
International  Journal  of

Environmental Research

and Public Health

Review

Gene Drive for Mosquito Control: Where Did It
Come from and Where Are We Headed?

Vanessa M. Macias 1,*, Johanna R. Ohm 2 and Jason L. Rasgon 1,2,3

1 Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; jlr54@psu.edu
2 Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA;

jo.ohm@psu.edu
3 The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
* Correspondence: vzm10@psu.edu

Received: 3 August 2017; Accepted: 28 August 2017; Published: 2 September 2017

Abstract: Mosquito-borne pathogens place an enormous burden on human health. The existing
toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination
and eradication goals. The perspective that genetic approaches can potentially add a significant set of
tools toward mosquito control is not new, but the recent improvements in site-specific gene editing
with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse
genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable
platform for gene drive strategies, which have advantages over innundative release strategies
for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito
populations; until recently, an effective gene drive has been largely out of reach. Many considerations
will inform the effective use of new genetic tools, including gene drives. Here we review the
lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient
site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for
the abatement of mosquito-borne disease.
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1. Toward Gene drive for Vector-Borne Disease Control: A History

1.1. Initial Proposals for Genetic Control of Insect Vectors of Disease

Vector control is critical to the reduction vector-borne diseases [1,2]. When mosquitoes were
identified as vectors of the pathogens causing diseases such as malaria and yellow fever, efforts were
undertaken to eliminate mosquitoes from disease-endemic regions [3–6]. Prior to the 1940s, tools to
target mosquitoes for elimination were limited to environmental manipulations and non-persistent
insecticides. With these tools, successful efforts were made to eliminate both Anopheles and
Aedes species from Cuba, Panama, Brazil and later nearly the entirety of the Americas. [7–9]. In 1939
the discovery of DDT (dichloro-diphenyl-trichlorethane) as a persistent insecticide for use against
mosquitoes introduced the possibility of sustainable mosquito control and a new objective emerged:
global malaria eradication. With this outlook came the impetus to embark on the first global malaria
eradication campaign in the 1950s which achieved a remarkable re-drawing of the malaria incidence
lines. However, within a decade of its deployment, DDT resistance had emerged alongside social
concerns that insecticides caused harm to the environment and human health [10,11].

The incredible successes in regional elimination and the ultimate failure to achieve global
malaria eradication, provided the context for an interest in genetic approaches to mosquito control.
Proposed genetic methods for pest population suppression were inspired by natural genetic phenomena,
a trend that continues in the development of molecular tools today. The earliest recognition was made by
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Serebrovskii, while working with Muller, who realized that X-ray-induced chromosomal translocations
caused sterility in offspring heterozygous for the translocation [12,13] and by Knipling who, while
working for the USDA on the screwworm, Cochliomya hominvorax, observed that the agricultural pest
was monogamous and males of the species were sexually aggressive [14]. These observations along
with Muller’s insect X-ray sterilization procedures, led to a screwworm sterilization program that
was the basis of the Sterile Insect Technique (SIT), an approach to pest control that eventually led
to the elimination of the screwworm from the entire continent of North America in 1968 [14,15].
Concurrently, Vanderplank began work on reducing tsetse fly populations when he recognized that
two species (Glossina morsitans and G. swynnertoni) from different regions could mate, but that the
offspring were partly sterile. Releases of each species into the other’s regions led to local elimination
in both regions [16–18].

1.2. Early Definitions and Perspectives on Genetics for Vector Control

In 1964, the WHO defined genetic control as “the use of any condition or treatment that can
reduce the reproductive potential of noxious forms [of the insect] by altering or replacing the hereditary
material.” This definition encompasses both categories of genetics-based strategies into which today’s
approaches fall: population suppression, which includes strategies to reduce or eliminate an insect
population, and population modification, which involves replacing existing wild mosquito populations
with strains or species that are innocuous in terms of pathogen transmission (also called “replacement”
or “alteration”) [19]. Both population suppression and modification in this era were imagined
to be manipulations of existing phenotypes and genetic phenomena [20,21]. Early proponents of
population suppression by genetic means envisioned releasing mosquitoes that would produce sterile
offspring after mating with wild mosquitoes, either by cytoplasmic incompatibility or by hybrid
sterility as in Vanderplank’s tsetse fly experiments. Roles were proposed for genetic elements with
interesting inheritance phenotypes, such as sex-ratio distorters that could male-bias a population
into extinction. Meiotic drive, a sex-linked genetic component identified in mosquitoes in 1967,
showed biased inheritance patterns and was imagined as a mechanism to drive detrimental genes into
insect populations [22,23].

Enthusiasm was not as high for population modification strategies. Examples of species being
replaced by invasion of other insect species gained the strategy special mention in the WHO’s 1964
report, but these weren’t characterized thoroughly enough to inspire confidence in intentionally
affecting the replacement of vector mosquitoes with innocuous strains or species. However, Wood et al.
showed in 1977 that a gene could be driven into an Aedes aegypti cage population using negative
heterosis/underdominance, a phenomenon whereby reduced survival of heterozygotes allowed
a skewing of the population toward released mosquitoes [24–26]. These demonstrations along with
investigations into the biological basis of mosquito refractoriness to vector-transmitted pathogens
stimulated renewed enthusiasm for population modification strategies [23,27,28].

1.3. The Birth (or Coming-of-Age) of a New Field: Vector Biology Leverages Natural Genetic Phenomena to
Develop Important Tools in Mosquito Genetics

A range of possibilities for genetics-based vector control was documented in these early studies,
but much had yet to be done. The field of vector-borne disease research was not highly populated
or well-funded. By the 1980s vector-borne diseases were re-emerging into previously controlled or
non-endemic areas and there was still a lack of vaccines and therapeutics for many of these diseases.
Studies in vector biology and the development of genetics-based tools for vector control were seen as
a mostly untapped, but critical potential source of new disease-control strategies. In response to the
stagnancy in vector work, a group of scientists proposed to stimulate the field by integrating researchers
with relevant, but disparate expertise into vector biology and by moving technology that had been
introduced in other genetic systems into vector biology. Thus the Vector Biology Network (VBN) was
formed, the activities of whom led to a remarkable growth in genetic technologies for mosquitoes and
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primed the field for the application of modern genetic manipulation to the problem of vector-borne
diseases [29]. Following the establishment of the VBN, a boom in funded research and scientific reports
reflected the rapidly growing knowledge in vector molecular biology and genetics [29].

The introduction of new advances in biotechnology to the field of vector biology was predicted to lead
to new approaches to vector control. Indeed, an entire genre of synthetic mechanisms, including a vision for
gene drive systems were developed, inspired by the discovery and characterization of naturally-occurring
selfish genetic elements [30–33]. These that are inherited more frequently than expected by Mendelian
inheritance patterns and so have the potential to overcome evolutionary constraints and spread desired
genotypes into vector populations either for suppression or modification strategies. The last half of the
20th century would see many developments based on selfish genetic elements [34].

1.3.1. Transposons as a Basis for Genetic Transformation

In the 1950s, McClintock’s work revealed that genes called transposons could mobilize within
a genome [35]. We now understand that some transposons can spread quite rapidly through populations
despite severe costs to the host [36–39]. This finding was key to insect transformation, which was
initially achieved using the P-element in Drosophila melanogaster [40]. Non-drosophilid insects were more
difficult to transform as the P-element wasn’t active in other insects, few visible markers to screen for
transformants were available, and many insect-rearing requirements were less straight-forward than for
drosophilids [41]. By 2002, transformation of several mosquito species was achieved using transposons
identified as active in mosquitoes: Hermes elements in Aedes aegypti (1998) and Culex quinquefasciatus
(2001), a mos1/mariner element in Ae. aegypti (1998), and the piggyBac element in Anopheles stephensi
(1999), An. gambiae (2000), Cx. quinquefasciatus (2001) An. albimanus (2002), Ae. fluviatilis (2006) and
Ae. albopictus (2010) [42–50]. New transformations in mosquitoes were complimented by continued
description of useful promoters and gene control elements, the advancement of sequencing technology,
and the application of fluorescent markers, without which most transposon insertions would be
undetectable (for a comprehensive promoter list see Table 8.2 in [51]). It was imagined that transposons
would also be useful as a gene drive system, but transposons that could mediate insertion into
a mosquito’s genome were not so easily remobilized [52–57]. Only recently has a synthetic construct
based on the piggyBac transposon been demonstrated to mobilize itself once inserted into a mosquito
genome, but rarely [58,59].

1.3.2. The Skewing of a Population toward Desirable Genotypes Using Underdominance and
Cytoplasmic Incompatibility

Underdominance was described in early papers as negative heterosis, the phenomenon of
heterozygotes being less fit than homozygotes; it was proposed that a target population could be
modified if genetic components that caused negative heterosis were linked with a desirable trait and
introduced at a high enough proportion. After much of the resulting population was diminished
(all heterozygotes), the allele highest in abundance would increase to fixation [20]. Curtis explored this
in the lab and in the field using translocations [24,28]. A synthetic design where underdominance is
encoded as two separate gene constructs, both linked to the effector gene to be driven, was proposed
by Davis et al. in 2001 and successfully developed into a Drosophila gene drive strain by Akbari et al.
in 2013, but has not yet been demonstrated in mosquitoes [60,61]. Cytoplasmic incompatibility can
similarly drive the fixation of a genotype of a released strain by reducing the survival of offspring
from parents with differing Wolbachia infection status [62–64], and was proposed to be recapitulated
using Wolbachia genes in transformed mosquitoes, but these have only recently been identified using
comparative genomics of Wolbachia strains in Drosophila [65–67]. Transformation of D. melanogaster
with these genes produced cytoplasmic incompatibility phenotypes; it is possible that this strategy
will be feasible in mosquitoes in the near future [65].
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1.3.3. The Application of Naturally Occurring Selfish Elements to Synthetic Gene drives in Mosquitoes

Naturally occurring selfish elements called Maternal Effect Dominant Embryonic Arrest (MEDEA)
were discovered to spread through populations of the flour beetle, Tribolium castaneum, by segregation
distortion, favoring offspring that encode the element [68,69]. In this insect, a single MEDEA locus was
described to bear genes encoding both a maternal product that is lethal to developing embryos and
a zygotic product that rescues offspring from the lethal product, so that only progeny bearing the locus
would survive to adulthood; this system inspired engineering of the first successful demonstration of
a synthetic gene drive [70].

Mobile introns were described in the 1970s in yeast that were capable of “homing”; they could
be copied laterally to a homologous sequence and so increase their presence in offspring [71–73].
Site-specificity was attributed to endonuclease recognition of DNA sequence [74]. These elements
called homing endonuclease genes (HEGs) are widespread and demonstrate the non-Mendelian
inheritance that is attractive for vector control applications. In 2003, HEGs were proposed as a useful
basis for gene drive [75] and work was already underway to modify the endonucleases to recognize
specific insect sequences [76–78]. Successful engineering of a HEG-based gene drive in An. gambiae
was reported in 2011 [79].

1.3.4. The Application of the Endosymbiont Wolbachia to Gene drive in Mosquitoes

The bacterial endosymbiont Wolbachia pipentis was identified as the cause of reproductive
phenotypes described as early as 1967 that bias inheritance of the bacteria in crosses between infected
and uninfected mosquitoes [62–64,80]. The bacteria’s reproductive phenotypes can lead to their
spread into an insect population. Wolbachia has thus been proposed as a driver for a synthetic
gene construct, but thus far the bacteria have not been amenable to transformation [67,81–83].
However, the reproductive phenotypes of the endosymbiont have provided useful strategies to combat
mosquito-borne disease, both for mosquito population suppression and modification. The wPip strain
of Wolbachia isolated from Cx. pipiens Linnaeus has been used to infect Ae. albopictus and infected
males are being used in a strategy analogous to SIT. The strategy is based on the observation that wPip
infected males mate with and sterilize wild females, which are naturally infected with other strains of
Wolbachia [80,84–88]. Wolbachia’s drive potential paired with the discovery that the Wolbachia strain
wMel can block the development of dengue in Ae. aegypti and thereby interrupt transmission of the
virus has led to a population modification strategy based on a combination of pathogen-blocking and
gene drive. Releases of Wolbachia-infected mosquitoes in Australia, Vietnam, Colombia and Brazil
have been some of the most widespread and effective examples of population modification in wild
vector populations [89–92].

The Wolbachia-based programs have, in some ways, benefited from drive elements already crafted
in nature to be effective. Still, a good amount of human ingenuity goes into discovery, description
and assessment of the mosquito phenotypes and drive characteristics, and some engineering can
be required for successful application. An additional advantage of these platforms is that release
of mosquitoes carrying Wolbachia is perceived as a biocontrol agent and regulated as a microbial
biopesticide, similar to Bacillus thuringiensis (Bt), since it already exists in nature, infecting 52% of
the world’s arthropods [93], rather than as a genetic-drive system which would face heightened
regulations. Wolbachia-based strategies have not been categorized in a regulatory sense as genetic
modification, which has offered some benefits in terms of implementation, but categorization of
Wolbachia as a biopesticide is not always an advantage. Surveys of communities in Australia, probed
before application of Wolbachia, showed that communities can be sensitive to the risks of “biocontrol”
citing a number of locally known cautionary tales [94]. Distinction of applications of Wolbachia as
a biopesticide as opposed to a genetic mechanism and specifically a gene drive is not precise, since
Wolbachia does drive a set of genes into mosquito populations (the entire bacterial genome) that was
previously foreign, the endosymbiont is maternally inherited and integrations of Wolbachia genes have
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been identified in many Wolbachia host species (including Ae. aegypti) which is perhaps not surprising
given that the bacterial genome is heavily occupied by repeats and transposable elements, [95–102].

1.4. Synthetic Approaches to Genetic Strategies for Mosquito Control

Synthetic genetic technologies have a number of advantages over technologies employing only
existing biological systems. The components of a synthetic construct are relatively small, their
functions are more fully known and the site in the mosquito genome where they are located can
be characterized, such that modifying the pathogen-targeting or mosquito suppression genes could
be relatively straight-forward. It follows, then, that the effectiveness of a defined set of synthetic
genes could be more accurately assessed for aspects that need improvement, and improvements more
easily engineered. In contrast, the biology around dengue resistance and cytoplasmic incompatibility
phenotypes incurred by Wolbachia infection are largely unknown; this paired with our current inability
to transform the endosymbiont means that we cannot currently adjust the approach at the genetic level.
A given genetic strategy requires an effector gene or a set of genes to encode population suppression or
pathogen-blocking genotypes and a method to detect whether a mosquito bears the effector genotype
(e.g., a marker). Modular designs for genetic constructs allow the combination of promotors, effectors
and markers that can encode a set of gene modules that can execute a very specific purpose into
a single genetic package. These designs are straight-forward to construct once appropriate genetic
elements exist and are characterized for each module.

1.4.1. The “Flightless Female”: An Illustration of a Fully Realized Population Suppression Strategy
Using Synthetic Gene Modules

Genetic engineering of synthetic phenotypes has led to the development of
population-suppression strains of mosquitoes, the most successful so far is known as the
“flightless female” Ae. aegypti. This strain contains a genetic element that encodes a toxin to destroy
the wing muscles of females. Without normal function in wing muscles, the females are unable to
mate or search for food and oviposition sites. The transgene construct responsible for this phenotype
encodes a repressible, late-acting, sex-specific lethal, allowing rearing and sexing prior to release as
well as survival of larvae in subadult stages to compete with wild larvae [103–106]. The gene set that
encodes these phenotypes is spread into the population by male carriers who are unaffected by the
transgene. Males are being released as a control strategy in Brazil and Florida after large cage trials
validated their usefulness for population suppression [107,108]. Similar strains have been developed
in Ae. albopictus and An. stephensi, but have not yet been utilized to control wild populations [109,110].
These strains offer a population suppression strategy in species where no SIT or SIT-like strategy has
yet been successful.

The combination of gene modules used to generate this line illustrate the utility of a synthetic
construct in encoding marker and effector genes with expression characteristics that serve a specific
genetic mosquito control strategy. An accounting of the requirements for the control strategy
dictates the modules needed. A lethal phenotype: the effector gene VP16 causes cell toxicity [111,112].
Female specificity: ideally, the lethal gene would affect females and not males, since females transmit
pathogens and males can be carriers of the genes to wild populations. A female specific promoter,
AeActin4, is not expressed in males, but drives expression of VP16 in the female flight muscles.
Repressibility of lethality for rearing: viable females are needed, so the construct was designed to be
repress VP16 expression using tetracycline, in which the mosquitoes can be reared in the lab, but
since they aren’t exposed to tetracycline in the wild, the effector will be turned on in wild offspring of
transgenic mosquitoes. Identification: To distinguish between transgenic and wild-type mosquitoes,
a gene for the fluorescent marker, DsRed, is encoded on the construct and expressed in the eyes of the
mosquito. Each of the components of this system stems from previously identified characteristics in
insect biology, combined intelligently to achieve a very specific purpose. One would be hard-pressed
to identify a naturally occurring biological system that meets all of these requirements. It’s important
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to note here that the more we understand about mosquito biology and the biology of other insects,
the more power we have to design a construct that most serves a given purpose. This brings us
to the benefit of being able to specifically study genetic systems in mosquitoes; molecular tools to
study basic biology are needed to support the applied science of elimination and eradication of
vector-borne disease.

1.4.2. Synthetic Engineering for Complete Pathogen Blocking

Selection for mosquitoes that are resistant to human pathogens was recognized early on as a disease
control strategy that would take advantage of genes already in mosquitoes [23,27]. Some candidate genes
and pathways have been identified in An. stephensi, An. gambiae and Ae. aegypti as potential candidates for
such efforts [113–126]. For example, perturbations of AKT signaling and transgene-mediated expression
of the IMD signaling gene Rel2 have both been demonstrated to increase the ability of An. stephensi to kill
P. falciparum [114,127–130]. Increased dengue resistance was demonstrated in Ae. aegypti with silencing
of vATPase and IMDPH expression [117]. Some synthetic genes constructs have been successful in
conferring pathogen-resistant phenotypes. The first demonstration of a stably-integrated synthetic
construct that produced an anti-pathogen product in mosquitoes was reported in 2002 with the
generation of a transgenic An. gambiae line expressing a peptide that bound to P. berghei [130].
Other constructs have since been developed in both Anopheles and Aedes species with increasing
levels of pathogen resistance (for a comprehensive list see Table 13.2 in [131]), including lines in both
An. stephensi and Ae. aegypti that completely eliminated pathogen presence in the salivary glands, the
tissue it must reach to be transmitted to humans [132,133]. In these synthetic cases, defined biological
components are combined in a way that meets a specified goal: promoters specific to that species
and expressed locally and temporally consistent with pathogen exposure, gene products that inhibit
a pathogen, and a visual marker of the transgene.

1.5. A Technology-Driving Need for Site-Specific Gene Editing

Technological improvements in mosquito genetics in the 20th century and into the following
decade had yet to sufficiently address an important gap: we still lacked the ability to target a specific site
on a mosquito genome either for probing biological functions, for the targeted insertion of a synthetic
construct, or for a gene drive. While transposons were successful platforms for transformation, their
short target sites allow them to insert into many locations in the genome [134,135]. For the construction
of transgenic lines, this means that the site in which a synthetic construct is inserted could cause
a fitness reduction in a transgenic line, depending on where they insert [136–139]. For gene drive based
on the mobility of transposons, it means that the drive would likely incur a fitness cost as a result of
continued re-mobilization into new sites in a genome. The mechanism of HEGs for gene drive were
based on site-specific engineering, accomplished by target recognition and endonuclease functions of
a HEG, but engineering a HEG to target a specific nucleotide sequence is not straight-forward [140].
The successful targeting of a HEG to a mosquito locus was reported in 2007 [141] and a HEG-based
gene drive was reported in 2011, almost a decade after they were proposed as a basis for a gene drive
mechanism [79]. The application of ϕC31 to mosquitoes improved our ability to move constructs into
known locations in the genome, but these “docking sites” were pre-established in transgenic lines by
random transposon-mediated integration, so specific genes could not be targeted for modification
(Table 1) [50,132,142,143].

The application of zinc-finger nucleases (ZFNs) to gene targeting introduced a major improvement
to genetic studies in mosquitoes. Zinc-finger domains recognize the shapes of nucleotide triplets in
the major groove of a DNA double-helix and could be engineered to recognize a 18 nucleotide
sequence such that a whole array of protein effectors could be recruited to a very specific site in the
genome [144–146]. Zinc-finger domains are conjugated to a FokI type II restriction endonuclease
and created in pairs recognizing sequences flanking a target-site so that a pair of ZFNs would create
a double-stranded break at a specific genomic locus [146,147]. These improvements meant that
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engineering target-site recognition with ZFNs was modular and more-straight forward than for
HEGs. However, the cost of a ZFN and the low success rate was still prohibitive to the technology
being used by most labs for biological studies. Finally, in 2010, a system that was affordable and
could be engineered in-house, made targeted mutagenesis accessible for molecular biology labs:
transcription activator-like effector (TALE) nucleases or TALENs. Like ZFNs, TALENs are modular,
could be encoded on a plasmid by cloning and were relatively efficient [148]. The recognition of each
nucleotide on a DNA target was encoded in the 12th and 13th amino acid of each 34 amino-acid
repeat; a peptide stretch of 18 or 19 repeats could be engineered to recognize any nucleotide sequence
and when conjugated to the FokI domain and could induce site-specific DNA cleavage [149,150].
While 18–19 repeats in the TAL portion of protein initially made cloning difficult, kits were soon
developed to do this easily and by 2013 a library of TALENs existed for targeting 18,740 human
protein coding genes [151]. Gene-editing in Ae. aegypti and An. stephensi using ZFNs and TALENs were
reported in 2013 [152–154]. With increased efficiency, an order of magnitude difference in price, and less
difficulty in constructing TALENs in the lab, TALENs were more accessible than previous gene-editing
approaches. But the timing of TALEN development was almost concurrent with the leveraging of
CRISPR/Cas9 biology for gene-editing, meaning that TALENs usefulness was short-lived.

Within the 2003 proposal to utilize HEGs as platforms for gene drive, Burt highlighted the
condition that would bring ease and efficiency to site-specific engineering; the homing mechanism of
group II introns is specific DNA targeting by Watson-Crick base-pairing, which is straightforward to
reprogram, instead of by a specific protein shape, as is needed for HEGs, ZFNs and TALENS [75,155].
Group II introns were not pursued for gene drive because of other limiting complexities, but the
bacterial CRISPR-Cas systems that also use base-paring for DNA recognition were harnessed for
site-specific gene-editing, providing by far the most-successful basis for the development of synthetic
gene drive systems to date.

2. What Cas9 Has Done for Synthetic Genetic Engineering and Gene drive

Shortly after Cas9-mediated gene-editing was introduced in 2012 [156], and first demonstrated
in human and mouse cells in 2013 [157,158], the technique was applied to mosquitoes to create
specific gene-mutant Ae. aegypti lines in 2015 [159–162]. In the same year Cas9 was used to develop
the first efficient insect gene drives in D. melanogaster, An. stephensi and An. gambiae [163–165].
Since 2015 we have also seen an expansion in the number of mosquito species to be genetically
modified to include An. funestus, which did not have transgenic technologies available before the
introduction of Cas9-mediated editing [166]. The reader will appreciate how quickly these applications
arose following the introduction of CRISPR/Cas system to genetics, given the history in genetics
advancement reviewed thus far (Table 1).

Cas9 is an endonuclease borrowed from the CRISPR biology of the bacteria Streptococcus pyogenes.
CRISPR stands for “Clustered Regularly Interspersed Palindromic Repeats” and refers to the loci
that are widespread in bacterial and archaeal genomes that store sequences of parasitic nucleic acid
to which they were previously exposed [167–171]. These are co-located on the bacterial genome
with Cas (CRISPR associated) genes which are expressed and used to target and destroy incoming
parasites with homology to small RNAs derived from the CRISPR loci. Cas9 endonucleases can be
targeted to virtually any region of a genome by encoding a homologous ~20 nucleotides on a modified
single guide RNA (sgRNA), which will localize Cas9 to the target site for double-stranded cleavage of
the DNA [156].
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Table 1. Comparison of genetic techniques and their application to mosquito genetic manipulation and gene drive.

Genetic Techniques

Transposons ϕC31 HEGs ZFNs TALENs CRISPR/Cas9

Origin and biological
basis

Transposable elements
discovered in the 1950's in
maize, specifically DNA

(type II) transposons.

ϕC31 transposase-mediated
integration of bacteriophage
DNA into bacterial genomes

Group I introns discovered
prior to 1970 in yeast that

show higher than Mendelian
inheritance proportions

Zinc-binding domain from
transcription factors for DNA

recognition, FokI endonuclease for
DNA cleavage, first fused for

site-specific DNA cleavage in 1996

TALE proteins discovered in
Xanthomonas species were

decoded in 2009 and conjugated
to FokI endonuclease

S. pyogenes CRISPR/Cas9 biology
for destruction and memory of

parasitic nucleic acid

Initial use for genome
modification 1982 (D. melanogaster) 1982 (S. pyogenes) 1998 (E.coli) 2001 (Xenopus laevis) 2010 (S. cerevisiae) 2012 (Human cell lines)

Year used in mosquitoes 1998 2006 2011 2013 2013 2015

Mechanism

Transposase mediated
transfer of DNA between

ITRs either from a plasmid
into the mosquito genome

(transformation) or from one
place in a genome to another

ϕC31 integrase mediates
integration of a plasmid

bearing an attB site into a
complementary attP site on

the mosquito genome

HEG encoded endonuclease
recognizes and cleaves

genomic DNA such that a
gene cassette can be

integrated by cell HDR
machinery

Pairs of zinc-finger domains
recognize and bind a sequence of

nucleotide triplets, each
endonuclease cuts the DNA

backbone, together creating a
double-stranded break

Pairs of TALE domains recognize
and bind a sequence of

nucleotides, each endonuclease
cuts DNA backbone, together

creating a double-stranded break

Cas9 protein bound to a sgRNA
through scaffold sequence on the

sgRNA recognizes a genomic
sequence that is complementary to

~20 nucleotides on the sgRNA

Mutation efficiency * NA NA 1–9% <7% <16% >90%

Transformation
efficiency * ~2% 10–18% <1% <6% ~2% ~2%

Gene drive * Potentially No Yes No No Yes

Drive efficiency <<0.05% NA 56% NA NA 90–100%

Benefits

First available transformation
technique in mosquitoes,

some natural transposons are
extremely efficient gene

drives.

Insertion into a known site

Insertion into a known site,
high efficiency, recognition of
sites on X-chromosome only

in An. gambiae

Site-specific editing. Double
stranded cuts allowed targeted
mutagenesis-first gene editing
technique for reverse genetics

Site-specific editing, efficient
mutagenesis, TALEN expression

plasmids could be cloned
in-house.

Site-specific, easily re-engineered,
adaptable to different species.

Highly efficient for mutagenesis
and as a drive.

Drawbacks

Random insertion, low
transformation efficiency,

very low mobility of
synthetic transposon once
integrated into the genome

Requires pre-insertion of the
attP site using transposition

Requires pre-existing
target-sites, re-engineering of
the HEG, or transgenesis for
insertion of target sites. Drive

mechanism generates
drive-resistant alleles.

Expensive, requires modular protein
engineering, some codons were not

recognized by any zinc-fingers,
requires in vitro optimization

Requires protein engineering,
timing: introduced just before

Cas9 was demonstrated for
gene-editing

Drive mechanism generates
drive-resistant alleles

References [40,42–50,57,173–176] [50,132,142,143,177] [73,75,79,152,178–181] [144–147,154,182,183] [148,150,153,159,184,185] [156,159–164,166,167,169–172]

Note: * Mutation and transformation efficiency are represented slightly differently in different mosquito studies, but for a rough comparison, mutation efficiency here represents the
percentage of G1 offspring with a deletion (not unique deletion events) and transformation efficiency is the percentage of individual surviving G0 that produced transgenic offspring.
Gene drive efficiency is represented by the gene-conversion rate or the proportion of wild-type alleles converted to drive alleles. HEG: homing endonuclease gene; ZFN: zinc-finger
nuclease; TALEN: transcription activator-like effector nuclease, ITR: inverted terminal repeat, HDR: homology-directed repair.
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The application of Cas9 to gene editing in mosquitoes has made mosquito gene-editing cheaper,
more targeted and more efficient. Cas9-nuclease targets a specific location using a sgRNA which is
easily programmed using a $20 oligonucleotide. The Cas9 protein can be ordered or made in-house
(<$200 for bottle large enough to inject >10,000 embryos) and mixed with in vitro transcribed sgRNAs
targeting a desired genomic locus. This is an improvement over TALENs and ZFNs, which required
novel protein engineering for each target. Cas9/sgRNA complexes are delivered to insects by
embryo injection (these embryos represent the Generation (G) 0); for Ae. aegypti, this has resulted
in gene-specific mutation efficiency as high as 90% in G1 offspring [172]. However, mutations with
non-visible phenotypes are not easily detected and maintained without the insertion of a marker.
This can be achieved by co-injection of a donor plasmid that encodes a marker (e.g., fluorescence in the
eyes or body) between regions of homology flanking the sgRNA target site.

The donor provides a template for the mosquito cells to repair the Cas9-induced double-stranded
break by homology-directed repair (HDR) instead of non-homologous end joining (NHEJ).
Initial attempts at Cas9-mediated transformation of Ae. aegypti demonstrated efficiencies 0.1–0.4% of
injected G0 embryos [161]. This efficiency is lower in Anopheles species. Cas9-mediated transformation
is less than 0.01% in An. stephensi and in An. gambiae, pre-establishment of transgenic lines
expressing Cas9 and sgRNAs are generally required for transformation [164] (Andrea Smidler personal
communication). Improvement has been made with the demonstration that stable integration of
a construct expressing Cas9 in the germline can increase mutation and integration efficiencies;
application of germline Cas9 expression in Ae. aegypti has increased efficiencies of targeted gene
integration to ~2% [172]. These efficiencies are still low, but the advantages of the system make it the
leading technology for gene-editing in mosquitoes; Cas9-mediated editing can be employed in reverse
genetic studies of gene-function, which wasn’t possible with transposon- and ϕC31-based transgenics
and it is more adaptable, cheaper and technically more straight-forward than using ZFN and TALENs.

Cas9-mediated gene editing has also provided a platform to develop an efficient gene drive.
A Cas9-based gene drive encodes the Cas9 endonuclease and an sgRNA targeting the homologous
location on a chromosome that doesn’t bear the construct. The Cas9 and sgRNA genes can be linked
tightly with effector genes that confer either anti-pathogen or suppression phenotypes. When the
Cas9 and sgRNA are expressed and target the homologous chromosome the entire cassette including
the effector genes will be copied into the homologous site when the chromosome bearing the gene
drive cassette is used by the cell for homology-directed repair. It has been demonstrated that at least
~17 kb of cargo can be encoded on the cassette and effectively copied during HDR [164]. Under these
circumstances HDR is much more efficient than is seen during initial transformation; 90–100% of
offspring contain integrations of a gene cassette indicative of repair by HDR.

The original bacterial Cas9 could potentially modify any arthropod genome, a quality that led
almost immediately to the application of gene drive to multiple mosquito species and the expansion of
transgenic technologies to new dipteran and non-dipterans insect species [166,186–197]. The species
specificity of SIT and synthetic transgenic drives offers an advantage over less targeted vector control
approaches (e.g., insecticides) in that control can be applied to a specific insect species and can avoid
beneficial and neutral insect species or non-insect species. But this same quality means that an
individual genetic approach will have to be employed for every target species. This can be a major
limitation for mosquitoes, if the technology to develop individual gene drives is not efficient since,
in many regions there are several mosquito species that are recognized as important vectors, many
more that may be under-recognized vectors and because Anopheles species exist as morphologically
indistinguishable, but genetically distinct cryptic species [198–201]. Cas9 gene-editing (and similar
emerging platforms) offer a technically realistic means to target several species engineered genetically
to serve either modification or suppression strategies that can be integrated with other approaches to
help address a need for more vector control tools in light of evolving resistance to many of our current
approaches (Figure 1).
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Figure 1. Genetic approaches to vector-borne disease offer a substantial complement to the existing
tool-set. A scheme illustrating the contribution of specialized mosquito strains, including both
transgenic and Wolbachia-infected mosquitoes, to vector control. Each strategy is categorized on
the right as modification or suppression, whether the strategy can utilize Cas9 gene-editing or gene
drives are indicated with a star. Whether a specific mosquito life-cycle stage or the pathogen life-cycle
are targeted is indicated by a red line. The center schematic is a stylistic representation of vector-borne
pathogens and is included to illustrate where specialized mosquito strains can be used to inhibit
pathogen development in the mosquito. A summary of existing, non-genetic tools is to the left of
the schematic. RIDL: release of insects carrying a dominant lethal, SIT: sterile insect technique, CI:
cytoplasmic incompatibility, LLIN: long-lasting insecticide treated nets, IRS: indoor residual spraying,
ATSB: attractive toxic sugar baits.

3. A Dramatic Shift in the Application of Genetic Approaches to Mosquito and
Mosquito-Transmitted Disease Control: Perspectives on the Future

“Clearly, the technology described here is not to be used lightly. Given the suffering caused by some
species, neither is it obviously one to be ignored.” —Austin Burt [75].

The application of Cas9 to gene drive represents a second major shift in the field of vector genetics
for disease control. It is now technically straight-forward to develop any number of genetic strategies
and so add a substantial new subset of tools to vector control efforts (Figure 1), so how do we use
CRISPR/Cas9 and similar technologies for gene editing and gene drive given the enormous potential
to alleviate human suffering? Challenges will arise in efforts to implement molecular techniques
developed in the lab to field releases. We will do well to heed the lessons learned by previous work
and to carefully consider the challenges that have emerged alongside the introduction of efficient,
site-specific gene-editing.

3.1. Long-Standing Considerations

3.1.1. Early Successes Provide Templates for Predicting Success

Sterile insect technique and genetics-based control tools were first tested in mosquito populations
in the 1960s. Initial field trials with An. quadrimaculatus, Ae. aegypti and Cx. pipiens fatigans failed
to control test populations and it was only when chemosterilization with the chemical agent thiotepa
replaced radiation as the primary means to sterilize males, that the switch in methods led to the first
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successful mosquito SIT program [202–206]. Chemosterilized Cx. pipiens eliminated the native population
after 10 weeks of sterile male releases in Seahorse Key (FL, USA) [202]. These early successes and
failures suggest that vector control tools that look promising in the laboratory don’t always translate into
promising outcomes in the field. Better means to predict field success are needed. Compared to laboratory
studies, wild populations may be more likely to experience density-dependence and the effect of
released sterile males could be reduced by migrating inseminated females from outside of the release
area [203]. Early modeling efforts to predict the success of sterile male release programs suggested
that even modest immigration of mosquitoes into a release area could doom a population suppression
program to failure, leading Asman and others to conclude that “with immigration, eradication is
not possible and continued sterile male release would be required in order to maintain tolerable low
levels of the pest” [200]. In contrast, population modification strategies are likely more resilient to
immigration of mosquito populations into and out of a release area and the replacement rate can be
predicted by the fitness differences between the released mosquito and wild-type [203]. Although gene
drive mechanisms exhibit non-Mendelian inheritance patterns and can likely tolerate more fitness
costs than mechanisms with Mendelian inheritance, fitness still plays an important role in predicting
success of population suppression or modification [139,207–209].

Not surprisingly, we can still largely depend on a 50-year-old framework for assessing the
potential of a mechanism prior to implementation, considerations for release and evaluating the
outcomes. Perhaps the most important appeal to be made of researchers is to aggressively collect
data. Recommendations that data be collected on the disease and vector biology, environment and
population dynamics of the targeted insect, the fitness and thus competitiveness of released strains
compared to wild populations, and the rearing and handling requirements strategy are in every
milestone assessment review on the topic of genetic control of insects and cannot be underemphasized
in the context of gene drive [20,23,53,210–214]. The drive rate, tolerable fitness reductions, tolerable
levels of drive-resistance, and optimal distribution and timing for successful release need to be modeled
with field-relevant parameters to predict success of a release program. Ongoing surveillance data
will be critical to interpreting the success of release strategies, identifying useful modifications to
an approach including replacement of a drive-strategy, and determining whether a reversal of the
drive is necessary.

3.1.2. Identify and Measure Appropriate Proxies for Assessing the Fitness of a Treatment Strain

Understanding the contribution of the fitness of specialized mosquitoes relative to the wild target
population is pivotal to predicting the success of a genetic strategy for vector control, since the transfer
of genetic material from released mosquitoes to offspring in the wild depends on competition with
wild mosquitoes for resources and mating. Most genetics-based control strategies are first tested in
cage trials, where population modification or suppression can be observed under different ratios of
genetically modified individuals to unaltered individuals, and under conditions where life history
traits can be carefully measured and environmental variables such as resource availability, temperature
and humidity can be controlled. Standard laboratory assessments prior to field release of a genetically
altered insect include measuring mating competitiveness, but rarely are more holistic measurements of
fitness captured [214,215]. While unsuccessful cage trials can signal when a technology will likely fail in
the field, a successful cage trial does not always translate into field success. Even within the laboratory,
trial-to-trial variability is sometimes only explained by looking at fitness parameters across the insect
lifespan. In 1973, trials with Drosophila testing population replacement of a laboratory population
with modified strains that had compound autosomes, demonstrated that predicting successful versus
unsuccessful strains required more holistic estimates of fitness than egg hatch rate alone [211]. Similarly,
failed field releases of irradiated Ae. aegypti males for population suppression in Pensacola, Florida was
later attributed to poor survival in the pupal stage, again highlighting the need for thorough evaluation
of the consequences of sterilization or genetic-alteration on mosquito fitness across life stages prior
to release [205,214]. Failed release programs have the consequence of not only wasting resources,
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but threatening the success of future programs by creating public mistrust or donor reluctance in
supporting these types of technologies.

Evaluating fitness costs of gene drive technologies involves estimating fitness by measuring
life history traits across the mosquito life cycle, or tracking allele frequencies in populations over
time. Both approaches are difficult. The best fitness proxies to estimate mosquito fitness have not
been clearly identified, but life history theory suggests that fitness is more sensitive to life history
traits that describe early life events such as egg hatching rates and larval survival than to late-life
traits such as adult survival. Juvenile traits should therefore be prioritized as the most predictive
life history traits in estimating fitness when evaluating the potential for a gene drive to spread.
Once spread, the impact of the drive mechanism on mosquito fitness can be used to understand
potential evolutionary responses of mosquitoes to the drive mechanism and co-evolutionary changes
in the parasite populations they spread. Even a drive mechanism that comes with minimal fitness costs
to the mosquito could fail to reduce disease incidence or prevalence if it affects vector competence
while only minimally changing vectorial capacity [216]. Understanding both vector and parasite fitness
traits and their potential to evolve in response to genetics-based technologies should be understood
prior to releasing these technologies into the field. A combination of computer simulations, laboratory
studies that evaluate fitness parameters across the mosquito lifespan, an understanding of local ecology,
and ongoing surveillance after release programs begin will be important to a robust deployment of
genetics-based control.

3.1.3. The Importance of Modeling

Modeling allows us to integrate large amounts of collected data and logically draw conclusions
that are not always intuitive to predict success or failure of a release program. This is especially
important for identifying the ability of a genetic approach to work across different mosquito-pathogen
systems. Models demonstrating the potential of certain gene drive strategies have given us reason for
both optimism and concern [210,217–220]. Working from a perspective that different drive approaches
will be optimal for different applications, Eckhoff modeled the vector and drive mosquito population
outcome using different gene drive strategies in specific locations (Tanzania and Garki) with varying
homing rates and fitness reductions [217]. Optimism for gene drive is supported by their suggestions
that even the most challenging situations stand to benefit from a gene drive strategy if a certain set
of qualifications are attained. With very high homing rates demonstrated for recently developed
drives, it is realistic that such qualifications can be met, even with a fitness reduction in transgenic
drive insects [217]. Eckhoff identified major unknowns in their studied locations including aestivation
behavior of vectors and movement of males, and differences between such behaviors between vector
and transgenic drive insects that would inform the success of a release program. Since multiple vectors
and species complexes contribute differently to disease transmission, modeling will also serve to
inform which species are most important to target in a given region in order to have the greatest
impact, which will in turn inform the lab-based efforts to develop appropriate drives for each species.

3.1.4. Which Tools, Where

The complexity of vector-borne disease transmission dynamics across the globe means that
a successful global eradication strategy, a current goal for both malaria and lymphatic filariasis,
will require a diverse tool set and region-specific vector control application of a subset of those
tools [221–223]. The current toolkit includes insecticide-treated bed nets (LLINs), anti-malarial and
anti-filarial drugs, a yellow fever virus vaccine, indoor residual spraying, structural modifications to
housing (improved housing material, screens, eave-tubes), larval habitat treatment, Wolbachia-based
gene drive (Eliminate Dengue), Wolbachia-based population suppression (MosquitoMate and Verily),
and a transgenic RIDL strain (release of individuals carrying a dominant lethal, flightless female
strain OX513A) (Figure 1). This toolkit is growing to soon include additional arbovirus and malaria
vaccines. Some tools, specifically those dependent on pyrethroids and other insecticides, are becoming
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less useful due to growing insecticide-resistance [88,224–228]. The variety of genetic tools currently
in development since the advance in genetic technologies can target many aspects of mosquito and
pathogen life cycles and have real potential to improve this toolkit (Figure 1). Theoretical analyses
that have evaluated added benefits from combining vector control tools have suggested that some
combinations are more effective than others. For example, LLINs in combination with larvicides are
predicted to result in greater reductions in mosquito abundance than the use of LLINs with IRS or
LLINs alone [229]. In practice, combined use of BT with LLINs has reduced the incidence of malaria
infection to a greater extent than LLINs alone in western Kenya [230]. Similar analyses and field
experiments should be done to evaluate how genetic technologies will work in combination with other
existing vector control measures; the inclusion of newly available and/or underutilized technologies
in these analyses will greatly benefit our ability to achieve local elimination and global eradication
goals. Specifically, identifying the vector control approach or approaches that most greatly impact
disease transmission will provide useful direction in releasing specialized mosquito strains (transgenic
or Wolbachia-infected) in areas where they best complement current approaches and have maximal
effect in reducing disease.

3.2. New Considerations

3.2.1. Gene drive Resistance

New considerations regarding the potential for drive-resistance have arisen from the molecular
mechanisms of site-specific endonucleases. Homing endonucleases- and Cas9-based gene drives
generate resistance because the double-stranded break necessary for HDR-mediated insertion of
the drive construct is occasionally repaired by using non-homologous end joining (NHEJ) instead.
Repair by NHEJ often causes insertions or deletions in the target site, rendering it impervious to
future targeting by the endonuclease. When HEGs were first proposed as a site-specific gene drive,
it was recognized that variation and mutation in the sequence of the target site would provide
a source of resistance to the drive, but also that strategic drive design would likely lead to successful
gene drive [75,231]. Recent modeling of sources of sequence variation, both naturally occurring
and induced by the drive mechanism itself, suggest that resistance will almost certainly emerge to
a simple one-target Cas9-based gene drive [219]. Even modest rates of NHEJ are likely to impact
the effectiveness of gene drive strategy [217,219,232,233]; in order for a gene drive to be successful,
the emergence of resistance to the drive must be at least five orders of magnitude lower than what
have been observed in recently demonstrated drives [163–165,179]. Gene drives based on site-specific
endonucleases rely on the repair mechanism of the organism, so that it may be difficult to engineer
a gene drive scenario that manipulates that host-biology such that HDR is favored over NHEJ to such
an extent as to provide orders of magnitude fewer occurrences of resistant alleles. Approaches to
mitigate the effects of gene drive resistance have been suggested, including targeting multiple sites for
disruption, targeting highly conserved sites or sites where indels caused by NHEJ would cause lethality
or infertility, and altering the promotors and genomic targets of a gene drive. Recent investigations
into these suggestions provide optimism that shortcomings of single-target Cas9-based gene drives
can be overcome in future gene drive designs [179,232–235]. Multiplexed gene drives are expected
to substantially decrease the likelihood of gene drive resistant alleles emerging using only a few
additional targets [232]. Feasible ways to multiplex Cas9-based gene drives have been demonstrated
using post-transcriptional processing of several sgRNAs expressed from a single promoter, but these
have not yet been applied to mosquitoes [232,234,236–238].

Both Wolbachia-based and transgene-based approaches to vector control, including MEDEA- or
transposon-based drives and transgenic population suppression strains, face the risk of becoming
inert due to effector inactivation. Some data suggests that mosquito immune responses to Wolbachia
prime the mosquito against viruses, like dengue, but this response could weaken over time as wMel
and Ae. aegypti co-evolve, dampening refractoriness to RNA viruses [239,240]. Wolbachia-based
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population modification targets a rapidly evolving virus, which could change to avoid the mechanism
causing refractoriness in Wolbachia-infected Ae. aegypti. Because the biology of these interactions is
largely unknown, it is prudent to closely monitor the refractoriness of mosquito populations that
have been modified with wMel infection. Concern has been raised that Ae. albopictus populations
targeted for suppression using Wolbachia cytoplasmic incompatibility phenotypes could become
resistant to the suppression mechanism, derived from demonstrations that mosquitoes that have
low abundance of the natural strains of Wolbachia are not completely sterile when they mate with
wPip infected mosquitoes [241]. Such mosquitoes do exist in the targeted populations and depending
on how many wPip-infected females escape sexing during rearing, wPip may become established
in the wild population, rendering the strategy useless [241]. However, recent developments in sex
separation techniques will likely improve the proportion of females released to address this issue [226].
Transgenes and transgenic gene drives could face a different type of inactivation. Similarly to Wolbachia,
pathogen blocking could become ineffective because of pathogen evolution. Transgenic approaches
have an advantage over Wolbachia in this case because the biology of pathogen blocking is known
and encoding numerous targets for the pathogen can reduce the development of pathogen resistance
to products of the transgenic construct. Alternatively, a transgenic drive mechanism could become
unlinked from the effector genes, so that the drive continues, but the pathogen blocking alleles could
be lost from the population; this can be mitigated by thoughtful arrangements of the drive and
effector components of a synthetic construct such that the drive becomes inactivated if the construct is
disrupted by recombination [70]. Further, we know that many organisms inactivate selfish genetic
elements using the piRNA pathway. While this has not been examined in mosquito transgenic
lines the component of these pathways do exist in mosquitoes [242–244] and examples of transgenic
constructs becoming piRNA producers with inhibited gene expression exist in Silkworm cell lines
and in Drosophila [245–250]. We appeal to the broader vector biology field to study the underlying
processes of the Wolbachia-mediated virus refractoriness and transgene inactivation and at the risk of
being redundant are hopeful that these biological processes will be easier to probe with the application
of reverse-genetics by site-specific gene editing.

3.2.2. Off-Target Effects of the Cas9/sgRNA Complex

Potential off-target activity of the Cas9 due to homology between sgRNAs and non-target
sites in the genome presents an interesting challenge for Cas9-based gene drive. Off-target effects
are not a Cas9 specific concern: RNA interference (RNAi) methods utilizing the micro- and small
interfering-RNA (miRNA and siRNA respectively) also rely on ribonucleoprotein activity and are
prone to inhibiting transcripts other than the intended target. An understanding of ribonucleoprotein
complex characteristics and homology-based cleavage requirements have enabled researchers to
faithfully use RNAi in genetics, but similar considerations for optimizing sgRNAs for use with
Cas9 have not been completely teased out. To date unintended mutations induced by Cas9 have been
difficult to detect and quantify. In general, genome sites with potential for off-target cleavage by a given
sgRNA/Cas9 complex can be predicted using computational algorithms and then probed for mutations
by PCR-based assays or larger units of genetic material (DNA or cDNA) can be deep-sequenced for
indels or single nucleotide polymorphisms (SNPs) [251,252]. However, Cas9-induced off-target SNPs
can be difficult to quantify accurately without a robust dataset documenting all SNPS already existing in
a population to reduce false identification of off-target mutations. In mosquitoes, as in other organisms,
efforts have not led to any detectable, off-target Cas9-induced mutations but a thorough analysis in
mosquitoes has not yet been reported. Efforts underway by the An. gambiae 1000 genomes project
to build a genome data set from wild-caught mosquitoes will aid in detecting potential off-target
effects [159,191,253–255]. Other methods for detecting off-target activity of Cas9 include assays
for identification of double stranded breaks or genome binding of a Cas9/sgRNA complex with
inactivated nuclease activity, though these methods have not yet been used in mosquitoes [256–258].
Rare unintended mutations have been identified in mouse studies and notably, off-targeting in
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in vitro studies has been more highly reported, likely because many more genomes exposed to the
Cas9/sgRNA complex are sequenced, giving the researchers a higher power to detect very rare
off-target mutations [252,257–261].

The impact of unwanted mutation for gene drive applications is higher than for in-lab gene
editing since mutations arising after release of a gene drive into a population have the potential to
persist. In the case of a gene drive that is self-limiting, like those proposed for population suppression,
the mistakes would be eliminated with the population itself. Off-target mutations are another source
of potential fitness effects in gene drive mosquitoes designed for population modification strategies.
These considerations fall squarely under the category of “unintended consequences” of the release
of transgenic organisms with a drive mechanism, a common topic in academic, political and lay
discussions on the utility and ethical considerations of gene drive. It thus behooves us to be able
to quantify and model the possibility of introduction of mutations derived by off-targeting of the
drive components into the target mosquito populations. This will require a thorough sampling of the
genomes that exist in the target population and continued sampling of genomes after release of gene
drive laden mosquitoes with the specific intention of detecting new, unintended mutations.

It may be that such quantification will provide an increased confidence in the Cas9-based gene
drive strategies already in development. However, should prudence require increased specificity in
nuclease activity, approaches to increase specificity and efficiency of the RNA-guided endonuclease
have already been demonstrated to be effective, including truncation of the sgRNA, the use of Cas9
nickases (a Cas9 mutant that only cuts a single DNA strand) with offset target sites, highly-specific
Cas9 mutants like eSpCas9 and SpCasp-HF1 and alternate RNA-guided nucleases like Cpf1 that create
sticky double stranded breaks [251,257,262–267]. Algorithms for sgRNA design are updated regularly
to incorporate both new knowledge on off-target effects and increasing number of genomes in order to
generate specific and efficient sgRNAs [268,269]. The measuring and addressing off-target effects and
their potential impacts on gene drive strategies are areas that will continue to require a substantial
amount of attention.

3.2.3. Containing an Efficient Gene drive

The likelihood that a gene drive cassette would persist in the environment in the case of accidental
release from lab containment, a test site or a rearing facility has been modelled between different drive
mechanisms and depends variably on the number of mosquitoes released and the efficiency of the
drive [270]. The novelty of the levels of efficiency observed for recent applications of CRISPR/Cas9
biology requires a re-consideration of the potential to control the activity of the gene drive both
during experimentation in the lab with the possibility of accidental release and once intentionally
released into the wild for disease control applications. A high level of care when working with
gene drive constructs has been echoed through the field as essential to the ethical development of
the CRISPR/Cas9-based technology for all potential applications [235,271–273]. In addition to gene
drive containment recommendations, several mechanisms to reverse a drive following the intentional
releases are being developed. These strategies are particularly relevant for population modification
strategies, since population suppression strategies are inherently limited. The Cas9/sgRNA complex
and HEGs have both been proposed as the basis of both reversal mechanisms including designs for
synthetic constructs driven in trans by another construct, even in several iterations (called “daisy
chains”), in order to limit the spread of independent self-driving constructs in the case of an accidental
release [75,152,274,275]. Such systems have been demonstrated in yeast and modelled to provide
a robust and containable drive mechanism [275].

3.2.4. Globalization

Globalization impacts vector control strategies in two foreseeable ways. First, mosquitoes released
for population suppression and replacement efforts disperse without regard to political boundaries.
In an age of increasing global movement by humans, dispersal of genetically-altered mosquitoes
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outside of intended release zones is inevitable. Genetics-based control efforts will have to evaluate how
to contain genetically-altered mosquitoes in population replacement programs, and deploy intensive
surveillance for population suppression efforts to avoid migration into and out of the release zones
when there are concerns over unintended consequences. For suppression programs, migration into
a release area or an area that has already achieved local elimination could result in repopulation of the
mosquitoes we were trying to control. For population modification strategies, dispersal of released
mosquitoes outside of intended areas could create political tensions with bordering countries that
may not have approved the technology. Improved molecular tools, buffer zones with alternative
control strategies near political borders, remote sensing of mosquitoes with improved traps or acoustic
identification technology [276], or citizen scientist campaigns to detect or sample local mosquitoes
could all contribute to more effective and contained vector control campaigns. To address concerns
of population replacement campaigns resulting in new populations susceptible to new diseases,
improved xenosurveillance and future efforts to make surveillance faster and easier will likely make
any unintended consequences quickly detectable and easier to address [277].

Second, rapid globalized human communication is a novel tool for complex vector management
approaches and can be leveraged to integrate the various levels of information that will influence
the planning, implementation, assessment and adjustment of a strategy, including information
on the population structures of target regions, current release efforts, surveillance of specialized
mosquito strains following release and resulting epidemiological changes. Many release strategies
are being tested around the world, with only minimal available information in these categories.
Eliminate Dengue has a map indicating sites where wMel-infected mosquitoes are being released
with links to the progress made in those areas. Oxitec and MosquitoMate have information about
ongoing releases of transgenic line OX513A Ae. aegypti and wPip-infected Ae. albopictus respectively, but
without interactive maps [227,278]. Verily Life Sciences will begin releases of wAlbB-infected Ae. aegypti
in California and Queensland soon. Releases of sterile An. arabiensis are ongoing in South Africa
and Sudan [279,280]. Test releases of sterilized Ae. aegypti have been conducted in Italy, Indonesia,
Mauritius and China and, Wolbachia-laden An. polynisiensis and Cx. pipiens quinquefasciatus are being
tested in for cytoplasmic incompatibility in French Polynesia for lymphatic filiariasis control and
La Reunion for arbovirus control, respectively [281]. Optimally, data collected in concurrence with
these releases could be integrated into a single framework. VectorBase.org is particularly well poised
to undertake these efforts; vector genetic information contributed by scientists is integrated and openly
available to others. Mosquito insecticide resistance is being collected in this database, is accessible
also as interactive map, and is being expanded to include additional phenotypes of existing mosquito
populations [282]. Further expansion including transgene information and Wolbachia-infection status
overlaid with epidemiological data such as those presented by internet disease surveillance sites like
healthmap.org and the Malaria Atlas Project will support release and data openness goals [283,284].
Internet-based platforms for the integration of population and epidemiological data and ongoing
releases could promote the sharing of information between scientists, practitioners and policy makers
and encourage an atmosphere of participation and openness among lay people.

4. Conclusions

The technical innovations that have led to efficient gene drives have caused a shift of focus in
the field of vector biology from tool development that might allow us to use genetics to combat
disease vectors, to considerations, experimentation, and modeling of what it will look like to use
these approaches effectively. Many considerations for successful implementation of genetic tools
for vector control have been on the minds of biologists for more than 60 years and some have
arisen from the specific tools that we intend to use. The breadth of molecular mechanisms and
the adaptability of genetic engineering afforded by the CRISPR/Cas9 and related systems means
that we have many avenues to pursue the engineering of strains that address the complexities of
different control strategies and that can be integrated with existing structural, chemical and biocontrol
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tools for successful vector-borne disease programs. In light of a need for unique sets of tools under
different environmental, vector and pathogen circumstances, we should not merely undertake to
prove superiority of the technology our own group is developing, but instead to provide quality
analyses of the purposes of and the circumstances under which our tools will and will not be useful,
so that a community adding a genetic component to their disease control strategy can make informed
decisions on what will have the greatest epidemiological impact.
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