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A single latent channel 
is sufficient for biomedical glottis 
segmentation
Andreas M. Kist1*, Katharina Breininger1, Marion Dörrich1, Stephan Dürr2, 
Anne Schützenberger2 & Marion Semmler2

Glottis segmentation is a crucial step to quantify endoscopic footage in laryngeal high-speed 
videoendoscopy. Recent advances in deep neural networks for glottis segmentation allow for a 
fully automatic workflow. However, exact knowledge of integral parts of these deep segmentation 
networks remains unknown, and understanding the inner workings is crucial for acceptance in clinical 
practice. Here, we show that a single latent channel as a bottleneck layer is sufficient for glottal 
area segmentation using systematic ablations. We further demonstrate that the latent space is an 
abstraction of the glottal area segmentation relying on three spatially defined pixel subtypes allowing 
for a transparent interpretation. We further provide evidence that the latent space is highly correlated 
with the glottal area waveform, can be encoded with four bits, and decoded using lean decoders while 
maintaining a high reconstruction accuracy. Our findings suggest that glottis segmentation is a task 
that can be highly optimized to gain very efficient and explainable deep neural networks, important 
for application in the clinic. In the future, we believe that online deep learning-assisted monitoring is a 
game-changer in laryngeal examinations.

A functional voice is a crucial factor for a successful social embedding. To determine functionality, voice physi-
ology is commonly qualitatively assessed using stroboscopy1. Laryngeal high-speed videoendoscopy (HSV) is 
an alternative, currently emerging technique, that also allows quantification of voice physiology2. With HSV, the 
vocal fold motion is typically recorded at several thousand frames per second, therefore visualizing each glottal 
cycle accurately3. The glottis or glottal area, the opening between the vocal folds, is a good proxy for the cyclic 
behavior of the vocal fold oscillations and is of major interest for quantitative data analysis.

The glottis can be segmented using several image analysis techniques4, among others active contours5, Gabor 
filters6 and thresholding combined with level set methods7. Recently, deep neural networks for semantic segmen-
tation have been utilized for glottis segmentation8,9. Additionally, optimized deep neural networks for clinical 
applicability have been proposed10. However, these deep neural networks commonly have a black box character, 
lowering their acceptance in a clinical environment11. This effect can be typically reduced when providing insights 
into the inner workings of a proposed algorithm. Despite the fact that we know that deep neural networks are 
well suited for the task of glottis segmentation, we are lacking a fundamental understanding of what are the 
necessities and learned representations of these deep neural networks.

Autoencoders or, in general, encoder–decoder architectures consist of contraction and expansion paths12,13, 
where the bottleneck layer is referred to as code layer or latent space. The latent space is thought to contain a high-
level embedding of the raw input image. The inspection of this latent space is highly interesting for generative 
adversarial networks (GANs), as the latent space can be used in GANs to specifically direct the generative image 
to enable face editing14,15, image embedding interpolation16 and novelty detection17. For semantic segmentation, 
the latent space has also been shown beneficial in multi-task architectures18,19. However, little is known about 
what the latent space represents in biomedical image analysis.

In this work, we are characterizing the latent space, a higher-order representation of the endoscopic image, 
embedded in a semantic segmentation architecture. We systematically investigate its properties and how altera-
tions to the latent space result in differences in the glottis segmentation prediction. With this, we will leverage the 
potential of latent space information in a clinical context in two ways: explainability and computation-efficient 
networks.
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Materials and methods
Data and preprocessing.  To train and evaluate deep neural networks for glottis segmentation, we used 
the open Benchmark for Automatic Glottis Segmentation (BAGLS,9). We used the full training and test data-
set containing 55,750 and 3,500 endoscopic images and their segmentation mask, respectively. All subsequent 
experiments were carried out in accordance with the relevant guidelines and regulations. For training, we resized 
all images to 512×256 px, which is the native resolution of most images in the dataset. For validation, we used 
10% randomly selected frames from the training dataset. All endoscopic images were converted to grayscale. The 
input image intensities were normalized to −1 and 1, the segmentation masks were normalized to 0 and 1, where 
0 is the background and 1 is the glottal area. We randomly applied data augmentation to the training data using 
Gaussian blur (kernel size between 3 and 7 with a σ ranging from 0.8 to 1.4), rotation ( −30 to 30◦ ), horizontal flip 
and gamma adjustments (random gamma between 0.8 and 1.2). We also use short video snippets of 30 frames 
available in the BAGLS dataset for time-variant data analysis (Fig. 3). Videos are processed as single frames on 
a single frame basis.

Glottal area waveform (GAW).  The glottal area waveform (GAW) is a one-dimensional representation of the 
vocal fold oscillation behavior. Each time point of the GAW is computed as the sum of foreground pixels in the 
glottal area segmentation mask at the given time point20.

Deep neural networks.  Architecture.  The baseline glottis segmentation network is based on the U-Net 
architecture21 modified as described in10. Briefly, we rely on an encoder–decoder architecture to change the im-
age domain from endoscopic image to glottal area segmentation (see Fig. 1). Initially, we use skip connections 
between encoder and decoder to pass mid-level information by concatenation. We set up deep neural networks 
in TensorFlow 2.6 using the Keras high-level package. All experiments were performed on an NVIDIA RTX 
3090. We trained for 25 epochs at a constant learning rate of 10−4 using the Adam optimizer22, which has been 
shown as a successful strategy previously9. Each convolutional layer used a kernel size of 3 × 3 and fL convolu-
tional filters that follow Eq. (1):

where fL is the number of convolutional filters which equals the number of channels in a given layer. At a given 
network depth d (in our baseline model d ∈ {0, 1, 2, 3, 4} ) and a given initial base filter size fbase ( fbase = 16 in 
our baseline model) we gain a total of fL = 256 latent space channels c at maximum network depth d = 4 . After 
each convolution layer, we applied batch normalization23. After batch normalization, we used the ReLU func-
tion as non-linearity (Eq. 2). However, in the latent space � (Fig. 1A) we used the ReLU6 function (Eq. 3) that is 

(1)fL = fbase · 2
d ,

Figure 1.   A single latent space channel is sufficient for glottis segmentation. (A) Glottis segmentation of 
endoscopic images using deep neural networks (DNNs) with latent space � . (B) Convergence of segmentation 
DNNs across different latent space channels with enabled skip connections. Gradient from black to red indicates 
fewer channels. The gray line indicates maximum IoU score. (C) Convergence of segmentation DNNs across 
different latent space channels with disabled skip connections. Gradient from black to magenta indicates fewer 
channels. The gray line indicates maximum IoU score from panel B. (D) Performance of best performing 
segmentation DNNs on validation set (solid lines) and evaluated on test set (dashed lines) with enabled (with, 
red) and disabled (without, magenta) skip connections across latent space ( � ) channels measured by mean 
intersection over union (IoU). The asterisk indicates the architecture used in the subsequent experiments.
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clipped between 0 and 6. The ReLU6 function has been shown to be a good choice for low-bit quantization24,25 
and to foster learning early sparse features26.

During training, we were minimizing the Dice loss27 as defined in Eq. (4) by comparing the predicted glottis 
segmentation mask ŷ to the ground-truth segmentation mask y.

Latent space �.  The latent space � is a high-level representation of the initial endoscopy image at the end of the 
encoder and serves as input to the decoder (Fig. 1). It can be interpreted as an image with fL “color” channels. For 
latent space investigations, we changed fL from its initial value (here: 256), as defined by Eq. (1), to a fixed value 
ranging from 1 to fL . When fL = 1 , we refer to the latent space as latent space image �1 . For all experiments 
after Fig. 1, we are using the latent space images �1 generated by the architecture without skip connections and 
a single latent space image, indicated in Fig. 1D with an asterisk.

Decoder experiments.  The initial decoder is constructed as described in the section Architecture. For decoder 
experiments, we used different strategies to construct the decoder (Fig. 5A). The latent space image �1 is used 
as the sole input to the decoder with a resolution of 32× 16× 1 (height × width × channels). Next, we used a 
combination of 2D upsampling operations (Upsampling2D) operations and either one or two convolutional 
layers with fD channels, where fD ∈ {1, 2, 4, 8} . For each Upsampling2D-Convolution cycle UC ∈ {1, 2, 4} , the 
Upsampling2D operation uses a scaling factor s ∈ {16, 8, 2} , respectively, to ensure a full upsampling to the 
original image resolution (512×256 px). For training, we converted each training image to its latent space repre-
sentation by using the final model used in latent space data analysis (result of Fig. 1D, with no skip connections 
and fL = 1 ). We converted each latent space image in uint8 as we have shown that eight-bit are sufficient for 
high-level encoding (Fig. 4A, B).

Class activation maps.  To highlight relevant features in the neural network architecture, class activation maps 
(CAMs) were used28. We relied on an adaptation of the Grad-CAM method29 for semantic segmentation archi-
tectures (Seg-Grad-CAM30).

We generated a heatmap Hc
l  at layer l for either glottis segmentation ( c = 1 ) or background ( c = 0 ) using a 

rectified, weighted sum of the feature maps A across kernels k ∈ [1,K] at given layer l:

where the weight of each gradient activation map αc
k for each kernel k and given class c for all pixels N in a given 

image, indexed by u and v, is defined as follows:

yc is defined as the logit for a given class c.

Bit encoding.  To determine the information content carried by the latent space, we reduced the encoding to 
a fixed bit encoding. We created a histogram of a given latent space image and divided it into 2bits bins. We then 
set each pixel in a given bin range to the average value in a given bin (Fig. 4C). The resulting new latent space 
image is provided to the decoder and the reconstructed image is compared to the ground-truth segmentation 
mask. We used the mean squared error (MSE) and the intersection over union (IoU) score (see Evaluation) as 
evaluation metrics.

Evaluation.  We evaluated the segmentation quality using the IoU (intersection over union) score31 as 
defined in Eq. (7).

We further computed the correlation between the latent space image �1 across time (in the equation refered as 
x ) and the GAW ( y ) as follows:

(2)ReLU (x) = max(0, x)

(3)ReLU6 (x) = min(max(0, x), 6).

(4)Dice (y, ŷ) = 1−
2yŷ + 1

y + ŷ + 1
.

(5)Hc
l = ReLU

(

∑

k=1

αc
kAk

)

,

(6)αk =
1

N

∑

u,v

∂yc

∂Ak
uv

.

(7)IoU (y, ŷ) =
y ∩ ŷ

y ∪ ŷ
.

(8)rxy =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1) · sx · sy
,
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where n is the number of time points/samples, x̄ and ȳ the average of x and y , respectively, and sx and sy are the 
sample standard deviation of x and y , respectively.

Results
A single latent space channel is sufficient for glottis segmentation.  To understand which compo-
nents are crucial in a segmentation deep neural network, we performed an ablation study on a modified U-Net 
architecture (see “Materials and methods”). We trained a full-size, complete U-Net to perform glottis segmen-
tation (Fig.  1A), similar to the previous works9,10. The latent space � , the ultimate bottleneck that connects 
encoder and decoder in the full U-Net, has initially 1024 channels (Fig. 1A), when 64 filters are used in the first 
layer ( fbase = 64 ). In this work, we use a reference implementation with 16 filters in the first layer ( fbase = 16 ) 
and thus, 256 channels in the latent space, as this has been shown previously to provide comparable performance 
compared to fL = 102410.

We systematically reduced the amount of channels in the latent space to determine the minimum viable 
latent space. We found that even a single latent space channel is sufficient to encode the glottal area segmentation 
(Fig. 1B). However, we hypothesized that the skip connections in the U-Net allow rescuing the strong limita-
tion in the bottleneck. Hence, we removed the skip connections and found that the segmentation accuracy in 
the validation set was reduced across configurations (Fig. 1C). However, the network architecture is still able to 
provide accurate glottis segmentations (Fig. 1D), and has a performance on the test set similar to higher latent 
space encodings and enabled skip connections. The general drop in performance is due to the nature of the test 
set that contains a balanced blend of data across multiple hospitals with a variety in data quality, whereas this is 
not granted in the training dataset.

To further investigate of the reconstruction capabilities of the ablated architecture, we evaluated its autoen-
coder abilities. In Supplementary Figure 1, we show that the autoencoder ability across latent space � channels 
are perceptually uniform. However, the disabling the skip connections had a major effect on the reconstruction, 
and high-frequency details were lost. Notably, the glottal area seemed to be largely retained which is in line with 
our findings related to glottis segmentation.

To avoid any effect of the dataset itself on the study, we systematically ablated the training dataset, while evalu-
ating on the BAGLS test dataset. We found that our results hold across dataset sizes (Supplementary Figure 2). 
While the validation IoU reaches a similar, but slightly declining score across dataset sizes (Supplementary Fig-
ure 2A), we found that the performance on the test set is stable across dataset sizes (Supplementary Figure 2B).

In summary, we show that a single latent space channel is sufficient for glottis segmentation. We will refer to 
this single latent space channel as latent space image �1 , and use the architecture shown in Fig. 1D (indicated 
with an asterisk) for subsequent experiments.

The latent space encodes glottis location and shape.  Next, we investigated the properties of the 
latent space (Fig. 2A). We encoded all images of the BAGLS training dataset to gain a collection of latent space 
� images. We first determined if any single pixel is directly correlated for with the glottal area. We found that 
the correlation values follow a normal-like distribution centered around 0.00 with a standard deviation of 0.12 
(Supplementary Figure 3). We then investigated the value distribution of the latent space. The histogram shows a 
distribution centered around 0.8 ( mean = 0.75 , median = 0.78 , mode = 0.80 ), with a long tail towards 0 and a 
very short tail above 0.8 (Fig. 2B). Interestingly, we clipped the available value space in the latent space between 
0 and 6 (see “Materials and methods”), however, the largest value we observed was 1.45, indicating that we were 
not constrained by our activation function.

To understand the meaning behind these values, we found that values around 0.8 encoded for background 
(referred to as β pixels), values higher than 0.8 (especially higher than the 95% percentile) defined the glottal 
area (hereafter referred to as γ ), and values lower of 0.8 were glottal area shaping values ( α pixels, Fig. 2C). More 

Figure 2.   The latent space image �1 values provide interpretable context. (A) Deep neural network (DNN) 
used for further experiments. DNN consists only of a single latent space image �1 without skip connections. (B) 
Value distribution of the latent space image �1 across all pixels of all images in the BAGLS training dataset. We 
indicated the 95% confidence interval that is used for defining γ pixels. (C) The average latent space image �1 
across 30 frames. We indicate the three pixel subtypes, α for glottis refining, β for background-defining, and γ 
for glottal area defining pixels. (D) The average reconstruction obtained from feeding �1 from panel C into the 
decoder.
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examples are shown in Supplementary Figure 4. Further, the latent space image �1 is encoding the spatial location 
of the glottal area in x and y. We confirmed this by generating an artificial latent space image �1 and varying x and 
y location, γ pixel value intensity and pixel drawing radius (Supplementary Movie 1). Values higher than 1.5 for γ 
resulted in image artefacts and were also not found in the general latent value distribution (Fig. 2B). We further 
investigated the role of the value drop (values < 0.8 ) for α pixels adjacent to the glottis-defining β pixels (values 
> 0.8 ). Our results suggest that α pixels in the surrounding of γ pixels are shaping the glottal area’s extent and 
refining its appearance (Supplementary Movie 2). Taken together, the interplay between α and γ pixels is crucial 
for an accurate glottis segmentation, to gain an accurate reconstruction as shown in Fig. 2D.

Figure 3.   Thresholded latent space image �1 is highly correlated with glottal area waveform. (A) Distribution 
of correlation values across videos using either the raw latent space image �1 or the thresholded �1 using the 
95% confidence interval as threshold (see Fig. 2A). Correlation was computed from every latent space to glottal 
area waveform of 30 frames ( N = 399 videos). (B) Two exemplary videos showing the original ground-truth 
glottal area waveform (GAW, black), the segmentation prediction of the deep neural network with a single latent 
channel (blue) and the thresholded latent space image �1 from the same network (green).

Figure 4.   Four bits were sufficient for accurate reconstruction. (A) IoU score comparing the reconstructions 
from lower bit encodings to the full 32-bit reconstruction. (B) Mean squared error (MSE) for lower bit 
reconstruction and full 32-bit reconstruction. (C) Example for 4-bit and respective 32-bit encoding with 
respective reconstruction. (D) Mean correlation of low bit latent space image �1 and glottal area waveform 
(GAW).
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To better understand the encoding and decoding properties of the architecture, we were analyzing class 
activation maps (CAMs). As shown in Supplementary Figure 5, we found that during encoding the background 
and the foreground, i.e. the glottal area, get well separated and merge in the single latent space image �1 . In the 
decoding layers, the background class focused on the glottal area outlines, whereas the foreground glottal area 
was constantly refined. In agreement with our previous findings, the CAMs suggest that �1 is a powerful and 
sufficient representation of the glottal area.

Thresholded latent space is highly correlated with the glottal area waveform.  The glottal area 
waveform (GAW) is a time-variant signal important for assessing vocal fold physiology2,32. We, therefore, asked 
if the latent space image �1 is a good proxy for the GAW. To answer this question, we used short video frag-
ments from the BAGLS dataset and converted the provided ground truth segmentation mask to the GAW (see 
“Materials and methods”). We followed two approaches: (1) summing all values in �1 and (2) threshold � at 95% 
confidence interval ( value = 0.8 ) and then summing the positive pixels. In Fig. 3A, we show that approach (1) 
is correlated to a limited extent with GAWs (on average 0.03± 0.56 ), however, approach (2) is highly correlated 
with the GAW, on average 0.84± 0.18 . Figure 3B shows two exemplary videos with corresponding ground-truth 
GAW, the GAW generated by using the segmentation masks reconstructed by the decoder, and the thresholded 
�1 waveform.

A low bit encoding is sufficient for glottis reconstruction.  As the value range is very limited in the 
latent space (Fig. 2B) and the existence of α , β , and γ pixels, we hypothesized that a low bit depth is sufficient 
for encoding the latent space �1 for accurate glottal area reconstruction. By reducing the bit depth from 32-bit 
floating point to a range of 1 to 8-bit, we found that 4-bit encoding is sufficient for high-quality reconstructions 
(Fig. 4A–C). Specifically, with 4-bit encoding the IoU score became stable and showed a low error, which is 
neglectable with 8-bit encoding (Fig. 4A). The mean-squared error (MSE) between full 32-bit reconstruction 
and low-bit reconstruction declined as expected with increasing bit depth, but in terms of absolute values, we 
observed some deviation from the original reconstruction (Fig. 4B). We further were able to reproduce the high 
correlation of �1 with the glottal area waveform (Fig. 4D). In summary, we showed that 4-bit encoding is suf-
ficient for subjectively similar glottis segmentations compared to full 32-bit encoding.

Light‑weight decoders are capable of reconstructing the glottal area.  As the latent space image 
�1 was easily interpretable and showed a low-level complexity, we hypothesized that the decoder architecture 
can be largely simplified. Hence, we investigated how many convolutional filters and how many upsampling 
steps are necessary for decoding from the single latent space image �1 introduced before (Fig. 5A). Further, 
we were interested if the upsampling strategy (nearest neighbours vs. bilinear interpolation) and multiple con-
volutional layers would affect the decoding ability (Fig. 5A). When using a single convolutional layer in each 
upsampling step, we found that one and two convolutional filters were not sufficient for decoding and that four 
convolutional filters were only sufficient in a single configuration (4x upsampling and bilinear interpolation) as 
shown in Fig. 5B. The best results were achieved using eight convolutional filters together with 4x upsampling, 
which resulted in decent IoU scores (0.817, Fig. 5B). Using two convolutional layers in each upsampling step, 
however, allowed 2x upsampling being competitive in the eight convolutional filters configuration. In general, 

Figure 5.   Lean decoders are sufficient for glottis reconstruction from a single latent space image �1 . (A) 
Decoding from latent space image �1 . Evaluated decoders consist of either 1, 2 or 4 upsampling-convolution 
blocks (right panel), wherein one or two convolutional layers can be present. The filter size of each convolutional 
layer was fixed (see panels B–E). (B) IoU scores of different decoder blocks (color-coded, 1 blue, 2 orange, 4 
green) using either nearest neighbor (solid lines) or bilinear upsampling (dashed lines). (C): Same as panel B, 
but with two convolutional layers. (D) Trainable weights across decoder settings for two convolutional layers per 
block. (E) File size across decoder settings for two convolutional layers per block.
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two and four convolutional filters showed better performance compared to the single convolutional layer experi-
ment. However, these were not competitive with the configurations showing eight convolutional filters (Fig. 5C). 
The top performance with two convolutional layers per block, eight convolutional filters and 4x upsampling with 
IoU=0.852 was slightly outperforming the single convolutional layer configurations. Despite the higher amount 
of trainable parameters in this configuration (Fig. 5D), it had a relatively stable file size of 99 kB (Fig. 5E). It is 
astonishing that even configurations with less than 200 trainable parameters achieved IoU scores higher than 
0.4 (Table 1).

Discussion
In this work, we found that a single channel in the latent space of an encoder–decoder architecture was sufficient 
for glottal area reconstruction. We further showed that the latent space forms an image that has interpretable 
properties, such as background ( β ), glottal area defining ( γ ) and refining ( α ) pixels. Our findings suggested that 
encoder–decoder frameworks are not only suitable for glottis segmentation, but also provide a higher-order 
approximation of the glottal area sufficiently encoded in a significantly smaller, single channel image. Together 
with a low bit encoding (Fig. 4), it may serve as an efficient data storage system for glottis segmentations, which 
would be important for a variety of downstream analyses to compute quantitative parameters. The latent space 
image was easily reconstructed using efficient decoders as presented in Fig. 5.

Our results highlighted that by mining the deep neural network crucial for a clinical task, in this case glottis 
segmentation, we were able to truly determine what the network has learned, and were able to interpret these 
results (Fig. 1). We also were able to show what effect alterations have on the latent channel (Supplementary 
Movies 1 and 2). Current state-of-the-art explainable AI methods, such as class activation maps, are highly under 
debate33,34, whereas our approach is easy interpretable and transparent, despite the fact CAMs in this setting 
seemed to be in agreement with our findings (Supplementary Figure 5). This transparency also allows in principle 
to better understand failure cases, as they can directly be investigated, reported and corrected.

Our findings showed that the reduced latent space provides a high-level representation of the segmentation. 
However, in this study we did not directly investigate how the high-level representation disentagles semantic 
information, such as glottis shape, glottis opening or pathologies. Disentanglement analysis35, especially in the 
field of medical analysis, would help to better understand what the network learns and would allow multiple pos-
sible and plausible results. Modifications to the neural architecture, such as the use of appropriate loss functions 
that support disentanglement36 or incorporating priors37, should be investigated in the future.

In this study, we particularly focused on the latent space and its minimal extent for glottis segmentation. We 
found that removing the U-Net-specific skip connections yielded lower IoU scores in the validation set, whereas 
we did not find any differences in the test set, i.e. on independent, unseen data (Fig. 1D). This is in line with a 

Table 1.   Overview of all decoder configurations tested. Significant values are in bold.

Blocks Filter size Conv2D layer Weights File size (kB) IoU (nearest) IoU (bilinear)

1x

1

One

12 19 0.01 0.01

2 24 19 0.01 0.17

4 48 19 0.28 0.27

8 96 19 0.42 0.29

2x

1 23 31 0.01 0.01

2 64 31 0.01 0.01

4 200 31 0.60 0.45

8 688 34 0.66 0.48

4x

1 45 51 0.11 0.01

2 144 51 0.40 0.48

4 504 53 0.80 0.50

8 1872 58 0.82 0.79

1x

1

Two

23 30 0.01 0.01

2 64 30 0.22 0.32

4 200 30 0.49 0.35

8 688 33 0.39 0.35

2x

1 45 49 0.01 0.01

2 144 49 0.53 0.60

4 504 51 0.46 0.68

8 1872 55 0.79 0.72

4x

1 89 84 0.01 0.01

2 304 84 0.20 0.48

4 1112 88 0.71 0.61

8 4240 100 0.85 0.84
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previous study10, where the authors showed that the kind of skip connection is not important (adding or con-
catenating channels from encoder to decoder) for glottis segmentation. They also found a significant drop in the 
validation IoU score, when removing the skip connections. However, they have not specifically investigated the 
role of skip connections in this context. It remains elusive if certain data other than laryngeal endoscopy images 
benefit from enabled skip connections for segmentation tasks. Notably, adding further processing layers to the 
skip connections does improve the performance on medical data38.

Glottis segmentation is a straight forward task and was previously approached using variations of threshold-
ing-based techniques7,20,39. Therefore, it is likely that the encoder–decoder architecture would learn a smart and 
non-linear thresholding algorithm. However, other modalities, such as anterior-posterior point prediction for 
midline estimation19 and vocal fold localization for paralysis analysis40 may not benefit from this very constrained 
latent space. Future studies should address these limitations and speculate about the necessity of an increased 
latent space crucial for multitask architectures, as the latent space has been shown useful for midline estimation19.

The U-Net is a very powerful starting point for biomedical image segmentation tasks, also for glottis 
segmentation4,9,41. Modifications to this architecture, such as convolutional layers with LSTM memory cells42 as 
shown by41 may improve the glottal segmentation accuracy. Minimizing the parameter space was also shown 
beneficial in glottis segmentation10 and across biomedical image analysis tasks43. Also, more sophisticated encod-
ing backbones, such as the ResNet44 and the EfficientNet45 architecture showed superior performance in glottis 
segmentation, especially on more dissimilar data sources20. Future research should investigate, if these architec-
tures are able to detect and encode better high-level features in the latent space, such that a potentially higher 
dimensionality in the latent space yields further performance improvements.

Conclusion
With this work, we contributed to the understanding of how glottis segmentation is performed by deep neural 
networks and that we were able to uncover the deep neural network black box character by identifying three value 
ranges with a specific role, namely α , β and γ pixels. Future studies may elucidate if these three subclasses can 
be further refined and if they occur across architectures and segmentation tasks. In general, our findings would 
allow very efficient architectures leveraging the potential of real-time applications of glottis segmentations in a 
clinical setting and maybe used together with recent advances in HSV systems46. Further research on quantitative 
measures may include how the latent space image � influences these computations and if the latent space is also 
sufficient for approximating complex quantitative parameters to assess easily voice physiology.

Code and data availability
We provide all relevant code at https://​github.​com/​ankil​ab/​latent. In this study, we relied on the open BAGLS 
dataset. We provide all latent space images for decoder training and the used model for latent space image analysis 
at https://​zenodo.​org/​record/​57727​99.
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