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Abstract: Drug abuse is a condition that impacts not only the individual drug user, but society as a whole. Although 
prevention of initial drug use is the most effective way to prevent addiction, avoiding relapse is a crucial component of drug 
addiction recovery. Recent studies suggest that there is a set of genes whose expression is robustly and stably altered following 
drug use and ensuing abstinence. Such stable changes in gene expression correlate with ultrastructural changes in brain as 
well as alterations in behavior. As persistent molecular changes, these genes may provide targets for the development of 
therapeutics. Developing a list of well-characterized candidate genes and examining the effect of manipulating these genes 
will contribute to the ultimate goal of developing effective treatments to prevent relapse to drug use.
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Introduction
Relapse to drug use is a major barrier to overcoming addiction (Stewart, 2008; Leshner, 1996). Identifying 
changes in brain gene expression that underlie relapse liability will ultimately lead to a better understanding 
of what drives recovering addicts to relapse to drug use. Such an understanding will subsequently provide 
molecular targets on which pharmacological interventions to prevent relapse can be focused. Drug use 
alters the individual on multiple levels: behavior, neurochemistry, electrophysiology, and microanatomy, 
but underlying all these changes are gene and protein expression modifi cations (for review see Nestler, 
2001 and Falcon and McClung, 2008). This review briefl y describes several behavioral models of relapse, 
identifi es a list of genes that are commonly found to be involved in relapse, and highlights epigenetic 
studies that are delving further into the role of genomic contributors to relapse. Studies that combine 
behavioral and molecular techniques to examine the relevance of certain genes to relapse are discussed, 
as are future directions of study to advance development of treatments for relapse.

Models of Relapse
Human relapse to drug use is an overarching problem addressed by studies of addictive drugs. For 
humans, relapse to drug use can occur even after substantial treatment for addiction and prolonged 
abstinence (DeJong, 1994; O’Brien, 2003). The diffi culty in modeling relapse to drug use in animals 
has presented a challenge to researchers interested in the genomic underpinnings of addiction. Clearly, 
an effective model of relapse will replicate the human experience of drug use and relapse (Fig. 1A). 
Currently, a few behavioral relapse models exist, providing an effective way to study relapse in the 
controlled laboratory environment. Although these models differ slightly from one another, all adhere to 
the central experimental approach of drug self-administration followed by a period of 
abstinence (Fig. 1B).

Incubation is the most recently recognized model of relapse. Occurring in response to both stimulants 
and opiates, incubation is described as a time-dependent increase in cue-induced operant responding 
after withdrawal from self-administration (Grimm et al. 2001; Lu et al. 2006). Incubation occurs 
following self-administration of cocaine (Freeman et al. 2008), methamphetamine (Shepard et al. 2004), 
and heroin (Shalev et al. 2001; Kuntz et al. 2008a); therefore, it may represent a generalizable 
phenomenon applicable across addictive drugs.

For both animals and humans, reinstatement of drug seeking behavior can be triggered by re-exposure 
to the previously self-administered drug, the context in which it was taken, or specifi c environmental cues. 
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In the animal model of extinction-reinstatement, drug 
seeking behavior is extinguished by multiple sessions 
during which no drug is received following responses 
on a previously drug-paired operant. In this para-
digm, the drug reinforcer is disassociated from the 
behavior. Following extinction of the drug-seeking 
behavior, a stimulus such as an injection of the drug, 
re-exposure to the environment in which drug was 
received, or a stressful event can trigger resumption 
of the drug-seeking behavior. Extinction-reinstatement 
is known to occur for both cocaine-seeking behavior 
and heroin-seeking behavior (Crombag et al. 2008; 
Rogers et al. 2008). Extinction-reinstatement has 
been a widely used animal model for studying 
relapse, although the applicability of this model to 
human drug relapse has been debated (Katz and 
Higgins, 2003; Epstein et al. 2006). Extinction 
of drug-seeking is a crucial component of the 
extinction-reinstatement model in animals; however 
an analogous situation does not occur in humans. 
Therefore, the experience of animals that undergo 
the extinction-reinstatement procedure is quite 
different from that of human relapsing drug users.

Sensitization to a drug involves an increased drug 
response to the same amount of a drug following its 
repeated administration (Feldman et al. 1997; 
Kalivas et al. 1998a; Kalivas et al. 1998b; Smith et al. 
2008). While not a faithful behavioral model of 

relapse, sensitization provides a highly visible 
demonstration of how responses to drugs remain 
altered following a period of abstinence from drug 
use (Vezina, 2007). Although sensitization occurs 
for a variety of drugs, it is best expressed following 
administration of psychomotor stimulants. In 
psychomotor sensitization, an animal receives 
injections of a psychomotor stimulant (e.g. cocaine) 
for a period of time and eventually becomes hyper-
responsive to an injection of the stimulant. Both 
incubation and sensitization provide models of 
enduring behavioral changes that persist past 
cessation of drug administration.

Human studies of relapse can provide important 
insights but are confounded by numerous variables, 
such as polydrug use, different drug doses, and 
variations in lifestyle. Because of the confounding 
variables presented by human studies, animal 
relapse models provide the opportunity to study 
relapse in a controlled environment where animals 
can be manipulated by genetic, behavioral, and 
pharmacological methods.

Genes Implicated in Relapse
The animal models of relapse described above have 
been used to identify genes that are signifi cantly 
altered following drug use and abstinence. 

A CENTRAL  ISSUES: HUMAN
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B EXPERIMENTAL APPROACHES: ANIMAL MODELS
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Figure 1. (A) Human drug use ends in either successful sustained abstinence or relapse. (B) Drug relapse is modeled in animals by 
cue-induced or stress-induced resumption of drug self-administration following an abstinent period. Categories of gene changes following 
drug use are depicted in ovals.
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The progression from initial drug use to dependence 
and addiction is characterized by multiple behav-
ioral and physiological changes. Alterations in gene 
expression are believed to underlie these broader 
changes and have been demonstrated to alter 
behavior (Nestler et al. 2001; McClung and Nestler, 
2003). Following drug use and abstinence, genomic 
changes can be divided into three broad categories 
(Fig. 2). Expression of particular genes can be 
increased or decreased during the period of drug-
administration and arrive at a new steady-state of 
expression that is maintained throughout a period 
of drug abstinence. In this case, the physiologic 
condition produced by the new levels of gene 
expression can drive a former drug-user to relapse. 
In a second scenario, drug-administration again 
induces a change in gene transcript expression. 
However, as the time of abstinence from the drug 
increases, transcripts return to their pre-drug level 
of expression. These genes are less likely to be 
responsible for long-term relapse to drug use, but 
they may be necessary initial factors for more 
enduring secondary expression changes. A third 
group of genomic changes appear during the 
abstinent period following drug use. In animal 
studies, it is known that some of these changes 
result from re-exposure to a previously drug-paired 
context. In each of the described scenarios, drug 
use results in a homeostatic imbalance that is 
ultimately manifested in an individual’s behavior. 
Given the multitude of genes present within a 
genome, when examining a particular behavior 
(such as relapse), it is useful to focus on a subset 
of genes believed to be involved in that behavior. 
The number of genes believed to be associated with 
drug use exceeds 100 (Worst et al. 2005; Kreek 
et al. 2005; Hemby, 2006; Yano and Steiner, 2007). 

However, the majority of these gene expression 
changes are present only during drug administration 
(Fig. 2, middle panel). Therefore, far fewer genes 
remain altered following a period of abstinence. 
A list of several genes that have been found to be 
altered in a variety of relapse models is provided 
in Table 1. Many of these genes are transcription 
factors, while others are involved in dopamine and 
G-protein signaling. The external factor of drug 
abuse is able to induce intranuclear changes that 
eventually affect entire cells, neighboring cells, and 
ultimately the physiology of an entire organism 
(Fig. 3). Genes identifi ed in this article range from 
transcription factors that exist within the nucleus 
to genes encoding proteins that act intracellularly 
to those found within the plasma membrane to 
secreted factors.

One well-known addiction-related gene is early 
growth response 1 (EGR1, a.k.a., zif 268, NGFI-A, 
and krox 24). We have recently shown EGR1 gene 
expression to be increased in the medial prefrontal 
cortex (mPFC) of rats that exhibit incubation of 
heroin-seeking behavior following 14 days of absti-
nence from heroin self-administration (Kuntz et al. 
2008b) and EGR1 has been repeatedly implicated 
in drug relapse by other laboratories (For recent 
examples, Schmidt et al. 2005; Lee et al. 2005; 
Covington et al. 2005, although a wealth of addi-
tional studies exist). In an illustration of how specifi c 
genes are affected in relapse models, either increased 
or decreased in expression depending on the specifi c 
drug previously used, expression of EGR1 is 
decreased in the mPFC of rats that have been absti-
nent from cocaine self-administration for either 1, 
10, or 100 days (Freeman et al. 2008), while it is 
increased following abstinence from heroin (Kuntz 
et al. 2008b). The divergent directions of changes 
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Figure 2. Changes in gene expression can by classifi ed into three broad groups.
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between the heroin and cocaine studies raises the 
question of whether these differences can be attrib-
uted to the depressive verses stimulant properties of 
heroin and cocaine, respectively, or variations in the 
psychodependence and physical dependence 
induced by different drugs. However, another study 
of relapse to cocaine seeking has reported mPFC 
EGR1 gene expression to be signifi cantly increased 
rather than decreased following cocaine abstinence 
and contextual re-exposure. In this study, genes that 
were upregulated upon exposure to an environment 
in which cocaine was previously administered are 
not upregulated when rats are re-exposed to an 
environment in which cocaine was not previously 
available (Hearing et al. 2008a). Hearing’s study 
included contextual re-exposure while the samples 
in Freeman’s study were from rats that had not 
experienced contextual re-exposure. Re-exposure 
to a drug-related context is known to impact gene 
expression (Badiani et al. 1998; Ferguson et al. 
2003; Badiani and Robinson, 2004) and offers a 
plausible explanation for the between-study differ-
ences. Variations in the cocaine dose (0.6 mg/kg 
verses 1.5 mg/kg), operant training method (discrete 
trial model versus fi xed ratio), duration of training 
sessions (6 h verses 2 h), and RNA quantitation 
techniques are all possible reasons for the variations 
in results. Region-specifi c upregulation of EGR1 
has also been observed in rats that experience an 
amphetamine sensitization challenge (Guitart-Masip 
et al. 2008). Subregions of the amygdala and 
striatum varyingly display increases or decreases in 

EGR1 gene expression, with the direction of change 
varying depending on the inbred characteristics of 
the strain and the specifi c brain region. For most of 
the subregions examined, EGR1 expression 
increased in rats that experienced an amphetamine 
challenge.

Brain-derived neurotrophic factor (BDNF) has 
been implicated in relapse to drug-seeking 
behavior. An upstream regulator of the immediate 
early genes Fos and Arc, BDNF promotes 
cocaine-taking and relapse behavior in rats 
(Graham et al. 2007). Interestingly, in the ventral 
tegmental area (VTA) BDNF protein levels have 
been found to be increased 10–15 days following 
withdrawal from cocaine injections, but not 1 day 
following withdrawal (Pu et al. 2006). Acute, but 
not chronic, cocaine administration increases 
striatal BDNF mRNA in rats (Liu et al. 2008). 
Thus, it is possible that an initial rise in BDNF 
mRNA levels is followed by subsequent increase 
in protein levels before the BDNF gene expression 
returns to a baseline. Because BDNF controls 
expression of other genes that are implicated in 
relapse, such as Fos and Arc, BDNF may be a 
crucial “switch” that activates numerous relapse-
related intracellular cascades. Following cocaine 
withdrawal, levels of BDNF mRNA are reportedly 
increased in the hippocampus (Filip et al. 2006). 
Gene expression levels of trkB, the receptor for 
BDNF, were decreased in this study. Perhaps 
the decrease in receptors is indicative of a 
physiological response to counteract the increased 

Table 1. Several genes have been identifi ed to be changed in models of relapse.

Gene Full Name Source
EGR1 Early growth response 1 Kuntz et al. 2008; Schmidt et al. 2005; Hellemans et al. 2006; 

Covington et al. 2005; Freeman et al. 2008; Lee et al. 2006
BDNF Brain-derived neurotrophic factor Graham et al. 2007; Pu et al. 2006; Liu et al. 2005, 2008; 

Filip et al. 2006; Itoh et al. 2005; Le et al. 2005
DRD2 Dopamine receptor D2 Li et al. 2006; Shao et al. 2006; David et al. 2007, 2008
DRD4 Dopamine receptor D4 Li et al. 2006; Shao et al. 2006; David et al. 2007, 2008
RGS2 Regulator of G-protein signaling 2 Gold et al. 2003; Stanwood et al. 2006
RGS4 Regulator of G-protein signaling 4 Gold et al. 2003; Schwendt et al. 2007; Stanwood et al. 2006
RGS9 Regulator of G-protein signaling 9 Zachariou et al. 2003; Stanwood et al. 2006
GluR1 Glutamate receptor subunit GluR1 Backtell et al. 2008
Arc Activity regulated cytoskeletal-

associated protein
Klebaur et al. 2002; Zavala et al. 2008; Hearing et al. 2008

c-fos Fos Ostramdar et al. 2003
GAD67 Glutamic acid decarboxylase Carta et al. 2008



5

CNS genes implicated in relapse

Substance Abuse: Research and Treatment 2008:2

levels of BDNF expression. Taken together, these 
findings suggest that changes in BDNF gene 
expression are both time and contingency-
dependent. The suggested importance of BDNF to 
drug abuse has prompted studies investigating 
human polymorphisms of the BDNF gene; 
however, currently only modest associations 
between BDNF gene variants and substance 
abusers have been identifi ed (Itoh et al. 2005; Liu 
et al. 2005). Levels of BDNF mRNA are increased 
following a single injection with cocaine (Le et al. 
2005), as are levels of the dopamine D3 receptor 
(DRD3). BDNF is known to control DRD3 mRNA 
expression (Guillin et al. 2001), and this fi nding 
of concurrent increases in expression of these genes 
provides support for an interaction between 
these two genes. A reasonable hypothesis is that 
increased BDNF gene expression levels are 
responsible for increased DRD3 gene expression 
levels.

Increased dopamine signaling is an essential 
component of drug abuse (DiChiara and Bassareo, 
2007). Five different subtypes of receptors exist 
for dopamine: D1, D2, D3, D4, and D5. Expression 
levels of the genes encoding these receptors have 
been examined in both human and animal studies 
of relapse, with expression of specific DRD 
alleles being prevalent in humans who exhibit 

addictions to smoking and gambling (Comings 
et al. 1997). The precise role of DRD and dopamine 
in addictive behaviors remains to be elucidated, 
but the generalization of DRD across a range of 
addictive behaviors suggests this gene may be 
relevant to addiction beyond the specifi c area of 
drug abuse. The mesolimbic dopaminergic system, 
often referred to as the reward pathway, is impor-
tant for the appetitive drive to engage in a variety 
of goal-directed behaviors, regardless of whether 
they involve drugs (Alacro et al. 2007). Increasing 
DRD2 expression in the nucleus accumbens 
reduces ethanol consumption in rats (Thanos et al. 
2004), while DRD2 knock-out mice that are treated 
with DRD2 vectors suggest that DRD2 levels play 
a complex role in regulating the amount of alcohol 
consumed (Thanos et al. 2005). Human heroin 
abusers possessing a polymorphism in the DRD4 
or DRD2 genes report signifi cantly higher levels 
of heroin craving than counterparts who do not 
possess either of these polymorphisms (Li et al. 
2006; Shao et al. 2006). Polymorphisms in the 
DRD2 and DRD4 genes are believed to be 
predictive of how successful a person will be at 
smoking cessasion (David et al. 2007; David et al. 
2008). Although these studies examine polymor-
phisms rather than changes in gene expression, the 
implication is the same as with expression 
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studies: aberrances in dopamine receptor genes are 
suspected to be involved in drug use.

Regulators of G-protein signaling are intracellular 
proteins that terminate G-protein signaling by accel-
erating GTPase activity (Krumins et al. 2004; Xie 
and Palmer, 2005; Abramow-Newerly et al. 2006). 
Several genes exist in this protein family, and while 
the full extent of their involvement in intracellular 
functions remains to be elucidated, signaling by 
dopamine receptors and opioid receptors is known 
to involve RGS molecules. Messenger RNA for 
RGS2 and RGS4 is increased following opiate 
withdrawal (Gold et al. 2003). RGS4 mRNA in the 
prefrontal cortex and dorsolateral striatum is 
signifi cantly decreased 21 days following either 
contingent or non-contingent cocaine administration. 
Interestingly, in both brain regions, re-exposure to 
the context in which cocaine was administered prior 
to the abstinence period restored RGS4 gene expres-
sion levels (Schwendt et al. 2007). Acute morphine 
increases RGS9 protein, while chronic exposure 
decreases the protein levels (Zachariou et al. 2003). 
RGS expression can be affected by dopamine 
signaling, and expression of RGS2, RGS4, and 
RGS9 are signifi cantly decreased in dopamine D1 
receptor knock-out mice (Stanwood et al. 2006). 
Cocaine induces an increase in RGS4 gene expres-
sion through D1 receptors (Zhang et al. 2005). Acute 
amphetamine decreases RGS4 mRNA expression in 
rat forebrain (Schwendt et al. 2006). Again, induction 
or reduction of mRNA expression is seen for RGS4 

depending on whether the drug being studied is an 
opiate or a stimulant. Unfortunately, varibles in 
drug-taking schedules and abstinent periods 
necessitate the design of a specifi c study to assess 
whether the different directions of change in RGS4 
gene expression are solely the result of the drugs 
studied.

AMPA receptors are composed of multiple 
glutamate receptor subunits, and expression of these 
glutamate receptor subunits is altered during 
withdrawal from cocaine (Lu et al. 2005) and heroin 
(Zhong et al. 2006; Bossert et al. 2006). Glutamic 
acid decarboxylase, isoform 67 (GAD67) is a 
GABA-synthesizing enzyme whose expression 
is known to be changed following drug use. 
After exposure to schedules of either morphine, 
amphetamine, or nicotine that induce behav-
ioral sensitization, GAD67 mRNA expression is 
signifi cantly increased in the central amygdala (Carta 
et al. 2008). This increase is evident following 
an initial drug treatment period and remains 
following sensitization, rather than a change 
specifi cally induced by the sensitization procedure. 
In hippocampal neurons, GAD67 gene expression 
is induced by EGR1 (Luo et al. 2008), suggesting a 
possible pathway through which some of the 
observed drug-induced changes in gene expression 
are coordinated (Fig. 4).

Additional genes whose expression is reportedly 
increased following abstinence from heroin and 
decreased following abstinence from cocaine 
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Figure 4. Genes discussed in this review can be placed into a hypothetical pathway of interaction. References depicted provide documentation 
of the intermolecular interactions. Clearly, the presence of all these relationships in a single cell is purely conjectural at this time.
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are Arc (activity-regulated cytoskeletal protein) 
and c-fos. Studies of relapse to cocaine-seeking 
report EGR1, Arc, and c-fos gene expression to be 
increased following cocaine abstinence and 
contextual re-exposure (Klebaur et al. 2002; 
Ostrander et al. 2003; Zavala et al. 2008; Hearing 
et al. 2008b). Changes in Arc and c-fos gene 
expression also exist in the amygdala following 
re-exposure to an environment paired with opiate 
withdrawal, although the direction and magnitude 
of change is variable between sub-nuclei regions 
(Lucas et al. 2008). Comparing the basolateral 
amygdala (BLA), intercalated cell masses (ITC), 
and central nucleus of the amygdala (CeA) 
following re-exposure to a drug-paired environ-
ment, both Arc and c-fos increased more in cells 
that were also positive for GAD67 when examined 
in the ITC and CeA. However, in the BLA, 
expression of both genes was higher in GAD67 
negative neurons.

Contextual cues play a crucial role in neuronal 
gene expression changes that are associated with 
drug use. Several immediate early genes are 
reportedly upregulated when rats are reintroduced 
to an environment in which they previously 
self-administered cocaine, and neuronal regions 
including the nucleus accumbens (Fuchs et al. 
2008), dorsal striatum (See et al. 2007), prefrontal 
cortex, amygdala, and hippocampus (Fuchs et al. 
2005). Thus, the context of drug-taking affects 
gene expression.

Epigenetics
The fi eld of epigenetics examines how intranu-
clear changes in the structure of DNA and 
chromatin can produce changes in gene transcrip-
tion (Colvis et al. 2005). Changes in gene expres-
sion are the endpoint of complex interactions of 
histones and chromatin that determine which 
genes will be transcribed (Renthal and Nestler, 
2008). Histone acetylation, histone methylation, 
histone phosphorylation, and DNA methylation 
combine to determine gene expression levels, 
and thus these are the mechanisms by which 
drugs actually elicit genomic effects. DNA is 
normally tightly wound around histones, forming 
the basis for chromatin structure. Transcription 
factors gain access to DNA that is not tightly 
wound around histones, and therefore epigenetic 
changes are central to determining which genes 
will be transcribed, and ultimately result in 
alterations in gene expression levels. In the 

nucleus accumbens, histone acetylation is 
induced by both acute and chronic cocaine 
administration (Kumar et al. 2005), although 
acute administration is associated with acetyla-
tion of H4 while chronic administration results 
in acetylation of H3. Acute administration results 
in deacetylation that promotes c-fos gene expres-
sion, while chronic administration accompanies 
histone deacetylation that promotes BDNF and 
cdk5 gene expression. In the mPFC, decreased 
levels of H3 aceytylation are seen both 1 and 
100 days after cocaine self-administration 
(Freeman et al. 2008). In addition to the cocaine 
administration, cocaine-induced sensitization has 
also been associated with chromatin remodel-
ing (Schroeder et al. 2008). In this case, 
changes in BDNF and D1 dopamine receptor 
gene expression were identifi ed. Histone deacet-
ylases remove acetyl groups from histones to 
change chromatin structure, and changes in 
expression of these enzymes could be responsible 
for drug-induced acetylation changes. Function 
of histone deacetylase 5 (HDAC5) is decreased 
in the NAc after chronic cocaine exposure 
(Renthal et al. 2007), and this decreased function 
alters the transcription pattern for several 
genes. Histone deacetylase 1 (HDAC1) affects 
c-fos gene expression following amphetamine 
exposure (Renthal et al. 2008). Expression of 
HDAC1 is normally chronically repressed by 
ΔfosB, but when it is expressed, HDAC1 allows 
chromatin remodeling that promotes c-fos gene 
expression.

Changes in mRNA levels that are correlated 
with changes in the chromatin modifi cation of their 
respective genes have been documented. Thus, 
the role of chromatin structure in drug-induced 
changes in gene expression is a fi eld which is rich 
in potential discoveries. Epigenetic studies are 
destined to provide a deeper understanding of 
the detailed mechanisms behind changes in gene 
expression.

Gene Intervention Behavioral 
Studies
Although many genes can be identified as 
being changed following drug use and relapse, 
the relevance of these genes to relapse must be 
assessed through behavioral studies. Fortu-
nately, technologies such as siRNA, antisense 
oligonucleotides, and genetic knockouts allow the 
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importance of specifi c genes, in specifi c neuronal 
areas, to be assessed. Infusion of EGR1 antisense 
RNA into the amygdala 90 min prior to a session 
of memory reactivation abolishes cue-induced 
reinstatement of cue-induced cocaine-seeking (Lee 
et al. 2005; Lee et al. 2006). Because drug-seeking 
behavior was reduced when EGR1 gene expression 
was reduced immediately prior to reconsolidation, 
the role of EGR1 in relapse appears to be closely 
tied to memory formation. This fi nding suggests 
EGR1 is an important gene for relapse, but 
because EGR1 functions as a transcription factor, 
the changes in expression of several genes tran-
scribed by EGR1 is likely important to relapse. In 
fact, this is the authors’ conclusion and points to 
the importance of further studies to gain a broad 
scope of genomic changes. Genetic manipulation, 
combined with behavioral relapse models, provides 
a powerful approach for investigating the relevance 
of particular genes to relapse. Intracranial infusions 
of antisense oligodeoxynucleotides (against EGR1) 
into rat amygdala prior to reactivation and 
reconsolidation of drug-seeking memory reduces 
seeking behavior for both cocaine and heroin 
(Hellemans et al. 2006; Lee et al. 2006). The gene-
intervention studies discussed in this paper utilize 
antisense oligomers. However, oligos often have 
toxicity and it is necessary to confi rm there is no 
damage to physiological functions or regions other 
than the one targeted. Therefore, models in which 
suppression of gene expression does not require 
introduction of a foreign agent are preferable for 
examining the role of specifi c genes.

Future Directions

Dynamic database
The studies discussed thus far provide a summary 
of what we currently know about genes whose 
expression levels are changed in models of relapse, 
but further steps must be taken to ensure a 
continuing increase in knowledge about relapse to 
drug abuse. An excellent start will be the develop-
ment of a dynamic database to report genes that 
have been found to be implicated in relapse. 
A database similar to this was initially produced 
for cocaine-responsive genes (Freeman et al. 
2002), but newer, web-based approaches, such as 
the Allen Brain Atlas (www.brain-map.org) could 
combine drug, behavioral, anatomical, and gene 
expression data. A central repository for relapse 

information will accelerate the progress that can 
be made in further experiments investigating 
relapse to drug use.

Temporally and spatially-selective 
knock-outs
The relevance of specifi c genes to addiction can 
be studied using transgenic mice. Mice that are 
heterozygous or homozygous mutants for the 
EGR1 immediate early gene show behavioral 
differences from their wild type counterparts. 
Specifi cally, cocaine-induced locomotor sensitiza-
tion is significantly lower in EGR1−/− and 
EGR1+/− mice than in EGR1+/+ mice (Valjent 
et al. 2006). To ensure that EGR1 was the only 
transcription factor affected by the knock-in, the 
researchers in this particular study examined path-
ways upstream from EGR1 and parallel signaling 
pathways. Because EGR1 is a transcription factor, 
a valid concern is the possibility that another (or 
several other) genes whose transcription is regu-
lated by EGR1 are affected. An ideal experiment 
to examine the relevance of particular genes to 
relapse is to use mice in which gene knockouts are 
both temporally and spatially specific. Trans-
genic mice, such as CRE-LacZ reporter mice 
(Shaw-Lutchman et al. 2003), provide ideal mod-
els in which such studies can be conducted. 
Combining measurements of transcription with 
and without expression of a particular gene with 
drug exposure provides insight about whether a 
particular gene is affected by that drug (Green et al. 
2006). This approach can be used in models of 
relapse to drug-seeking to establish the importance 
of particular genes to the relapse phenomenon. Of 
course, the diffi culty in this approach is the paucity 
of relapse mouse models. Therefore, further devel-
opments in either murine models of relapse or rat 
genetic manipulation (such as viral delivery of 
shRNA) will be required before the power of this 
approach is fully harnessed. The importance of 
cAMP-response element (CRE) to opiate with-
drawal behavior has been determined using a 
transgenic mouse model (Shaw-Lutchman et al. 
2002; Han et al. 2006). Region-specifi c changes 
in CRE-mediated transcription occur during opiate 
withdrawal, and CRE activity increases opiate 
withdrawal while decreasing CRE activity 
decreases opiate withdrawal.

The importance of glutamate receptors to 
sensitization to cocaine is apparent through a study 
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using viral-mediated gene transfer of wild-type or 
pore-dead Glutamate receptor 1 (GluR1) into rat 
NAc (Backtell et al. 2008). Infusions of wt-GluR1 
viral vectors result in a decrease in cocaine 
sensitization. Cocaine-seeking during extinction 
and cocaine-induced reinstatement were also 
reduced in rats in which GluR1 was overexpressed. 
Further studies will be needed to elucidate how 
GluR1 overexpression prevents these relapse 
measures in animal models, but it is likely that 
many of the genes highlighted in this review are 
involved in the mechanism.

Drug discovery
An ultimate goal of drug abuse research is to design 
pharmaceutical treatments to prevent relapse. 
Identifi cation of target genes is the fi rst step in drug 
discovery, and a database of genes suspected to be 
related to relapse could be valuable to making the 
drug discovery process more effi cient. Now that 
research has determined that intervention with 
EGR1 gene expression decreases relapse, the 
search for pharmaceutical agents that affect EGR1 
gene expression and downstream targets of EGR1 
in specifi c neuronal regions should begin. Future 
relapse prevention research should occur on 
multiple levels, ranging from molecular to 
behavioral, and combining different fi elds as often 
as possible.

Conclusion
Knowledge of the gene expression patterns that 
exist following prolonged drug use and abstinence 
is useful in understanding the neurobiological drive 
to relapse despite the ensuing adverse conse-
quences. How does one progress from taking a drug 
because it elicits rewarding effects to engaging in 
drug use as a necessity? The answer to this question 
may lie in the intricate molecular changes occurring 
in neurons during drug use and abstinence. These 
molecular changes, however, will be intricately 
intertwined with learning and memory. Although 
the focus of this article has been on drug addiction, 
the contribution of some of these genes to relapse 
may be through their role in memory formation and 
retrieval. Multiple hypotheses exist to explain 
addiction (Robinson and Berridge, 2003; Thomas 
et al. 2008; Koob and Le Moal, 2008a; Koob and 
Le Moal, 2008b). Whether addiction and relapse 
stem from the avoidance of unpleasant physical 
states, motivational systems that drive compulsive 

behavior, or memories that refuse to be silenced, 
is a topic of debate, and components of each theory 
are likely necessary for a complete understanding 
of addiction. The genomic profi le of former addicts 
who are highly susceptible to relapse represents a 
combination of memory and drug-induced changes, 
and knowledge of this pattern of gene expression 
will be critical for designing the most effective 
pharmacological treatments for relapse.
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