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Abstract 

Background:  Skill acquisition of motor learning between virtual environments (VEs) and real environments (REs) 
may be related. Although studies have previously examined the transfer of motor learning in VEs and REs through the 
same tasks, only a small number of studies have focused on studying the transfer of motor learning in VEs and REs by 
using different tasks. Thus, detailed effects of the transfer of motor skills between VEs and REs remain controversial. 
Here, we investigated the transfer of sequential motor learning between VEs and REs conditions.

Methods:  Twenty-seven healthy volunteers performed two types of sequential motor learning tasks; a visually cued 
button-press task in RE (RE task) and a virtual reaching task in VE (VE task).  Participants were randomly assigned to 
two groups in the task order; the first group was RE task followed by VE task and the second group was VE task fol-
lowed by RE task. Subsequently, the response time in RE task and VE task was compared between the two groups 
respectively.

Results:  The results showed that the sequential reaching task in VEs was facilitated after the sequential finger task in 
REs.

Conclusions:  These findings suggested that the sequential reaching task in VEs can be facilitated by a motor learning 
task comprising the same sequential finger task in REs, even when a different task is applied.
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Background
Motor learning refers to an improvement in the perfor-
mance of sensory-guided motor behavior via practice 
[1]. The acquisition of new skills through motor practice 
is essential to interact with the environment and adjust 
the integration of multiple elements of movement. The 
two components of the learning process [2, 3] include 
implicit motor learning that improves the performance 
of a sequence without the knowledge of the sequence 
[4] and explicit motor learning that involves conscious 
recollection with the knowledge of the sequence. The 
memory system employed differs between implicit and 

explicit learning [5]. Explicit motor learning is associated 
with the activity of the dorsal premotor cortex, dorsolat-
eral prefrontal cortex, and supplementary motor area [6]. 
By contrast, implicit learning is primarily related to the 
activity of the contralateral sensory and primary motor 
cortices [7]. Previous studies focusing on implicit motor 
learning have reported the activations of the right ven-
tral striatum [8–10], right thalamus [9], and subcortical 
regions [11] during a serial reaction time task (SRTT). 
This implicit sequential task has been widely used to 
quantitatively evaluate the acquisition of a new skill 
[12–14].

Virtual environments (VEs) have attracted attention 
with the recent advances in technology. VEs can modu-
late perception and cognition by providing coherent sen-
sory feedback that corresponds to the actions taken place 
within the VE and grants users the psychological sense 
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of being present there [15]. To illustrate, previous stud-
ies have reported that both the agency and ownership 
of the virtual hand are induced concurrently if the vis-
ual presentation of the virtual hand movement matches 
the subject’s active hand movement [16–18,  19]. Due 
to their applicability and expandability, VEs have been 
introduced as new effective approaches in rehabilitation. 
For instance, previous studies have demonstrated that 
VEs could contribute to effective interventions for the 
improvement of upper limb function, balance, and gait 
after stroke [20–23]. Other studies have suggested that 
VE training could improve balance, gait, motor function, 
and quality of life in patients with Parkinson’s disease 
[24–26] and motor function in children with cerebral 
palsy [27]. Furthermore, several studies have reported 
that VEs also promote motor learning [9, 15, 16]. How-
ever, opinions vary concerning how learning in virtual 
and real environments (REs) could affect motor skill 
acquisition. For example, a previous study has suggested 
that post-training performance in virtual and real train-
ing is equivalent and both of which significantly exceeds 
without training [28]. However, another study demon-
strated that training in VE cannot promote better per-
formance than the same task in RE [29]. Furthermore, 
several reports focused on interactions of skill acquisition 
of motor learning in VEs and REs. For instance, a study 
in healthy subjects demonstrated that skill acquisition of 
the sequential motor learning occurs at the same rate in 
both VE and conventional screen environments, while 
the transfer of motor skills was not observed from VE 
to the screen environment [30]. Another study reported 
that skill acquisition in individuals with the neuromus-
cular disease transferred from VEs to REs [31]. In con-
trast, motor learning and motor performance did not 
transfer from VEs to REs in older adults and individuals 
with neuromuscular diseases [29, 32, 33]. These results 
imply the presence of some relationship in skill acquisi-
tion of motor learning between VEs and REs. However, 
whether the transfer of skill acquisition of motor skills 
occurs between VEs and REs is still controversial. The 
above-mentioned studies investigated the relationship 
between motor learning with the same tasks between dif-
ferent environments (VE and RE), whereas few studies 
focused on motor learning with different tasks in differ-
ent environments. As for motor learning transfer, previ-
ous studies also suggested motor skill learning transfer in 
the case of the same environments concerning different 
tasks. For instance, the transfer of partial learning has 
been reported using SRTT [34], and motor skill trans-
fer from one hand to the other has also been suggested 
[35]. Furthermore, motor skill transfer from one hand 
to the other was demonstrated in VEs [36]. Considering 
the relationship between motor learning skill acquisition 

between VEs and REs, we hypothesized that motor learn-
ing transfer occurs between VEs and REs even in the case 
of different tasks.

Therefore, the present study was aimed at revealing 
whether motor learning transfer could occur between 
VEs and REs even in the case of different tasks. In the 
present study, participants were randomly assigned to 
one of two groups. Both groups performed sequential 
motor learning tasks in both environments. However, 
one group performed a sequential button-press task in 
RE first, followed by a sequential reaching task in VE. 
The second group performed a sequential reaching task 
in VE, followed by a sequential button-press task in RE. 
To examine motor learning transfer, we compared the 
response time between the two motor learning tasks.

Methods
Participants
Thirty healthy volunteers (21.5 ± 3.0 years; 23 women) 
participated in this study. All participants were right-
handed, as determined by the Edinburgh Handedness 
Inventory Test (Oldfield, 1971). No participant had a his-
tory of neurological or psychiatric disease, and all had a 
normal or corrected-to-normal vision (10 participants 
wore contact lenses).  In accordance with the Declaration 
of Helsinki, we explained the purpose and possible con-
sequences of this study to all participants and obtained 
their informed consent before the study commenced.

Experimental design
In order to examine the transfer of motor learning, the 
participants performed sequential motor learning tasks 
in both REs and VEs (Fig.  1A). For the motor learning 
task in a RE, the participants performed a visually cued 
button-press task (RE task; Fig. 1B). For the motor learn-
ing task in a VE, the participants performed a virtual 
reaching task (VE task; Fig. 1C).

   The participants were randomly assigned to two 
groups to keep a counter balance in the task order; the 
first group was RE task followed by VE task (RE-VE 
group) and the second group was VE task followed by 
RE task (VE-RE group). There was a 5-minute interval 
between the tasks. After completing all experiments, the 
participants were asked to answer a virtual hand illusion 
(VHI) questionnaire. Considering fatigue, the total time 
of the performed tasks was controlled in both groups 
(RE task: RE-VE group 570.2 ± 27.0  s, VE-RE group 
569.2 ± 27.1  s, VE task: RE-VE group 890.0 ± 143.3  s, 
VE-RE task 896.9 ± 241.7  s). Three participants (one 
in the RE-VE group and two in the VE-RE group) were 
excluded from data analysis as their mean responses were 
beyond ± 2SD from the mean for subjects. Thus, the final 
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sample size included 27 participants, of which 13 were in 
the RE-VE group and 14 in the VE-RE group.

Motor learning task in RE (RE task)
   The participants performed a visually cued button-
press task consisting of a 12-digit motor sequential learn-
ing task in which participants were required to react with 
their four right-hand fingers (Fig. 1A) [14]. Four horizon-
tal bars were displayed on the screen (Fig. 2A). When the 
color of a bar changed from gray to blue, the participants 
were instructed to press the corresponding button as 
quickly and accurately as possible. If a participant pressed 
the correct button, the next stimulation was presented 
after 1 s. If a participant pressed an incorrect button, the 
stimulation was unchanged until the participant pressed 
the correct button. This motor learning task consisted 
of five sequence blocks (S1–S5) and two random blocks 
(R1, R2). Random blocks were set before (R1) and after 
the five sequence blocks (R2). The sequence blocks com-
prised five repeats of 12 stimuli in the same sequence. 
Thus, a total of 300 button presses were performed in a 

sequence block, whereas 120 button presses were per-
formed in a random block.

Motor learning task in VE (VE task)
In the motor learning task in VE, four transparent gray 
targets with a cylindrical shape and a transparent blue 
base point with a hemispherical shape were displayed on 
a virtual desk located in a VE. The participant was fixed 
with a head-mounted display (HMD) and instructed 
to sit in a chair at a specific position where they could 
reach all the targets and the base point easily with mini-
mal arm movement, and to perform a virtual reach-
ing task (Fig. 2B). The base point disappeared when the 
participants kept their virtual hand in the hemisphere 
for 1  s, which meant the beginning of an experimental 
trial. As the color of a target changed from gray to green, 
the participants were instructed to put the virtual right 
hand, which was rendered overlapping at the partici-
pant’s hand position in the RE, into the designated tar-
get as quickly and accurately as possible. The color of 
target changed from green to red when the participants 
reached the target. As the base point was displayed again 
just after the virtual hand successfully reached the target; 

Fig. 1  Experimental procedure. A The participants performed sequential motor learning tasks in both real environments (REs); a visually 
cued button-press task and virtual environments (VEs); a virtual reaching task. After completing all experiments, the participants answered a 
questionnaire regarding virtual hand illusions. Interval between the tasks was 5-minutes. Task order was randomly and evenly distributed. B In RE 
task, participants performed a 12-digit visually cued button-press sequence task consisting of six blocks (S1–S6) and two random blocks (R1, R2). 
Random blocks were set before (R1) and after (R2) sequence blocks. C In the VE task, participants performed a 12-digit virtual reaching sequence 
task consisting of six blocks (S1-S6) and two random blocks (R1, R2). Random blocks were set before (R1) and after (R2) sequence blocks. Sequential 
motor learning tasks in both REs and VEs were composed by a 12-digit same sequence
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the participants could start the next trial whenever they 
liked by touching it. However, if the virtual hand could 
not reach the intended target within 2 s, the color of the 
target changed from green to red together with the re-
emergence of the base point. In this case, the color of the 
target returned to gray when the participant touched the 
base point, and the next trial was presented.

To examine the transfer of sequential motor learning, 
the orders of sequence were exactly same in both tasks. 
Thus, VE task also consisted of five sequence blocks (S1–
S5) and two random blocks (R1, R2) and a total of 300 
virtual reaching were performed in a sequence block, 
whereas 120 virtual reaching were performed in a ran-
dom block.

Apparatuses
In the RE task, visual stimuli were applied by Presen-
tation System (Neurobehavioral Systems, USA) and 
recording of response times were realized by fiber optic 
computer response system (PKG-9904, Current Design 
Inc., USA) (Fig. 2A).

In the VE task, we developed a Virtual Reality experi-
mental system by integrating an HMD (Oculus Rift, Ocu-
lus) and a hand tracking system (Leap Motion, Ultraleap 
Ltd.) into a game engine (Unity 2018.4.24, Unity Tech-
nologies) (Fig. 2B). Our VE task mainly consisted of four 
cylindrical targets, a hemispherical base point, a desk, 
and a virtual right hand. Leap Motion attached on the 
HMD tracked the participant’s hand position, orienta-
tion, and posture, and the information was applied to 
render the virtual hand in the VE. The four cylindrical 
targets were symmetrically allocated every 30 degrees 
centering around the base point (Fig.  2B); the distance 
between the base point and each target were 25  cm in 
the scale of RE. The collision detection with the targets 
or base point was based on the distance between their 
center positions and the palm position of virtual hand. 
It was considered that the hand reached a target or base 
point when the distance became smaller than their diam-
eters; in the scale of RE, the diameters of targets and base 
point were 10 cm, respectively. Rendering of VE was per-
formed in 80 Hz which was the same as the refresh rate of 
Oculus Rift. The sampling time for the experiment con-
trol was set in 20 ms (i.e., 50  Hz sampling rate), within 
which the collision detection, control of experimental 
condition, and data acquisition were performed.

VHI questionnaire
We subjectively evaluated the participant’s experience or 
feeling of the right hand during movements of the virtual 
right hand. The participants were asked to answer a VHI 
questionnaire with a seven-point Likert scale (− 3 to + 3). 
In the seven-point Likert scale, − 3 and + 3 were set as 
“I strongly disagree with the statement” and “I strongly 
agree with the statement”, respectively; 0 was considered 
as a neutral rating allocated for unjudgeable experience. 
The applied questionnaire items, based on the original 

Fig. 2  Experimental environments. A Real environment; Four 
horizontal bars were displayed on the screen. When the color of 
a bar changed from gray to blue, the participants were instructed 
to press the corresponding button as quickly and accurately as 
possible. B The participant wore a head-mounted display and sat in 
a chair at a specific position where they could reach all the targets 
and the base point easily with minimal arm movement. C Virtual 
environment; When participants touched the base point with their 
right virtual hand, the color of target changed from gray to green. 
The participants were instructed to reach the target as quickly and 
accurately as possible

Table 1  Virtual hand illusion questionnaire (VHI questionnaire)

Item Assertion

  Embodiment

 Q1 I felt as if the virtual hand was my own hand.

Sense of agency

 Q2 The movement of virtual hand matched 
with the movement produced by my 
hand.

  Control

 Q3 I felt like my hand was becoming bigger.

 Q4 I could not feel my hand.

 Q5 I felt as if my hand was turning “virtual.”

 Q6 I felt as if my whole hand was moving.
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rubber hand illusion questionnaire [37], are shown in 
Table 1.

The first two items were designed to correspond to the 
VHI. The illusion items assessed the embodiment of vir-
tual hand (Q1) and the sense of agency (Q2) during the 
experiment, respectively. The other items served as con-
trol for suggestibility, which were unrelated to the VHI. 
The suggestibility meant that sometimes the participants 
rated all the items in the same manner for any reason and 
was therefore removed from the analysis.

Statistical analysis
Statistical analyses were performed using MATLAB 
(R2017a) and SPSS (version 25). First, the effects of 
time (R1 vs. S5) and task order (RE-VE group vs. VE-RE 
group) on the response times were assessed with a two-
way repeated measure analysis of variance (ANOVA). 
The Greenhouse–Geisser correction was applied to the 
degrees of freedom when the sphericity assumption was 
violated. In case of significant effects, post hoc analyses 
were performed to test interaction effects with unpaired 
t-tests. Next, the mean rating for Q1 and Q2 was com-
pared with RE-VE group and VE-RE group using a 
Mann–Whitney U test.

Results
Response time in the RE task
A two-way repeated measure ANOVA with factors time 
(Blocks) and task order (RE-VE group vs. VE-RE group) 
showed a significant main effect of time (F(6,25) = 5.121, 
p = 0.003, η2p = 0.17) but not task order (F(1,25) = 0.197, 
p = 0.661, η2 p = 0.008) or time × task order interaction 
(F(6,25) = 0.667, p = 0.568, η2 p = 0.026) (Fig. 3A).

Response time in the VE task
A two-way repeated measure ANOVA with factors time 
(Blocks) and task order (RE-VE group vs. VE-RE group) 
revealed no significant main effect of time (F(6,25) = 0.984, 
p = 0.387, η2 p = 0.038) and task order (F(1,25) = 1.184, 
p = 0.287, η2 p = 0.045), and a significant time × task 
order interaction (F(6,25) = 4.835, p = 0.01, η2 p = 0.162) 
(Fig.  3B). In order to further investigate the signifi-
cant time × task order interaction, post hoc analyses 
were performed for each block with Student t-test. The 
results showed significant differences between the RE-VE 
and VE-RE groups only in the S5 block (t(25) = 2.551, 
p = 0.017).

VHI questionnaire
A Mann–Whitney U test showed no significant differ-
ence in VHI questionnaire between VE-RE group and 

Fig. 3  Response times during the RE and VE tasks. A Response times 
during the RE task. During the RE task, we observed a significant main 
effect of time (Blocks) (p < 0.05). B Response times during the VE task. 
During the VE task, we observed no significant main effect of time 
(Blocks), although we could obtain a significant time × task order 
(RE-VE group vs. VE-RE group) interaction (p < 0.05). Post hoc analyses 
revealed that response time was significantly different between two 
groups only in S5 block (*p < 0.05)

Fig. 4  Results of virtual hand illusion questionnaire about Q1 and 
Q2 between VE-RE group and RE-VE group. No significant difference 
between VE-RE group and RE-VE group was observed
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RE-VE group (Q1: z = − 0.351, p = 0.725; Q2: z = − 0.30, 
p = 0.764) (Fig. 4).

Discussion
The present study investigated the transfer of motor 
learning between VEs and REs in different tasks. The 
results suggested that motor learning in VEs may be 
facilitated after motor learning in REs even if different 
tasks are applied.

VEs enable individuals to have virtual experiences 
that are similar to those in REs. However recent studies 
have shown that the learning mechanism between VEs 
and REs is different [38]. As for the neurophysiological 
aspects of visual processes, visual information is pro-
cessed thorough ventral and dorsal pathways. The ven-
tral path provides perception and identification of visual 
inputs, and the dorsal path monitors real-time informa-
tion [39, 40]. In the REs, the visual information within 
peripersonal space was processed using the dorsal path 
[41], whereas visual processing in VEs induced the ven-
tral path [42]. These results indicate that processing of 
sensory information in the brain between VEs and REs 
is different. In the present study, motor learning in REs 
improved motor learning in VEs, whereas motor learn-
ing in VEs did not improve motor learning in REs. Some 
studies have demonstrated that motor learning in VEs 
requires more brain activity than in REs for cognitive and 
motor control [43, 44]. In addition, Ranganathan et  al. 
[45] reported that motor learning in different environ-
ments interferes with each other. If the first task does 
not share task environments with the later task, there is 
prolonged interference in learning the later task. How-
ever, another study reported that motor learning in REs 
involved more implicit motor learning compared with 
motor learning in VEs [46]. In addition, studies on motor 
learning transfer in REs with different tasks have sug-
gested that the higher the similarity of tasks, the higher 
is the transfer [47, 48]. Moreover, previous studies have 
demonstrated that the transfer of implicit motor learn-
ing is not observed in the cases of changing response 
locations [49] or stimulus–response associations [50]. 
Furthermore, different tasks have been shown to cause 
interference or inhibit the transfer of motor learning [51, 
52]. Given these findings, we would not expect the trans-
fer of motor learning between the sequential button-
press task and sequential reaching task to be induced in 
REs. Thus, these results support our finding that sequen-
tial motor learning in VEs is facilitated after sequential 
motor learning in REs despite interference with different 
environments and tasks. However, additional research 
is required to assess this possibility because we did not 
evaluate neurophysiological changes using electroen-
cephalogram or functional magnetic resonance imaging.

In the present study, the virtual reaching task in VEs 
did not promote sequential learning in the VE-RE group. 
Previous research on VEs employed several tools, such 
as a two-joint mechanical arm [53], joysticks [54] and 
pinch force sensors [30], which showed improvement in 
the motor learning ability. These experiments were per-
formed using sensory information as clues instead of 
visual information, like the arm-reaching task used in 
the present study. Another study reported that providing 
tactile feedback using sensor gloves in VEs reduces the 
discrepancy between the virtual and physical environ-
ments [55]. These results indicate that the arm-reaching 
task in VEs may not facilitate sequential learning because 
of the lack of tactile stimulation. Furthermore, several 
studies have reported that motor learning in VEs is influ-
enced by individual factors [30, 56, 57]. For instance, 
experience with video games showed a positive impact 
on performance in VEs [30, 58]. Considering the reports 
of the aforementioned studies, the lack of motor learn-
ing capacity in VEs observed in the present study may be 
attributed to individual factors.

The present study has several limitations. First, 
although the present study focused on motor learning 
transfer with different tasks in different environments, 
motor learning transfer was investigated only between 
a visual button-press task in RE and a virtual reaching 
task in VE. Therefore, we could not rule out the impact 
of task-dependent (button-press task in VE versus arm-
reaching task in RE) and environment-dependent (but-
ton-press task in RE versus button-press task in VE, 
arm-reaching task in RE versus arm-reaching task in VE) 
factors. Also, we could not deny the effects of environ-
mental differences with wearing the HMD since we did 
not wear the HMD in REs. However, to the best of our 
knowledge, no study has been published that focuses 
on motor learning transfer with different tasks in differ-
ent environments. Therefore, we believe that our find-
ings could trigger the expansion of VE studies focusing 
on motor learning transfer of different variables, such as 
tasks and environments. Second, in the present study, the 
effects of motor learning were evaluated relative to the 
response time alone. The results of other motor learning 
studies could be different due to study design, variations 
of the tasks, methodological differences, and the phase of 
motor learning [53]. For example, a motor learning study 
focusing on visuomotor adaptation described investiga-
tions based on the movement trajectory and angles as 
variables [54], suggesting that the present results might 
represent only parts of the puzzle in the field of motor 
learning. According to the type of assessed motor learn-
ing, the appropriate variables related to motor learning 
need to be carefully selected. Third, we subjectively eval-
uated the experience of the participants or their feeling 
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of the right hand during the movements of the virtual 
right hand using the VHI questionnaire [22]. Interest-
ingly, recent studies also propose further questionnaires 
that include multiple items of embodiment and sense of 
agency [59, 60]. These questionnaires might also be used 
to provide further support. Finally, we used the SRTT 
proposed by Nissen and Bullemer to assess implicit 
learning [14]. However, time constraints did not allow us 
to test offline learning as a consolidation effect. There-
fore, we could not deny the possibility that it was the 
performance with short-term change instead of learning 
with long-term change. Future studies would be required, 
spanning over separate days, to assess memory retention.

Conclusions
The present study investigated whether the transfer of 
motor learning can occur even in different tasks between 
VEs and REs. In order to examine the transfer of motor 
learning, we compared the response time between both 
motor learning tasks. Results showed that the sequential 
reaching task in VEs was facilitated after the sequential 
finger task in REs. These results suggested that motor 
learning in VEs may be facilitated after motor learning in 
REs despite interference with different environments and 
tasks. However, we cannot discuss the neurophysiologi-
cal aspect for the transfer of motor learning between VEs 
and REs since we did not evaluate the neurophysiological 
data. Thus, to demonstrate the detailed neural mecha-
nism of sequential learning from RE to VE, further study 
is needed.
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VEs: virtual environments.; REs: real environments.; SRTT​: serial reaction time 
task.; VHI: virtual hand illusion.; HMD: head-mounted display..
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