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Abstract: In-stent restenosis (ISR) after carotid artery stenting (CAS) critically influences long-term
CAS benefits and safety. The study was aimed at screening preoperative ISR-predictive features
and developing predictive models. Thus, we retrospectively analyzed clinical and imaging data
of 221 patients who underwent pre-CAS carotid computed tomography angiography (CTA) and
whose digital subtraction angiography data for verifying ISR presence were available. Carotid plaque
characteristics determined using CTA were used to build a traditional model. Backward elimination
(likelihood ratio) was used for the radiomics model. Furthermore, a combined model was built
using the traditional and radiomics features. Five-fold cross-validation was used to evaluate the
accuracy of the trained classifier and stability of the selected features. Follow-up angiography showed
ISR in 30 patients. Carotid plaque length and thickness were independently associated with ISR
(multivariate analysis); regarding the conventional model, the area under the curve (AUC) was 0.84
and 0.82 in the training and validation cohorts, respectively. The corresponding AUC values for the
radiomics-based model were 0.87 and 0.82, and those for the optimal combined model were 0.88 and
0.83. Plaque length and thickness could independently predict post-CAS ISR, and the combination of
radiomics and plaque features afforded the best predictive performance.

Keywords: computed tomography angiography; radiomics; carotid artery stenting; restenosis; plaque

1. Introduction

Atherosclerotic stenosis of the carotid artery causes 10–15% of ischemic strokes [1].
Carotid artery stenting (CAS) is one of the standard treatment strategies for the man-
agement of symptomatic carotid stenosis and has emerged as an alternative to carotid
endarterectomy (CEA) [2]. However, after follow-up for 6 months to 2 years, the incidence
of in-stent restenosis (ISR) has been found to range from 3.3% to 21% [3–5]. The presence of
ISR may act as a key factor influencing the long-term benefit and safety profile of CAS [6,7].

Currently, factors that predispose individuals to ISR can be classified as patient-related,
procedure-related, and lesion-related. A previous study reported that an increase in C-
reactive protein levels 48 h after CAS is a predictor of the occurrence of ISR at 6 months [8].
However, a preoperative assessment of lesion-related factors is necessary for the develop-
ment of preventive treatment strategies.
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Plaque characteristics assessed by carotid computed tomography angiography (CTA),
such as plaque length [9], plaque texture [10], plaque thickness [11], plaque ulceration [12],
and plaque enhancement [13], are strongly associated with the development of ischemic
stroke. Accurate identification of these features can help in risk stratification among patients
with carotid atherosclerotic stenosis. However, whether these carotid plaque characteristics
are associated with carotid stent restenosis and whether these characteristics are effective
in predicting ISR needs to be explored further.

High spatial resolution magnetic resonance imaging (MRI) can detect changes associ-
ated with increased carotid plaque vulnerability, such as intraplaque hemorrhage, lipid-rich
necrotic cores, and thinning/rupture of the fibrous cap. However, multisequence carotid
plaque MRI is cost- and time-intensive. In contrast, carotid computed tomography an-
giography (CTA) is a fast, simple, and widespread method that has become an established
noninvasive phenotyping tool for patients with suspected carotid stenosis, providing an
alternative for patients without access to MRI. The method affords the visualization and
quantitative assessment of the degree of stenosis and plaque morphology [14]. However,
it is difficult to visually distinguish between fibrous, lipid, and intraplaque hemorrhagic
features due to the overlap of HUs. Machine learning algorithms have recently emerged as
new assessment tools capable of sophisticated evaluations of radiological features extracted
by CTA [15] and have been well utilized in risk assessment and personalized treatment
decision-making in patients with coronary plaques [16]. Therefore, in this study, we aimed
to screen preoperative clinical information, carotid plaque characteristics determined using
CTA, and radiomics characteristics that could effectively predict the development of ISR
after CAS and that could be combined to maximize predictive efficacy.

2. Materials and Methods
2.1. Study Design and Participants

This was a single-center retrospective database analysis of patients who underwent
CAS. Potential subject records were screened via a review of consecutive CTA carotid
examinations performed from April 2015 to March 2020. Patients who met the following
criteria were included: (1) presence of 50% symptomatic stenosis or 70% asymptomatic
stenosis in the extracranial carotid artery and receipt of successful CAS at our institution
and (2) availability of complete data on clinical risk factors in medical records and follow-up
records. The exclusion criteria were as follows: (1) a lack of follow-up data; (2) presence
of nonatherosclerotic arterial stenosis (such as cerebral arteritis); (3) serious illnesses such
as severe heart, lung, kidney disease or malignancy that are likely to cause death within
the 6-month follow-up period; and (4) poor image quality, preventing the assessment of
plaques and extraction of histological features. The protocol for this retrospective data
analysis was approved by the institutional review board of JinLing Hospital, and the
requirement for patients’ informed consent was waived.

2.2. CTA Technique

Carotid CTA examinations were performed using a second-generation dual-source CT
scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany) by using
the following parameters: detector configuration, 64 × 0.6 mm; tube potential, 100 kV;
tube current, 120 mAs; collimation, 128 × 0.625; pitch, 1.2; gantry rotation time, 0.33 s;
field of view, 28 cm; slice thickness, 1 mm. Image reconstructions were rendered using the
B20 intermediate reconstruction algorithm with the following characteristics: field of view,
160 mm; matrix size, 512 × 512; slice thickness, 1 mm; and interval, 1 mm. A bolus of 60 mL
of high-iodine concentration contrast medium (400 mgI/mL; Iomeron 400, Bracco, Milan,
Italy) was injected through an 18G cannula inserted into a superficial vein of the antecubital
fossa of the right arm by using an automatic dual-head injector (Medrad Stellant Dual,
Medrad, Palo Alto, PA, USA) at the rate of 5 mL/s followed by a 40-mL saline bolus injected
at the rate of 4 mL/s. A bolus-tracking technique was used to trigger the acquisition at 5 s
after a threshold of 100 HU was reached in the aortic arch. The scans were performed from
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the aortic root to 3 cm above the skull before and after contrast injection. All CTA images
were reconstructed in axial, coronal, and sagittal orientations.

2.3. CAS

All procedures were performed via the femoral approach by using the Seldinger
method. After the target stenosis was confirmed by angiography, a 6F or an 8F guiding
catheter was navigated to the common carotid artery proximal to the stenosis. After a distal
embolic protective device was released, a self-expandable stent, such as a closed-cell stent
(Wallstent; Boston Scientific, Natick, MA, USA) or an open-cell stent (Precise; Cordis, Miami
Lakes, FL, USA or Acculink; Abbott Vascular, Redwood City, CA, USA) of suitable size
was then located and deployed. Pre-dilation was performed in some patients with severe
stenoses. Complete angiography was performed to identify residual stenosis immediately
after stenting. After the procedure, all patients were on long-term antiplatelet therapy.

2.4. Clinical and Imaging Data

After a thorough examination of the patients’ electronic medical records, two investiga-
tors recorded age; sex; clinical data including the presence of hypertension (blood pressure
of >140/90 mmHg or use of antihypertensive medication), diabetes (hemoglobin A1c level
of ≥6.5% or use of diabetes medication), and smoking history; any history of cardiovascular
and old infarction events; and the type of stent (open-cell/closed-cell stent), with or without
predilatation and residual stenosis. Laboratory data included total cholesterol, low-density
lipoprotein, high-density lipoprotein, homocysteine, C-reactive protein, and hemoglobin
A1c levels; white blood cell count; neutrophil and lymphocyte percentages; and mean
platelet volume.

2.5. Conventional CTA Plaque Analysis

All CTA images were sent to a dedicated workstation (Syngo.Via, Siemens, München,
Germany) for image analysis. To minimize potential variations due to inter-reader variation,
all CTA findings were assessed by consensus by two neuroradiologists (XQC and CSZ)
with 10 years of experience in the interpretation of cardiovascular CT results. (1) The degree
of stenosis was assessed using the North American Symptomatic Carotid Endarterectomy
Trial (NASCET) method [17]. (2) Plaque type was determined by obtaining three tissue
density measurements from the area of least visual density at the level of maximum steno-
sis of the plaque. Measurements were obtained from a circular area of 2 mm2, and the
smallest value was recorded. The texture was defined as soft when the median attenu-
ation was approximately 40–50 HU and calcified when the increase in attenuation was
>130 HU, according to previous literature [18]. (3) Plaque thickness was determined (linear
measurement of the maximum axial dimension of the plaque on a single axial slice with
the largest plaque thickness). (4) Plaque ulceration was defined as extension of contrast
material beyond the vascular lumen of the plaque, usually by at least 1 mm [19]. (5) Plaque
enhancement was defined as enhancement of ≥10 HU after contrast administration [18].
(6) Plaque length (in mm) was defined as the distance from the proximal to the distal
shoulder of the plaque. (7) Positive remodeling was defined as an outer vessel diameter
10% greater than the mean of the diameter of the segments immediately proximal and
distal to the plaque [20].

2.6. Radiomic Calculations

All CTA datasets in the Digital Imaging and Communications in Medicine (DICOM)
format of the identified subjects were exported to an encrypted external hard drive. Ra-
diomics feature extraction and dimensionality reduction were performed using the Deep-
wise research platform (Deepwise Inc., Beijing, China, http://label.deepwise.com (V1.6.2)).
An axial section that maximized the inclusion of plaque features was selected, and an
experienced radiologist (XQC with 10 years of experience in neuroimaging) manually
delineated the region of interest (ROI) and covered as much of the plaque as possible. To

http://label.deepwise.com
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assess the reproducibility of the CTA-based radiomics analysis, after 2 weeks, 30 patients
in the development set were selected randomly, and their plaques were resegmented by
another radiologist (Z.D., 3 years of experience in neuroimaging) to evaluate interobserver
reproducibility by calculating intraclass coefficients (ICC).

Regarding logistic regression, the backward likelihood ratio elimination method was
used to determine the most important and independent discriminating features. The
features were weighted by their corresponding logistic regression coefficient. The best
hyperparameters of each model were determined based on five-fold cross-validation.
Radiomics signatures were verified in the validation cohorts. Figure 1 shows the radiomics
workflow of this study.
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Figure 1. A flowchart of model development. Clinical, laboratory, and imaging data were collected
and plaque analysis was performed on carotid CTA. Manual segmentation was performed using
an axial slice that best represents the plaque features. The backward likelihood ratio elimination
method was used to determine the most important and independent discriminating features. Selected
radiomics features were used to build radiomics models. The model was evaluated using the area
under the receiver operating feature curve for the training and validation cohorts. The predictive
power of the classifier was assessed by 5-fold cross-validation.

2.7. Follow-Up Assessments

All patients underwent follow-up assessments with duplex ultrasound or CTA at
the hospital outpatient clinic at 3, 6, and 12 months after the CSA procedure, and those
suspected of having ISR underwent further digital subtraction angiography (DSA). ISR
was determined by DSA to be ≥50% stenosis within the treated vessel, according to
NASCET criteria.

2.8. Statistical Analysis

Statistical analysis was performed using dedicated statistical software (SPSS 25.0 tsta-
tistical package; SPSS Inc., Armonk, NY, USA: IBM Corp.) and the Deepwise research
platform (https://keyan.deepwise.com, V1.6.2). Categorical variables are reported as per-
centages, and continuous variables as means (SDs) or medians and interquartile ranges
(IQRs). Student’s t-test and the non-parametric Mann–Whitney test were used to assess if
there were significant differences between patients with and without ISR. Interobserver

https://keyan.deepwise.com
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agreements were calculated by ICC. Features with ICC > 0.75 were considered to be con-
sistent. Cox regression was performed to determine which baseline characteristics were
independently associated with ISR. Receiver operating characteristic (ROC) curves were
constructed, and ISR prediction models were developed using clinical, conventional plaque
features and selected radiomics features to calculate the area under the ROC curve (AUC)
and sensitivity and specificity. The DeLong test was used to compare the radiomics model
with the traditional and combined models.

3. Results
3.1. Characteristics of the Study Participants

A total of 230 patients who underwent carotid CTA and were successfully treated with
CAS were initially reviewed. We excluded four patients without a six-month postoperative
follow-up record, three patients with poor-quality CTA images, and two patients with a
diagnosis of vascular entrapment. Finally, 221 patients (186 men and 35 women) were
analyzed in this study. The follow-up time ranged from 6 to 72 months. Follow-up angiog-
raphy demonstrated ISR in 30 patients (13.6%). The average time for ISR development was
16.8 months. Demographic and clinical characteristics of the patients with or without ISR
are shown in Table 1.

Table 1. Clinical, laboratory, and carotid artery plaque characteristics of the patients.

Characteristic
All Patients

(n = 221)
ISR Group

(n = 30)

Non-ISR
Group

(n = 191)

Univariate
Analysis
p-Value

Multivariate

HR (95% CI) p Value

Demographics

Age, y, mean ± SD 66.89 ± 8.07 68.73 ± 6.34 66.60 ± 8.29 0.37
Male, n (%) 186 (84.16) 28 (93.33) 158 (82.72) 0.23

Risk factors

Smoking, n (%) 100 (45.25) 13 (43.33) 87 (45.55) 0.82
Hypertension, n (%) 195 (88.24) 29 (96.67) 166 (86.91) 0.22

Diabetes mellitus, n (%) 78 (35.29) 10 (33.33) 68 (35.79) 0.79
Coronary artery disease, n (%) 50 (22.62) 9 (30.00) 41 (21.47) 0.30

Past cerebral infarction, n (%) 77 (34.84) 16 (53.33) 61 (31.94) 0.02 0.59
(0.26–1.32) 0.20

Laboratory parameters

Neutrophil percentage, %,
mean ± SD 61.98 ± 8.93 62.62 ± 8.95 61.88 ± 8.94 0.59

White blood cell count, 109/L,
mean ± SD

6.99 ± 2.38 7.97 ± 3.61 6.84 ± 2.10 0.17

Lymphocyte percentage, %,
mean ± SD 27.80 ± 8.22 27.39 ± 7.64 27.87 ± 8.32 0.77

Glycated hemoglobin, %,
mean ± SD 6.47 ± 1.20 6.30 ± 1.12 6.46 ± 1.20 0.43

Mean platelet volume, fL,
mean ± SD 10.82 ± 1.25 11.29 ± 1.00 10.82 ± 1.25 0.02 1.32

(0.94–1.83) 0.11

C-reactive protein level, mg/L,
mean ± SD 4.10 ± 6.97 3.76 ± 4.86 4.10 ± 6.97 0.59

Low-density lipoprotein, mmol/L,
mean ± SD 2.43 ± 0.90 2.36 ± 0.83 2.44 ± 0.91 0.86

High-density lipoprotein, mmol/L,
mean ± SD 1.04 ± 0.34 0.99 ± 0.18 1.05 ± 0.35 0.57

Total cholesterol, mmol/L,
mean ± SD 4.14 ± 1.09 4.14 ± 0.85 4.14 ± 1.12. 0.74

Homocysteine, mmol/L,
mean ± SD 16.06 ± 9.15 19.66 ± 12.00 15.49 ± 8.52 0.04 1.02

(0.98–1.07) 0.28
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Table 1. Cont.

Characteristic
All Patients

(n = 221)
ISR Group

(n = 30)

Non-ISR
Group

(n = 191)

Univariate
Analysis
p-Value

Multivariate

HR (95% CI) p Value

Carotid artery stenting

Open cell stent, n (%) 158 (71.49) 23 (76.67) 135 (70.68) 0.50
Pre-dilation, n (%) 192 (86.88) 26 (86.67) 166 (86.91) 0.31

Residual stenosis, %, mean ± SD 10.38 ± 11.27 13.83 ± 14.37 9.84 ± 10.65 0.18

Lesions

Stenosis, %, mean ± SD 77.03 ± 13.38 83.10 ± 10.76 76.07 ± 13.52 0.01 2.17
(0.06–73.87) 0.67

Soft plaques n (%) 164 (74.21) 27 (90.00) 137 (71.73) 0.03 3.24
(0.98–10.67) 0.05

Lesion length, mm, mean ± SD 15.49 ± 7.00 24.50 ± 5.60 14.08 ± 6.09 <0.001 1.12
(1.06–1.18) <0.005

Plaque thickness, mm, mean ± SD 3.30 ± 1.26 4.51 ± 1.09 3.10 ± 1.18 <0.001 1.79
(1.26–2.55) <0.005

Plaque ulceration, n (%) 83 (37.56) 11 (36.67) 72 (44.27) 0.91
Plaque enhancement, n (%) 81 (36.65) 13 (43.33) 68 (35.60) 0.41

Positive remodeling, n (%) 101 (45.70) 21 (70.00) 80 (41.88) 0.004 0.65
(0.26–1.61) 0.35

Abbreviations: ISR in-stent restenosis. Data are displayed as mean (SD) or number (percent).

The ISR (+) and ISR (−) groups showed significant differences in past cerebral in-
farction (p = 0.022), degree of carotid stenosis (p = 0.009), plaque type (p = 0.033), plaque
length (p < 0.001), plaque thickness (p < 0.001), and positive remodeling (p = 0.004), which
are plaque characteristics measured by CTA. Laboratory tests for mean platelet volume
(p = 0.016) and homocysteine (p = 0.035) showed significant differences between the two
groups (Table 1).

3.2. Traditional Predictive Models

Multivariate Cox regression analysis showed that plaque length (HR 1.12, 95% CI
1.06–1.18, p < 0.005) and plaque thickness (HR 1.79, 95% CI 1.26–2.55, p < 0.005) were
significantly associated with ISR (Table 1).

Combining image feature-based carotid plaque length and plaque thickness to build
a traditional model to predict ISR yielded an AUC of 0.84 (95% CI: 0.77–0.91) for the
training cohort with a sensitivity of 77% and specificity of 72%, and an AUC of 0.82 (95%
CI: 0.73–0.90) for the validation cohorts, with a sensitivity of 73% and specificity of 71%
(Figure 2A,B).

3.3. Radiomics Prediction Model

With the exception of three radiomics features with ICC values below 0.75, the interob-
server reproducibility for measuring radiomics features was good, with ICC values ranging
from 0.81 to 1.

A total of 2107 radiomics features were automatically computed from the pre-processed
images, including the original image and corresponding wavelet images. The extracted
features can be categorized into seven groups: NGTDM Features (Neighbouring Gray
Tone Difference Matrix), GLDM Features (Gray Level Dependence Matrix), Gray Level
Run Length Matrix (GLRLM Features), Gray Level Size Zone Matrix (GLSZM Features),
Gray Level Co-occurrence Matrix (GLCM Features), Shape Features, and First-order Fea-
tures. Then, we constructed a classifier to distinguish ISR. First, the computed features
were normalized with zero-mean and unit variance. Second, the least absolute shrinkage
and selection operator (LASSO) was used for feature selection. Third, we used logistic
regression analysis to predict ISR.
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Five-fold cross-validation was used to simulate the discriminatory power of the ra-
diomics and conventional parameters. The radiomics model has shown good performance
in predicting IRS (AUC: 0.87 [95% CI: 0.81–0.93] and 0.82 [95% CI: 0.74–0.90] in the training
and validation cohorts, respectively; p < 0.001; Table 2, Figure 2A,B).
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cohorts (D) showed the association of high Rad-score with risk of in-stent restenosis. Red represents
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Table 2. Performance of the models in training and validation cohorts.

Predictive Models Cohort AUC (95% CI) Sensitivity Specificity

Traditional model
Training 0.84 (0.77–0.91) 0.77 0.72

Validation 0.81 (0.73–0.90) 0.73 0.71

Radiomics model
Training 0.87 (0.81–0.93) 0.77 0.75

Validation 0.82 (0.74–0.90) 0.77 0.74

Combined model
Training 0.88 (0.82–0.95) 0.80 0.79

Validation 0.83 (0.74–0.91) 0.77 0.76
AUC, area under the curve.

3.4. Combined Prediction Model

Combining radiomics and plaque features to create a combined prediction model
yielded slightly higher performance than the conventional and radiomics models, with an
AUC of 0.88 (95% CI: 0.82–0.95) for the training cohort and 0.83 (95% CI: 0.74–0.91) for the
validation cohort (Table 2, Figure 2). The DeLong test revealed no significant differences
among the conventional, radiomics, and combined prediction models in the training and
validation cohorts (all p > 0.05).

By integrating radiomics features and carotid plaque features, a radiomics-based nomo-
gram was created in the training cohort, as shown in Figure 3. In the nomogram, plaque
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length showed the highest weight, indicating that it was the most important predictor
of ISR.
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Figure 3. A radiomics-based nomogram incorporating plaque length, plaque thickness, and ra-
diomics features for identifying carotid in-stent restenosis was developed in the training dataset. The
probability score for stent restenosis is labelled on each axis, increasing from left to right. To use the
nomogram, find the position of each variable on the corresponding axis, draw a vertical line on the
point count axis to indicate the number of points, add up the number of points for all variables and
draw a line on the total point count axis to determine the probability of in-stent restenosis on the
lower line of the nomogram.

4. Discussion

This study evaluated preoperative clinical variables, laboratory indicators, CTA plaque
features, and radiomics-related features to predict ISR after CAS. The results demonstrate
that no laboratory indicators were effective in predicting ISR in this study; plaque length
and thickness are significantly associated with ISR and are independent predictors of
restenosis; and the conventional prediction model that combined the two had good predic-
tive efficacy. In addition, the radiomics-based and combined models also exhibited good
ability in predicting ISR and have been cross-validated with good stability.

ISR is associated with recurrent cerebrovascular events and is an important factor
endangering the long-term safety and efficacy of CAS [6,7]. Previous studies have used
laboratory indicators to predict the development of ISR, such as mean platelet volume,
which has been shown to be associated with the development of IRS after CAS [21], but
another study came to the opposite conclusion [22], and no laboratory indicators were found
to distinguish or predict ISR, possibly due to the instability of hematological indicators,
which are influenced by drugs as well as ethnic specificity. Another study showed that the
preoperative neutrophil-to-lymphocyte ratio was a predictor of ISR in CAS patients, but the
AUC was 0.58, which was not a strong predictor [23]. Our results show that no laboratory
parameters were independently associated with ISR; therefore, this study concluded that
the use of laboratory indicators to predict ISR is not sufficiently reliable.

In addition to laboratory parameters, this study assessed the correlation between CTA
plaque characteristics and ISR and showed that both plaque length and thickness were in-
dependent predictors of ISR. Moreover, in the nomogram, the plaque length demonstrated
the highest weight, indicating it was the most important predictive factor for ISR. Plaque
length has been used as a risk factor in coronary artery stenting for patients with coronary
artery disease [24,25], and lesion length greater than 20 mm is the strongest determinant
of functional repercussions in the coronary artery [25]. For intracranial atherosclerosis
stenting, a longer stenosis length has been reported to be an independent risk factor for
ISR [26]. Subsequently, carotid plaque length was studied as an independent predictor
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of carotid plaque leading to microembolic signals [9] and ipsilateral carotid blood flow
compromise [27] and was found to be independently associated with perioperative stroke
and death in patients treated with CEA and CAS [28]. In addition, carotid soft plaque thick-
ness is associated with plaque vulnerability, with each 1-mm increase in plaque thickness
associated with a 2.7-fold increase in the odds of having a stroke or TIA [29]. In the present
study, the AUC obtained after combining plaque length and plaque thickness to predict
ISR was greater than 0.8, indicating that these two morphological variables play important
roles in predicting IRS.

The results of this study agree with the previous findings reported by Bonati et al. [28],
in which increased stenosis length at baseline independently predicted recurrent carotid
stenosis after endovascular treatment, leading to the interpretation that endovascular treat-
ment of longer lesions resulted in elastic retraction of the arterial wall and injury of the
intima as well as more pronounced neointimal hyperplasia. In addition, this study specu-
lates that the stent placed in CAS is made with a special type of metal with certain fatigue
properties, which may lead to fatigue and deformation after prolonged asymmetric plaque
compression or excessive plaque length and may be a potential cause of postoperative
restenosis in patients. Moreover, carotid CTA allows easy measurement of morphologi-
cal parameters such as carotid plaque length and plaque thickness, which will facilitate
targeted treatment selection and follow-up strategies.

In comparison with visual observation or CT threshold calculations, plaque radiomics
allows for a more sophisticated evaluation of imaging features based on automated extrac-
tion of multiple forms of imaging data that cannot easily be perceived by the human eye,
further improving risk prediction for patients by integrating imaging, clinical, and bioinfor-
matic phenotypic features. In this study, we used multivariate logistic regression analysis
of 2107 carotid CTA plaque-based radiomics features to select the five most important
predictors that showed a satisfactory predictive efficacy, with the AUCs for the training and
validation sets being 0.87 and 0.82, respectively. A recent study used ultrasound (US)-based
radiomics and clinical features to build a nomogram for identifying symptomatic carotid
plaques with high diagnostic performance, with AUCs above 0.9 for both the training
and validation sets [29]. Zhang et al. [30] used a histological model of plaque extracted
using multiparametric MRI to accurately distinguish between symptomatic and asymp-
tomatic carotid plaques, with AUCs above 0.9 in both the validation and test sets, and
sensitivities and specificities above 90%. In addition, related studies have used CTA to
extract plaque texture features from patients with carotid atherosclerosis, which could help
identify plaques that may become culprit lesions and thereby predict future acute ischemic
events [31,32]. We developed and validated an integrated model combining radiomics
features with significant plaque predictors, which showed improved ability for predicting
IRS. Cross-validation simulations indicate that our results are robust.

This study has some limitations. First, this was a retrospective study with a small
sample size; therefore, we did not employ an independent internal validation set. We
calculated all diagnostic scores using five-fold cross-validation, which yielded a robust
estimate of diagnostic accuracy. Second, our results were obtained from a single center,
using the same scanner and reconstruction settings, which limited the generalizability of
our findings. The third limitation was the lack of semiautomatic segmentation software for
carotid CTA, which prevented the analysis of more of the plaque components. The fourth
limitation was the need for manual segmentation of plaques before radiomics analysis.
To address variability in plaque segmentation between experts, a second neuroradiology
fellow manually contoured plaques using the same processing pipeline. Fifth, the combined
model of radiomics and plaque features predicted the AUC of ISR better than the radiomics
and conventional plaque models, but the results showed no statistical difference after the
DeLong test. This may be attributed to the fact that the extraction of radiomics features
in this study only segmented the dimension of the largest plaque region and did not
use a three-dimensional approach to segmentation, which may have lost some powerful
radiomics features. Therefore, we plan to use a three-dimensional segmentation approach
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to extract radiomics information in our follow-up study, which may improve ISR prediction
performance in the future.

In summary, our study demonstrates that plaque characteristics such as lesion length
and thickness measured by carotid CTA have independent predictive value for ISR after
CAS and that these features are easily accessible and suitable for application in clinical
practice. In contrast, the radiomics and combined models also provide stable and good
predictive efficacy for ISR, and there is hope for further improving the predictive efficacy
of ISR patients using three-dimensional extraction of radiomics features and algorithm
enhancements in subsequent studies.
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