7α-O-methyl-

morroniside (6) [15], 7-epiloganin (7) [23], 7-dehydrologanin (8) [24], 7β-O-methylmor-

roniside (9) [25], loganin (10) [21]. 

2.2. Cell Viability of Compounds 1–10 in Insulin-Induced HepG2 Cells 

Compounds 1–10 had no cytotoxic effect on the cell viability of insulin-induced 

HepG2 cells in the concentration of 10 μM, which was observed by CCK-8 assay (Figure 

4). Insulin has mitogenic and anti-apoptotic properties, which promote the progression 

and metastasis of many types of cancer cells [26,27]. Thus, the compounds and insulin 

promoted the proliferation of HepG2 cells (Figure 4), and clinical management to coun-

teract insulin resistance and subsequent hyperinsulinemia should be taken to prevent the 

development of hepatocellular carcinoma (HCC) [28]. 
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1, 3, and 7 displayed significant antidiabetic activity with EC50 values of 0.582, 1.275, and 
0.742 μM (Table 3), respectively, which indicate that these effective compounds may im-
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2.3. Glucose Consumption of Compounds 1–10 in Insulin-Induced HepG2 Cells

Compounds 1–10 were evaluated for their antidiabetic activity against insulin resis-
tant HepG2 cells. The results in Figure 5 showed that compounds 1, 3, and 7 significantly
increased the relative glucose consumption in insulin-induced HepG2 cells (p < 0.05 or
p < 0.01). Other compounds could increase the relative glucose consumption, but there was
no statistical significance compared with the model group (p > 0.05). Thus, we focused on
the antidiabetic activity of compounds 1, 3, and 7. The results showed that compounds
1, 3, and 7 displayed significant antidiabetic activity with EC50 values of 0.582, 1.275,
and 0.742 µM (Table 3), respectively, which indicate that these effective compounds may
improve the insulin resistance in HepG2 cells and could provide reference for the develop-
ment and application of C. officinalis to treat DM. By comparing the structure and activity
of compounds 1, 3, and 7, we found that the cyclopentane-type iridoid structural unit
may be essential for the antidiabetic activity. Compound 1 showed stronger antidiabetic
activity than compounds 3 and 7, indicating that the activity may be related to the relative
configuration at position H-7. Moreover, we speculated that compound 3 had an extra
α-morroniside unit, resulting in lower antidiabetic activity of compound 3 than compound
7. However, the results showed no significant antidiabetic activity for compounds 2, 5, 8,
and 10, therefore the antidiabetic activity may be related to the relative configuration at
position H-7, the side chain attached to C-7, and whether the carbonyl group at C-11 forms
an ester. In conclusion, further structure-activity relationship remains to be clarified in
future research.
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Table 3. Effect of compounds 1, 3, and 7 on the relative glucose consumption in insulin-induced
HepG2 cells (x ± s, n = 6).

Compound EC50
a (µM)

1 0.582
3 1.275
7 0.742

Rosiglitazone b 1.127
a EC50value of each compound was defined as the concentration (µM) for 50% maximal effect of the relative
glucose consumption in insulin-induced HepG2 cells. b Rosiglitazone: positive control.

2.4. Effect of Compounds 1, 3, and 7 on Glucose Uptake in Insulin-Induced HepG2 Cells

To investigate whether iridoid glycosides could promote glucose uptake in HepG2
cells, the uptake of 2-NBDG was evaluated by HepG2 cells treated with different concentra-
tions (5, 10 and 20 µM) of test compounds 1, 3, and 7. The results showed that 2-NBDG
uptake in HepG2 cells was significantly decreased after exposed to insulin (Figures 6 and 7).
However, compounds 1, 3, and 7 improved the ability of 2-NBDG uptake in insulin-induced
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HepG2 cells (Figures 6 and 7). Therefore, compounds 1, 3, and 7 efficiently alleviated the
HepG2 cells injury induced by insulin, which present potential anti-diabetic effects.
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n = 4). The 2-NBDG fluorescence measured by flow cytometry.
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Figure 7. Effect of compounds 1, 3 and 7 on glucose uptake in insulin-induced HepG2 cells (x ± s,
n = 4). (A) Compound 1 corresponding histograms of the mean fluorescence intensity of 2-NBDG;
(B) Compound 3 corresponding histograms of the mean fluorescence intensity of 2-NBDG; (C)
Compound 7 corresponding histograms of the mean fluorescence intensity of 2-NBDG. ## p < 0.01,
versus control group; * p < 0.05 or ** p < 0.01, versus insulin group.

3. Experimental
3.1. General Experimental Procedures

CD spectra were recorded on an Applied PhotophysicsChirascanqCD spectropo-
larimeter (Applied Photophysics Ltd., British). Optical rotations were recorded by using
a Rudolph AP-IV polarimeter (Rudolph, Hackettstown, NJ, USA). NMR spectra were
recorded by a Bruker Avance III 500 spectrometer (Bruker, Berlin, Germany). UV spec-
tra were measured with a ThermoEVO 300 spectrometer (Thermo, Waltham, MA, USA).
IR spectra were detected using a Thermo Nicolet IS 10 spectrometer (Thermo, Waltham,
MA, USA). HRESIMS spectra were measured on a Bruker maxis HD mass spectrome-
ter (Bruker, Germany). Sephadex LH-20 (GE Healthcare, Boston, MA, USA), Toyopearl
HW-40C (TOSOH, Tokyo, Japan), C18 ODS (50 µm, YMC Co., Ltd., Kyoto, Japan), MCI
gel CHP-20, macroporous resin Diaion HP-20 (Mitsubishi Chemical Corporation, Tokyo,
Japan), and silica gel (100~200 mesh, 200~300 mesh, Qingdao Marine Chemical Co., Ltd.,
Qingdao, China) were employed for column chromatography (CC). The samples were
prepared by a Saipuruisi LC 52 HPLC system with a UV/vis 50 detector (Saipuruisi, Beijing,
China) and a YMC-Pack ODS-A column (20 × 250 mm, 5 µm; YMC, Kyoto, Japan). The
chemical reagents were supplied by the Tianjin Fuyu (Tianjin, China) and the Tianjin NO. 3
Reagent Plant (Tianjin, China).
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3.2. Plant Materials

Fruits of Cornus officinalis were collected in Xixia county, Henan Province, China, in
September 2019, and identified by Prof. Chengming Dong, School of Pharmacy, Henan
University of Chinese Medicine. The voucher specimen (NO. 20190903) was preserved in
the Department of Pharmaceutical Chemistry, Henan University of Chinese Medicine.

3.3. Extraction and Isolation

Fruit flesh of Cornus officinalis (100.0 kg) were extracted twice with a 10-fold amount of
deionized water under reflux for 2 h each time. The crude extract (55.1 kg) was dissolved
in water and subjected to a D101 macroporous adsorption resin column eluting with
water and 95% ethanol. The 95% ethanol extract (21.7 kg) was dissolved in water and
partitioned with petroleum ether, EtOAc, and n-BuOH, successively. The EtOAc extract
(99.3 g) was subjected to a Diaion HP-20 macroporous adsorption resin column (90 × 9 cm,
4 × 5700 mL) and eluted with a gradient of EtOH/water (0:100, 20:80, 40:60, 60:40, 95:5,
100:0, v/v) to obtain five fractions (F1–F5). F3 (19.6 g) was chromatographed over a Sephadex
LH-20 column eluting with gradients of MeOH/H2O (20:80, 50:50, 100:0, v/v) to afford
five fractions (F3.1–F3.5). F3.1 (16.0 g) was loaded on a silica gel column eluting with
petroleum ether/acetone (3:1, 2:1, 0:1, v/v) to yield six fractions (F3.1.1–F3.1.6). F3.1.5
(650.0 mg) was further purified on the semi-preparative HPLC with MeOH/water (35:65,
v/v; 3 mL/min) to yield compound 6 (145.8 mg, tR = 41.1 min). F3.1.4 (3.5 g) was applied
to a silica gel column and eluted with a gradient of CH2Cl2/MeOH (15:1, 10:1, 5:1, v/v)
to obtain six fractions (F3.1.4.1–F3.1.4.6). F3.1.4.1 (450.5 mg) was purified by the semi-
preparative HPLC with MeCN/water (17:83, v/v; 3 mL/min) to obtain compound 10
(50.6 mg, tR = 9.2 min). By employing the semi-preparative HPLC with MeCN/water
(13:87, v/v; 3 mL/min), compounds 8 (17.7 mg, tR = 16.9 min) and 9 (315.3 mg, tR = 45.8 min)
from F3.1.4.2 (652.5 mg) were obtained.

The n-BuOH extract (4.2 kg) was applied to Diaion HP-20 macroporous adsorption
resin and eluted with a gradient of EtOH/water (0:100, 20:80, 40:60, 95:5, 100:0, v/v) to
obtain four fractions (A1–A4). A2 (201.0 g) was subjected to MCI column eluting with
MeOH/water (0:100, 20:80, 40:60, 60:40, 100:0, v/v) to give five fractions (A2.1–A2.5). A2.1
(65.6 g) was then split by MCI column eluting with MeOH/water (0:100, 20:80, 30:70,
40:60, 50:50, 70:30, 100:0, v/v) to afford five fractions (A2.1.1–A2.1.5). A2.1.3 (15.7 g) was
subjected to a silica gel (200–300 mesh) column eluting with CH2Cl2/MeOH (12:1, 10:1,
8:1, v/v) to produce five fractions (A2.1.3.1–A2.1.3.5). A2.1.3.1.4 (1.4 g) was separated
and purified on a silica gel column eluting with CH2Cl2/MeOH (15:1, 10:1, 5:1, 1:1, v/v)
and a further purification by the semi-preparative HPLC with MeCN/H2O (6:94, v/v;
3 mL/min) to give compounds 5 (25.6 mg, tR = 47.7 min) and 7 (3.6 mg, tR = 32.6 min).
A2.1.4 (44.3 g) was split on a Sephadex LH-20 column eluting with MeOH/H2O (40:60,
60:40, 80:20, v/v) to obtain nine fractions (A2.1.4.1–A2.1.4.9). A2.1.4.2 (5.3 g) was applied to
MCI column and eluted with a gradient of MeOH/H2O (20:80, 40:60, 60:40, 80:20, 100:0,
v/v) to give seven fractions (A2.1.4.2.1–A2.1.4.2.7). Compound 1 (44.1 mg, tR = 49.3 min)
was obtained from A2.1.4.2.4 (890.0 mg) by a silica gel (200–300 mesh) column eluted
with CH2Cl2/MeOH (20:1, 15:1, 10:1, v/v) followed by a final purification on the semi-
preparative HPLC (MeCN/H2O, 14:86, v/v; 3 mL/min). A2.1.4.3 (1.0 g) was subjected to
Sephadex LH-20 column eluting with MeOH to give two fractions (A2.1.4.3.1–A2.1.4.3.2).
A2.1.4.3.1 (350.5 mg) was purified by the semi-preparative HPLC with MeCN/H2O (16:84,
v/v; 3 mL/min) to obtain compound 2 (7.0 mg, tR = 27.1 min). A2.1.4.2.6 (1.5 g) was applied
to a silica gel column eluting with CH2Cl2/MeOH (20:1, 15:1, 10:1, 5:1, 1:1, v/v) to yield four
fractions (A2.1.4.2.6.1–A2.1.4.2.6.4). A2.1.4.2.6.2 (300.5 mg) was further purified on the semi-
preparative HPLC with MeCN/H2O (20:80, v/v; 3 mL/min) to give compound 4 (3.6 mg,
tR = 47.9min). A2.2 (74.0 g) was subjected to Toyopearl HW-40C column eluting with
MeOH to produce three fractions (A2.2.1–A2.2.3). A2.2.1 (20.5 g) was chromatographed
over a Toyopearl HW-40Ccolumn eluting with gradients of MeOH/H2O (20:80, 50:50,
70:30, 100:0, v/v) to afford seven fractions (A2.2.1.1–A2.2.1.7). A2.2.1.1 (2.6 g) was applied
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to a silica gel column eluting with CH2Cl2/MeOH (12:1, 8:1, v/v) to get five fractions
(A2.2.1.1.1–A2.2.1.1.5), then A2.2.1.1.3 (610.5 mg) was purified by the semi-preparative
HPLC with MeOH/H2O (34:66, v/v; 3 mL/min) to give compound 3 (2.7 mg, tR = 44.8 min).

Neocornuside A (1): White amorphous power (MeOD); HRESIMS m/z: 543.1689
[M + Na]+ (Calcd. for C22H32O14Na, 543.1684); [α]D

20 −36 (c 1.25, MeOH); CD (MeOH) ∆ε:
227 (−1.09) nm; UV (MeOH) λmax (log ε): 200 (4.05), 228 (3.51) nm; IR νmax: 3393, 2952,
1731 cm−1; 1H NMR (500 MHz, DMSO-d6) and 13C NMR (125 MHz, DMSO-d6), see Table 1.

Neocornuside B (2): White amorphous power (MeOD); HRESIMS m/z: 543.1685
[M + Na]+ (Calcd. for C22H32O14Na, 543.1684); [α]D

20 −45 (c 0.16, MeOH); CD (MeOH) ∆ε:
227 (−2.85) nm; UV (MeOH) λmax (log ε): 234 (3.86) nm; IR νmax: 3379, 2927, 1697 cm−1;
1H NMR (500 MHz, MeOD) and 13C NMR (125 MHz, MeOD), see Table 1.

Neocornuside C (3): White amorphous power (MeOD); HRESIMS m/z: 801.2795
[M + Na]+ (Calcd. for C34H50O20Na, 801.2788); [α]D

20 −68 (c 0.13, MeOH); CD (MeOH) ∆ε:
229 (−2.21) nm; UV (MeOH) λmax (log ε): 196 (4.12), 238 (4.13) nm; IR νmax: 3368, 2932,
1694, 1638 cm−1; 1H NMR (500 MHz, MeOD) and 13C NMR (125 MHz, MeOD), see Table 2.

Neocornuside D (4): White amorphous power (MeOH); HRESIMS m/z: 831.2912
[M + Na]+ (Calcd. for C35H52O21Na, 831.2893); [α]D

20 −94 (c 0.07, MeOH); CD (MeOH) ∆ε:
233 (−1.97) nm; UV (MeOH) λmax (log ε): 194 (4.22), 236 (4.13) nm; IR νmax: 3383, 2923,
1690, 1638 cm−1; 1H NMR (500 MHz, MeOD) and 13C NMR (125 MHz, MeOD), see Table 2.

3.4. Antidiabetic Evaluation
3.4.1. Cell Culture and Treatment

HepG2 (human hepatocellular liver carcinoma) cells were a gift from QiujunLv of the
Radiation Academy of Military Medical Sciences (Beijing, China). The HepG2 cells were
cultured at 37 ◦C in high glucose DMEM medium containing with 15% FSP500 fetal bovine
serum in a humidified atmosphere of 5% CO2. The cells were seeded in 96-well plates at a
density of 1 × 105 cells/well. To induce insulin resistance (IR), HepG2 cells were starved
in serum-free DMEM for 24 h. One day after cultivating, the medium was changed to
serum-free DMEM containing 20 µM insulin and incubated for a further 24 h. Afterwards,
the DMEM medium, the medium with rosiglitazone (10 µM), or the medium with test
compounds (1–10) (10 µM) were added, respectively, followed by the incubation for 24 h.
In addition, HepG2 cells were also treated with test compounds 1, 3, 7, and rosiglitazone in
different concentrations (0.625, 1.25, 2.5, 5, 10, 20, and 30 µM), then incubated at 37 ◦C for
24 h. The EC50 values were calculated by the software of Graphpad Prim 8.

3.4.2. Cell Viability Assay

CCK-8 assay was used to evaluate cell viability of HepG2 cells. After treatments,
added 10 µL of CCK-8 reagent and incubated at 37 ◦C for 1 h. The optical density (OD)
value of every well was measured at 450 nm using a microplate spectrophotometer.

3.4.3. Glucose Consumption Assay

The HepG2 cells (1 × 105 cells/mL) cultured in 96-well plates were treated with
insulin and test compounds as previously described. The culture medium was collected,
and the glucose concentrations were measured using the same method [29] with a glucose
assay kit. The glucose content of the experimental group medium was subtracted from
the glucose content of the original DMEM medium to afford the glucose consumption
(GC). The relative glucose consumption (RGC) was calculated by the following formula:
RGC = GC/OD.

3.4.4. Glucose Uptake Assay

Glucose uptake rate was measured using 2-NBDG, according to the previously re-
ported method [29]. The HepG2 cells were seeded at 1 × 105 cells/mL in 6-well plates at
37 ◦C for 24 h in a humidified atmosphere of 5% CO2. The cells were pre-incubated with
various concentrations of test compounds 1, 3, and 7 (5, 10, and 20 µM). After 24 h, 2-NBDG
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(25 µM) was added in incubation at 37 ◦C for 1 h. The cells were collected and washed with
PBS, and then resuspended in PBS. The cell fluorescence intensity was detected by flow
cytometry with excitation wavelength of 488 nm and emission wavelength of 530 nm. The
results were analyzed by the software FlowJo 10.8.

3.5. Acid Hydrolysis of Compounds 1–4

Each one (1.0 mg) of the compounds 1–4 was dissolved in 2 M HCl-H2O (2.5 mL) and
heated at 80 ◦C for 3 h. The reaction mixture was extracted with EtOAc. The aqueous layer
was evaporated under vacuum, diluted repeatedly with H2O, and evaporated in vacuo to
furnish a neutral residue. The residue was dissolved in MeOH (1.5 mL) and analyzed by
HPLC equipped with a chiral column (CHIRALPAK AD-H, 5 µm, 4.6 × 250 mm) and an
evaporative light scattering detector using n-hexane-EtOH (82:18; v/v) as the mobile phase
(0.5 mL/min). For all of the selected compounds, the sugars were found to be D-glucoses by
comparing its retention time with that of D-glucose (21.413 and 22.554 min) and L-glucose
(22.099 and 23.648 min).

4. Conclusions

In summary, the chemical composition of Cornus officinalisfruit was further investi-
gated, leading to the isolation of four new iridoid glycosides, neocornuside A–D (1–4),
together with six known compounds (5–10). Among the isolated compounds, no cytotoxic
effect was seen on the cell viability of insulin-induced HepG2 cells in the concentration
of 10 µM, and compounds 1, 3, and 7 displayed significant antidiabetic activity with EC50
values of 0.582, 1.275, and 0.742 µM, respectively, which was proven to have the potential to
ameliorate the glucose uptake of insulin-induced HepG2 cells in doses of 10, 5, and 20 µM,
respectively. These effective compounds may represent promising natural antidiabetic
compounds for the treatment of DM. It also provided scientific evidence and a foundation
for the understanding of the antidiabetic effects and further utilization of Cornus officinalis.
In future research, enrichment of the active compounds should be performed for in vivo
validation. On the other hand, other compounds will be investigated further for their
potential activity using a Surface Plasmon Resonance (SPR) technique for expanding the
scope of application.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27154732/s1. Scheme S1: Extraction and isolation flow
chart of compounds 1–10 from fruits of Cornus officinalis. Figures S1–S7: 1H NMR, 13C NMR and
2D NMR spectra of compound 1, Figures S8–S11: UV, IR, CD and HRESIMS spectra of compound 1;
Figures S12–S18: 1H NMR, 13C NMR and 2D NMR spectra of compound 2; Figures S19–S22: UV, IR,
CD and HRESIMS spectra of compound 2; Figures S23–S29: 1H NMR, 13C NMR and 2D NMR spectra
of compound 3; Figures S30–S33: UV, IR, CD and HRESIMS spectra of compound 3; Figures S34–S40:
1H NMR, 13C NMR and 2D NMR spectra of compound 4; Figures S41–S44: UV, IR, CD and HRESIMS
spectra of compound 4; Figures S45–S56: 1H NMR, 13C NMR spectra of compounds 5–10; Tables S1–S2:
The results of antidiabetic evaluation.
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