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A B S T R A C T   

Severe respiratory infections were highlighted in the SARS-CoV outbreak in 2002, as well as MERS-CoV, in 2012. 
Recently, the novel CoV (COVID-19) has led to severe respiratory damage to humans and deaths in Asia, Europe, 
and Americas, which allowed the WHO to declare the pandemic state. Notwithstanding all impacts caused by 
Coronaviruses, it is evident that the development of new antiviral agents is an unmet need. In this review, we 
provide a complete compilation of all potential antiviral agents targeting macromolecular structures from these 
Coronaviruses (Coronaviridae), providing a medicinal chemistry viewpoint that could be useful for designing new 
therapeutic agents.   

1. Introduction 

Coronaviruses are enveloped viruses grouped into the Coronaviridae 
family (subfamily: Coronavirinae) and order Nidovirales.1 The subfamily 
has four genera, Alpha-, Beta-, Gamma- and - Deltacoronavirus. Cor-
onaviruses are known to infect bats, rodents, and can be transmitted to 
other mammals (Alpha- and Betacoronavirus) and birds (Gamma- and 
Deltacoronavirus).2 Alpha- and Betacoronavirus can infect humans and 
cause mild or severe respiratory syndromes - Human Coronaviruses 
(HCoV).2 Two severe respiratory syndromes epidemics were previously 
reported, being Severe Acute Respiratory Syndrome-coronavirus (SARS- 
CoV) in 2002,3 and Middle East Respiratory Syndrome-coronavirus 
(MERS-CoV) in 2012.4 In December 2019, in Wuhan, China, new cases 
of severe pneumonia were reported, which was later associated with the 
emergence of a novel coronavirus, initially called 2019-nCoV (2019 
novel coronavirus).5 Taxonomic and phylogenetic analyzes of it pointed 
similarities with the SARS-CoV prototype, renaming it as SARS-CoV-2.6 

Gradually, new cases have been reported in Asia, Europe, and Americas, 
quickly reaching a global scale and leading the World Health Organi-
zation (WHO) to declare the pandemic situation in March 2020.7 

Medicinal chemistry strategies aim to develop new candidates to 

progress through several standard levels in the drug development 
process, in which apply a broad variety of tools involving numerous 
related disciplines. Normally, these levels include (i) the selection of a 
biological target of medicinal interest and identifying initial hits and/or 
lead compounds; (ii) compounds’ design and development of an effi-
cient structure–activity relationship (SAR) analysis in the lead-optimi-
zation process; (iii) application of in silico methods; (iv) screening of 
synthesized compounds performing in vitro biological assays; and (v) 
pharmacokinetics and in vivo studies.8 In recent years, the term “one- 
target-one-disease” has been growing, mainly due to the emergence of 
several diseases with high complexity.9 In this context, the discovery, 
biological evaluation, and optimization of active small molecules is the 
core of the drug discovery process. So far, this approach has allowed to 
discover potential lead compounds from natural and synthetic sources, 
as well as combinatorial compounds libraries.10 These last have been 
applied for both drug lead discovery and optimization,11–13 since sev-
eral methods have been able to search diverse chemical libraries con-
taining a wide range of natural, synthetic small-molecules (organics), 
and (non)peptidomimetic analogs.14 Notwithstanding these facts, 
computer-aided drug design (CADD) uses in silico methods that were 
developed to facilitate the identification of new active molecules by 
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applying rigorous steps in drug discovery and development workflows, 
such as the creation of virtual libraries, molecular docking, and in silico 
screening.15–17 Additionally, it quickly identifies potential targets, op-
timizes the research, and avoids unnecessary expenses.18,19 Among the 
CADD approaches, structure-based drug design (SBDD) is a very effec-
tive alternative since it allows that drug-like compounds to be designed 
based on the structure of a macromolecular target.20,21 In SBDD, virtual 
chemical libraries containing millions of molecules and structural da-
tabases are utilized to verify the ability of ligands to interact with the 
target.21 Then, a potential drug-like is designed and synthesized con-
sidering its biological target in order to ensure that the new molecule 
acts specifically on the target chosen.22 Still, ADMET (absorption, dis-
tribution, metabolism, excretion, and toxicity) filters can be applied to 
enhance the probability of obtaining hits or leads with good drug-like 
properties.23,24 Along with in silico methods increase, drug repurposing 
has emerged as an interesting alternative to re-discover (repurpose) 
known drug against new diseases. Considering this, Kumar et al. 
(2019)25 and Pillaiyar et al. (2020)26 have reported perspectives about 
the recent advances and challenges in drug repurposing for different 
diseases, including dengue fever, cancer, and central nervous system 
(CNS) disorders. By using drug repurposing, several recent studies have 
used this approach to identify potentially effective treatments for SARS- 
CoV-2 (COVID-19) pandemic.27–36 

In addition, clinical trials with adult patients applying different 
COVID-19 therapeutic strategies are being carried out around the 
world, as previously reviewed by Wang and coworkers (2020).37 The 
most common treatments under antiviral research used drugs such as 
remdesivir, ribavirin, favipiravir, kaletra (a compound preparation with 
lopinavir and ritonavir), chloroquine-hydroxychloroquine, interferon-α, 
and arbidol. Despite researchers’ efforts, no treatment or drugs has been 
really effective, pointing to a necessary search for new drugs, vaccines 
or peptide inhibitors.37 Recently, an important review study containing 
inhibitors for SARS-, MERS- and others human coronaviruses has been 
reported. In general, these compounds block the membrane fusion stage 
or the co-receptor interaction, providing valuable tools in the race 
against SARS-CoV-2.38 

Deeming the aforementioned background, in this review, we in-
itially provide information concerning biological aspects from 
Coronaviruses (CoV), such as the viral cycle of infection and proteins’ 
organization. Thereafter, a deep, recent, and complete compilation of 
all the most relevant researches involving the development of potential 
antiviral agents against macromolecular targets from SARS-CoV, MERS- 
CoV, SARS-CoV-2 (COVID-19), and HCoV-229E, as well. Hereafter, we 
discussed these works in detail, including chemical structures (from 
natural and synthetic origins), viral strains, and molecular docking 
studies (showing covalent, hydrophobic, and hydrogen-bonding inter-
actions). Subsequently, we provide a table compiling all inhibitors 
targeting CoV biological structures found in the literature. Finally, we 
believe that this ‘piece of knowledge’ represents a novel useful scientific 
source for designing new inhibitors as promising agents to fight against 
Coronavirus outbreaks. 

2. Human coronaviruses (HCoV) 

Alpha- and Betacoronavirus can infect the human respiratory tract, 
ranges from mild to more serious illness that can lead to death.2 Pre-
viously, six coronaviruses had been identified as capable of infecting 
humans, being HCov-OC43, HCoV-229E, HCoV-NL63, HKU1, SARS- 
CoV, and MERS-CoV.4,39–43 The first epidemic of coronavirus took place 
between 2002 and 2003, caused by SARS-CoV, where 8,096 people 
contracted the virus and had an outcome of 774 deaths, exhibiting a 9% 
mortality rate.43,44 Ten years later, MERS-CoV emerges in 2012,4 and 
the cases have progressed slowly and, despite the epidemic situation 
regressed, cases are still reported. By November 2019, a total of 2,494 
cases and 858 deaths were reported, reaching a mortality rate of 35%.45 

It is considered that coronaviruses transmission origin can occur 

from a reservoir host to an intermediate host until finally infect hu-
mans. Genetic sequencing analyzes pointed out the origin of SARS-CoV, 
MERS-CoV, HCoV-NL63, and HCoV-229E from bats, while HCoV-OC43 
and HKU1 are originated from rodents.46–52 

The seventh coronavirus to infect humans was identified in 
December 2019, named SARS-CoV-2, causing a severe acute respiratory 
syndrome (SARS) and spreading the current pandemic scenario.5 The 
infection was namely COVID-19 (Coronavirus Disease 2019) and there 
was reported 13,150,645 cases and 574,464 deaths worldwide on July 
15, 2020.53 There are no vaccines to either HCoV, therefore, this review 
will focus on the three types of Betacoronavirus that have demonstrated 
major impacts on global health (SARS-CoV, MERS-CoV, and SARS-CoV- 
2) and their possible targets in medicinal chemistry viewpoint. 

2.1. SARS-CoV, MERS-CoV, and SARS-CoV-2 

The first coronavirus epidemic emerged from an outbreak in 
Guangdong province, China, in November 2002 caused by SARS-CoV 
and was controlled in mid of July 2003, by isolating infected people.3,43 

At the time, it was characterized the transmission through direct con-
tact with infected people or with contaminated fomites related to dro-
plets and aerosols released by sick individuals.43 The virus infects 
airway epithelial cells that can worsen and become a pneumonia 
characterized as a SARS.43 Normally, the infection is characterized by 
fever, dyspnea, lymphopenia and, in some rare cases, diarrhea and 
other gastrointestinal symptoms, which may occur the active replica-
tion of the virus in the small and large intestine, which suggests a 
possible fecal-oral transmission.43,54 Also, a prolonged clotting time and 
elevated liver enzymes were observed.43 Still, SARS-CoV is able to in-
fect macrophages and dendritic cells, inducing the pro-inflammatory 
cytokines and chemokines releasing, which play an important role in 
the disease progression.55,56 However, the exact mechanism involved in 
pulmonary consolidation and severity remains uncertain.57 

After the SARS-CoV epidemic in 2002–2003, MERS-CoV appeared in 
Jeddah, Saudi Arabia in 2012,58 causing infections in the lower re-
spiratory system similar to those caused by SARS-CoV, and also with a 
similar transmission.4,58–61 Phylogenetic analyzes concluded that the 
MERS-CoV genome has almost identical proximity to the virus found in 
dromedaries, an animal widely used in the Middle East and, therefore, 
has direct contact with humans.62–64 Symptoms are also similar to those 
of SARS-CoV, and in more severe cases, there is progression to an acute 
syndrome of respiratory distress, septic shock, multiple organ failure, 
and death.4,59–61 MERS-CoV induces the activation of the innate im-
mune response, through the interferon I pathway, and as a mode of 
evading the immune system, the virus produces proteins that block the 
signaling of IFN and NF-κB pathways thus increasing viral replication 
and pathogenicity.65–67 

Seven years later, in December 2019, a new coronavirus caused 
severe cases of pneumonia in the city of Wuhan, China,5 and triggered 
the second pandemic of the 21st century, after the swine flu caused by 
the Influenza A (H1N1) virus in 2009.68 SARS-CoV-2 (named after 
phylogenetic analyzes6) has been the aim of molecular, immunological 
and pharmacological studies to understand the viral mechanisms, and 
what treatments would be viable, in addition to the rational develop-
ment of vaccines. The virus transmission mode is person-to-person 
through respiratory droplets, as well as contact with contaminated fo-
mites, in which the main symptoms are equal to SARS-CoV and MERS- 
CoV. The secretion of cytokines in COVID-19 has also been reported, as 
well as in SARS and MERS, and may lead to the so-called “Cytokine 
Storm Syndrome” presenting high-levels of analytes such as IL-6, MCP- 
1, VEGF, and IL-8, among others, contributing to hypotension and 
pulmonary dysfunction.69 

There are still no specific antivirals or effective vaccines for cor-
onaviruses. Then, the only effective methods to control the disease are 
to avoid contamination promoting social distancing, reinforcement of 
hygiene procedures, and masks utilization. As COVID-19 is an ongoing 
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pandemic caused by a highly contagious virus,53 the search for new 
effective antiviral drugs is extremely essential. 

3. Viral structure and genome organization of HCoV 

Virion organization revealed by cryo-electron microscopy (Cryo- 
EM) showed coronaviruses as spherical viruses with approximately 80 
to 125 nm with a particular feature of protruding oligomers (Spike 
protein) projected on its surface, presenting a crown-like appearance 
and giving rise to its name.1,70 Three other proteins make up the viral 
structure, namely membrane protein (M), envelope protein (E), and 
nucleocapsid protein (N). Within the viral membrane, the helical nu-
cleocapsid, composed by the N protein, can induce a cell cycle delay, 
assists viral RNA during replication, and be complexed with the genetic 
material (Fig. 1A).1,71 

The coronavirus (CoV) genome is a single-stranded, positive-sense 
RNA of approximately 30 kb, with a 5́cap and a 3́poly (A) tail (Fig. 1B). 
The 5′ end shows the replicase gene encoding two Open Reading Frames 
(ORFs) 1a and 1b with an overlapping. The ORF1ab encode two poly-
proteins named pp1a (ORF1a) and pp1ab (ORF1a and ORF1b).1,57 

These polyproteins are then proteolytically cleaved, generating 16 non- 
structural proteins (nsP’s). The 3′ end of the genome encodes structural 
and accessory proteins interspersed within them. Both ends have un-
translated regions (UTRs) that play a role in RNA viral transcription, 
replication, and synthesis. The 5′ end UTR has stem-loop structures that 
are necessary for these processes.1,57 

4. The replication cycle of HCoV 

The initial contact with the host organism occurs through mucous 
membranes from the nose, mouth, and eyes. The coronaviruses bind the 
RBD domain from Spike protein (S) to the host cell, recognizing the 
human angiotensin-converting enzyme 2 (ACE2) receptor in infections 

by SARS-CoV and SARS-CoV-2,72,73 and the dipeptidyl peptidase 4 
(DPP4) receptor in infections caused by MERS-CoV74 (Fig. 2). This in-
teraction ends up causing a conformational rearrangement resulting in 
the fusion between the viral membrane and the host cell membrane, 
after the cleavage of S protein at its S2 site and then releasing the nu-
cleocapsid within the cell cytoplasm.1,57,75 Once inside the cell, the 5′ 
end from the RNA has the ORFs 1a and 1b translated into polyproteins 
pp1a and pp1ab, processed later into the nsP1-11 and nsP1-16, re-
spectively.1,57,76 To encode the two polyproteins, the virus uses a stop 
codon sequence (5′-UUUAAAC-3′) and a pseudoknot RNA that causes a 
−1 ribosomal frameshifting upstream of the ORF 1a stop codon, al-
lowing the continuous reading to ORF1b. Thus, the pseudoknot struc-
ture is unrolled until it finds the stop sequence in ORF1a, preventing 
continuous ribosome elongation, extending the conversion to ORF 1b 
and resulting in the translation of pp1ab.1,57,77 

The ORF1a from SARS-CoV, SARS-CoV-2, and MERS-CoV has the 
PLpro (papain-like protease) domain within the nsP3, responsible for the 
processing of mature replicase proteins. Also, ORF1a presents another 
domain composed of a serine-type protease, 3CLpro (chymotrypsin-like 
picornavirus 3C-like cysteine protease or main protease (Mpro)) within 
nsP5.78–80 While PLpro does the cleavage at the limits between nsP1-2, 
nsP2-3, and nsP3-4, 3CLpro is responsible for 11 other remaining clea-
vage events.1,57,78 The nsP’s are organized in the replicase-transcriptase 
complex (RTC) and have other domains and enzymatic functions. For 
example, in ORF1b there are nsP’s encoding the RNA polymerase-de-
pendent RNA domain (RdRp), RNA helicase, exoribonuclease, and a 
ribose dependent on 2′-O-methyltransferase activity.1,57 All of these 
nsP’s with specific activities contribute to the construction of an en-
vironment that enables the synthesis of RNA, the replication and 
transcription of subgenomic RNAs (sgRNAs), and genomic RNAs 
(gRNA)57,81 (Fig. 2). 

The replication initiates with the synthesis of a negative polarity 
viral RNA that produces both gRNA and sgRNAs, which works as mRNA 

Fig. 1. A. Schematic representation of the HCoVs viral structure and genome organization. HCoVs are spherical viruses, with oligomeric Spike proteins (S) that 
protrude on their surface, and interact with the cell receptors. The surface has also the lipid bilayer from the host cell with the membrane (M), the envelope (E) 
proteins, and the (+) ssRNA packed with the nucleocapsid protein (N) on a helical shape. B. Organization of the SARS-CoV, MERS-CoV, and SARS-CoV-2 genome. 
The HCoVs genome is a (+) ssRNA of ~30 kb encoding non- and structural proteins. The 5′ end encodes the ORFs 1a and 1b giving rise to the pp1a and pp1ab, which 
is cleaved into non-structural proteins. The 3′ end encodes the structural proteins that will be assembled into the viral particle. The figure shows a schematic 
representation of the SARS-CoV, MERS-CoV and SARS-CoV-2 genome, with an emphasis on structural and accessory proteins, highlighting the similarities and 
differences among them. Figure based on complete genome sequences from Genbank: AY274119.3, NC_019843.3, and NC_045512.2. 
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for the translation of structural and accessory proteins. From the RTC 
complex, there is the transcription of subgenomic mRNAs with 3′-co-
terminal end and gRNA, which have in common a leader sequence 
derived from the 5′ end of the genome. From there, the proteins are 
translated, and E and M proteins are translocated to the Endoplasmic 
Reticulum-Golgi intermediate compartment (ERGIC), where it is be-
lieved to be the site of assembly, budding, and transport of vir-
ions.1,57,82 The nucleocapsid proteins pack the genomic RNA to form 
the nucleocapsids on helical structures. The N protein then interacts 
with the E and M proteins, producing the virus-like particles (VLPs) that 
incorporate the S proteins. Mature virions are transported to the cell 
surface inside vesicles and are released into the extracellular space, 
allowing the interaction and infection of neighboring cells (Fig. 2).1,57 

5. Druggable targets from HCoVs 

5.1. Spike glycoprotein (also named as S protein) 

The CoV spike protein (S) is a type I transmembrane glycoprotein 
playing roles in viral attachment, fusion, and cell entry as well as tissue 
tropism.83 S proteins assemble into trimers protruding from the viral 
surface forming the crown-like appearance.84 It has two functional 
subunits named S1 (responsible for binding to the cell receptors) and S2 
(acts in the fusion of the viral and cellular membranes).83–87 

The S1 subunit forms the protein globular head and presents the 
receptor-binding domain (RBD) responsible for virus interaction with 
the host cellular receptors (e.g. ACE2 for SARS-CoV and SARS-CoV-2 or 
DPP4 for MERS-CoV),72–74,88,89 thus allowing the viral entry into the 
targeted cell. The receptor-binding S1 subunit of CoV S proteins has two 
domains, the N-terminal and C-terminal domains, either them can act as 

RBDs.90 The Cryo-EM structure of SARS-CoV-2 S trimer was per-
formed87,89 and a furin cleavage site at the S1/S2 boundary was iden-
tified which is known to be processed during biogenesis.87 

Recently, it was identified that RBD in SARS-CoV-2 S protein can 
bound strongly to both human and bat ACE2 receptors, and interest-
ingly a higher binding affinity was detected for SARS-CoV-2 RBD than 
to SARS-CoV.89,91 The crystal structure of the SARS-CoV-2 RBD 
bounded to the ACE2 was elucidated and is nearly identical to that of 
the SARS-CoV RBD.92 The SARS-CoV-2 entry requires cellular proteins 
to process S protein helping the infection. In this way, S protein is 
primed by cellular serine protease TMPRSS293 and a furin preactivation 
of the SARS-CoV-2 S protein-enhanced virus entry into some cell 
types.94 Similarly to the SARS-CoV,95 the cellular serine protease 
TMPRSS2 was pointed as a possible antiviral target for entry step of 
SARS-CoV-2.96 

The C-terminal S coronavirus S2 subunit forms a stalk-like structure 
anchored in the membrane during the virus fusion to the host cell 
membrane and presents heptad repeats (HRs) motifs.97 SARS-CoV and 
SARS-CoV-2 have an 89.8% sequence identity in their S2 subunits.97 

After the binding of RBD at S1 subunit to the ACE2 receptor on the host 
cell, the membrane distal 1 (HR1) and membrane-proximal 2 (HR2) 
heptad repeat domains in the S2 subunit interact with each other, 
forming a six-helix bundle (6-HB) fusion core thus bringing viral and 
cellular membranes into proximity for fusion and infection.97,98 Inter-
estingly, it was shown that SARS-CoV-2 has a much higher capacity of 
membrane fusion than SARS-CoV.97 

5.1.1. S protein inhibitors 
The attachment of SARS-CoV spike (S) protein to cellular 

Angiotensin-Converting Enzyme 2 (ACE2) is the first step in SARS-CoV 

Fig. 2. Replication cycle of HCoV. The virus enters the host cell by binding protein S to the ACE2 receptor (SARS-CoV and SARS-CoV-2) or the DPP4 receptor (MERS- 
CoV), leading the viral membrane fusion with the cell membrane host (1). Fusion occurs because of S protein cleavage, allowing entry through the endosomal 
pathway (2). The viral RNA is released into the cell cytoplasm (3) and the pp1a and pp1ab polyproteins (4) are translated, which will be cleaved by the proteases of 
the RTC complex (5), synthesizing the (+) and (−) RNAs (6). From (−) gRNA, sgRNAs will be discontinuously transcribed until act as mRNAs (7) and finally being 
translated into the structural proteins (8) that will be transferred to the ERGIC intermediate complex (9). The N proteins then bind to the (+) gRNA in the cytoplasm 
and are assembled with structural proteins in the ERGIC complex (10). Vesicles containing virion are transported to the plasma membrane and released via exocytosis 
(11) in the extracellular space, thus infecting neighboring cells. 
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infection. Several reports indicated that blocking the S protein attach-
ment to cellular receptors could prevent the virus entry. Thus, the 
SARS-CoV S protein becomes an attractive target for the development 
of anti-SARS drugs.99 

Small-peptide-derived structures of HR regions from the SARS-CoV 
S protein have been shown to inhibit SARS-CoV infection by interfering 
in SARS-CoV fusion upon target cells.100–103 Encouraged by these re-
sults, Ho et al. (2006)99 synthesized 14 small synthetic peptide deri-
vatives from the S protein and screened all of them against the S protein 
attachment to the ACE2, and upon the S-protein-pseudotyped retrovirus 
infectivity, as well. Among these, the peptide SP-10 (residues 668–679 - 
STSQKSIVAYTM) (Fig. 3) was identified as the most promising pro-
tein–protein interaction (PPI) inhibitor, exhibiting 90% inhibition at 
10 nmol concentration and blocking this interaction in a dose-depen-
dent manner, with an IC50 value of 0.0018 μM (1.8 nM). The inhibitory 
effect of SP-10 on SARS-CoV S protein and Vero E6 cells was analyzed 
by Biotinylated Enzyme-Linked Immunosorbent Assay (ELISA), Im-
munofluorescence assay (IFA), and S-protein-pseudotyped retrovirus 
infectivity. Vero E6 cells were treated with BSA, Biotin-labeled S protein 
or SP-10/biotin-labeled S protein mixture. Moreover, the results in-
dicated that SP-10 was capable of blocking the attachment of S protein 
to Vero cells. Additionally, it was investigated the possible domains 
involved in receptor interactions to identify biologically active peptides 
using peptide-scanning method, which involved overlapping peptides 
of 12 residues covering additional amino acids on both the N- and C- 
terminals from the SP-10 structure. The inhibitory effect of small 
overlapping peptides on the SARS-CoV S protein and ACE2 interaction 
was analyzed by competitive biotinylated ELISA. The receptor-binding 
regions from the SARS-CoV S protein have been defined in different 
studies.104–106 It was suggested that the region comprising residues 
660–683 from the SARS-CoV S protein may interacts with ACE2. 
Therefore, SP-10 was the first small-peptide designed as a PPI inhibitor 
targeting SARS-CoV S protein attachment to the ACE2. According to 
these authors, it could be developed as an anti-SARS-CoV agent for the 
treatment of SARS-CoV infection.99 

Finally, another peptide-derived inhibitor (comprising the se-
quence: EEQAKTFLDKFNHEAEDLFYQSSGLGKGDFR) of SARS-CoV S 
protein is shown in Table 1. 

5.2. Envelope protein (also named as E protein) 

The envelope protein (E) is the smallest structural protein that plays 
roles in the viral assembly, budding, virion release, and pathogen-
esis.82,107,108 Its structure has a short hydrophilic N-terminal, a large 
hydrophobic (TMD), and a hydrophilic C-terminal domain.82,109 For the 
SARS-CoV, E protein was mainly detected in the endoplasmic re-
ticulum-Golgi intermediate compartment (ERGIC), and only a small 
portion is incorporated into the virion envelope.110 

The C-terminal SARS-CoV E domain interacts with the PALS1, a 
tight junction-associated protein, and alters tight junction formation 
and epithelial morphogenesis in mammalian cells.111 Besides, the 
SARS-CoV E protein forms ion conductive pores in lipid bilayers,112 

exhibiting an important function in the virus-host interaction. Also, it 
was shown that the activity of SARS-CoV E protein ion channel con-
tributes to virus pathogenesis and it was required for inflammasome 
activation in infected-mice.113 

The SARS-CoV E protein-induced apoptosis in Jurkat T-cells and 
interacted with antiapoptotic protein BcL-xL suggesting a novel me-
chanism of T-cell apoptosis observed in SARS infection.114 In another 
study, it was reported that the E protein PDZ-binding motif involved in 
protein–protein interactions has a major role in SARS-CoV virulence 
using the cellular protein syntenin as a mediator of p38 MAPK induced 
inflammation.115 

5.2.1. E protein inhibitors 
Expressed in SARS- and MERS-CoV, and most recently described in 

SARS-CoV-2,116 envelope (E) protein is a small membrane protein re-
sponsible for forming ion channels and is directly related to the viral 
infection, replication, dissemination through host tissues and modula-
tion of the immune response.82,117 Notwithstanding these functions, E 
protein has been considered as an important target in the development 
of selective inhibitors against CoV.118 

Among the classes of active compounds against E protein,118 acyl-
guanidines (AG) standout for having several antiviral potential agents, 
where BIT225 is the first derivative from this class in clinical trials 
against hepatitis C (HCV) and immunodeficiency type 1 (HIV1) 
viruses,119 as well as AG derivatives from zanamivir and oseltamivir, 
potentially actives against influenza infections.120 Concerning this 
chemical class, Wilson et al. (2006)121 performed a study involving the 
hexamethylene amiloride (HMA, Fig. 4), an acylguanidine analogous to 
the amiloride drug, where a peptide corresponding to the E protein 
sequences from three coronaviruses in the GenBank database was 
synthetized. Thereafter, it was observed that the HMA significantly 
inhibited the conductance of HCoV-229E E protein ion channel 
(−70 mV) at 100 µM concentration. The authors reported its inhibitory 
activity with an EC50 value of 1.34 µM upon the HCoV-229E replica-
tion, as well as from the mouse hepatitis virus (MHV), with an EC50 

value of 3.91 µM. 
Posteriorly, Pervushin et al. (2009)122 synthesized a peptide (se-

quence: E8TGTLIVNSVLLFLAFVVFLLVTLAILTALR-NH2) corresponding 
to the transmembrane domain of SARS-CoV E protein to evaluate the 
binding mode with the HMA. By using Nuclear Overhauser Effect (NOE) 
in NMR analysis, it was revealed that HMA has two binding sites in the 
SARS-CoV E protein, being one near to the Asp15 residue and another at 
Arg38. Besides, they also revealed that HMA nitrogen 5 is found in the 
protonated state (NH+) and bound to the ion channel, in which it is 
stabilized by hydrogen-bonding interactions with Asp15 and Arg38 

amino acid residues, as a signal at 10.7 ppm (for Asp15) in the 1H NMR 
spectrum. 

5.3. Chymotrypsin-like picornavirus 3C-like protease (3CLpro) (also named 
as main protease (M pro), or 3C) 

The 3CLpro (also called Mpro) is a protease (corresponding to nsP5) 
highly conserved in HCoVs, and as well as PLpro, is responsible for the 
cleavage of the polyproteins pp1a and pp1ab playing an essential role 
in the viral replication.123,124 This protease cleaves the polyprotein at 
11 conserved sites involving the amino acid sequence Leu-Gln/Ser-Ala- 
Gly, which cleavage site is between the Gln and Ser.123 Although the 
cleavage pattern of 3CLpro seems to be conserved in SARS-CoV and 
SARS-CoV-2,123,125 additional mechanisms are required to the poly-
protein processing in the MERS-CoV, such as dimerization of the sub-
strate-binding site to obtain a mature dimer.126 

The coronavirus 3CLpro was studied, revealing three domains. The 
N-terminal 3CLpro I and II domains are antiparallel β-sheets with 6 to 13 
β-ribbons forming a chymotrypsin-like structure.123,125 The catalytic 
binding site is located between these two domains and a loop structure 
links domain II to the C-terminal domain III, comprising a dyad of 
conserved residues (cysteine and histidine) both in SARS-CoV and 
SARS-CoV-2.123,127 Domain III consists of a globular cluster of five 
helices associated with the protein dimerization due interactions be-
tween these domains of each monomer. Also, domain III has been 

Fig. 3. Chemical structure of SP-10 (peptide sequence: STSQKSIVAYTM), a 
small-peptide-derived from the SARS-CoV S protein. 
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Table 1 
Inhibitors targeting Coronaviruses found in the literature.         

Structure Source Organism IC50 Target PDB - Interactions/(H-bond) Ref.  

Spike (S) protein 
EEQAKTFLDKFNHEAEDLFYQSSGLGKGDFR Synthetic SARS-CoV 0.1 µM S protein Not revealeda 209 

Chymotrypsin-like cysteine protease (3CLpro) 
Synthetic SARS-CoV 57 µM 3CLpro (PDB: 4TWW) - Cys145, His41, Met49, Met165, Asp187, 

His163(H), Phe140, Leu141, and Glu166 

210 

Synthetic SARS-CoV 30 µM 3CLpro (PDB: 3AW1) - Cys145(H) and Gln189(H) 211 

Synthetic SARS-CoV 5.8 µM 3CLpro (PDB: 2ALV) - Gly143(H), Ser144(H), Cys145(H), 
His163(H), His41(H), Leu27, Met49, and Gln189 

212 

Synthetic HCoV-NL63 1.08 µM 3CLpro (PDB: 6FV2) - His41(H), *Gly142(H), Phe139(H), and 
Glu166(H). 

213 

Synthetic SARS-CoV 0.24 µM 3CLpro (PDB: 5N5O) - Met49, Met165, Asp187, Gln189(H), and 
Thr190 

213 

Synthetic MERS-CoV 1.7 µM 3CLpro (PDB: 4RSP) - Glu166(H), Glu169(H), Gln192(H), Cys148 

(Covalent), and His41 

214 

SARS-CoV 0.2 µM 3CLpro Not revealeda 214 

Synthetic SARS-CoV 0.51 µM 3CLpro (PDB: 2AMD) - Phe140, Leu141, His163, Met165, Glu166, 
His172, Asn142(H), Gly143(H), and Cys145(H) 

215 

Synthetic MERS-CoV 0.4 µM 3CLpro (PDB: 5WKL) - Cys148, Gln192(H), *Gln167(H), 
Glu169(H), His41(H), *His166(H), and *Phe143(H) 

216 

SARS-CoV 5.1 µM 3CLpro Not revealeda 216 

Synthetic MERS-CoV 0.6 µM 3CLpro Not revealeda 216 

SARS-CoV 2.1 µM 3CLpro Not revealeda 216 

Synthetic SARS-CoV 26 µM 3CLpro (PDB: 4TWW) - Cys145, His163(H), Phe140, Leu141, and 
Glu166 

217 

Synthetic SARS-CoV 95 µM 3CLpro Not revealeda 218 

(continued on next page) 
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Table 1 (continued)        

Structure Source Organism IC50 Target PDB - Interactions/(H-bond) Ref.  

Synthetic MERS-CoV 0.28 µM 3CLpro (PDB: 1UK3) - Cys148 (Covalent), *His166(H), and 
His175(H) 

219,220 

Synthetic SARS-CoV 4.6 µM 3CLpro (PDB: 3VB5) - Cys145(Covalent), Pro168, Thr190(H), 
Glu166(H), Gln189(H), His164(H), Phe140(H), and 
His163(H) 

221 

Synthetic SARS-CoV 0.23 µM 3CLpro Not revealeda 222 

Synthetic SARS-CoV 6.1 µM 3CLpro (PDB: 1UK4) - Glu166(H), Gly143(H), Cys145(H), Met49, 
and Gln189 

223 

Synthetic SARS-CoV 24.1 µM 3CLpro Not revealeda 224 

Natural SARS-CoV 8.3 µM 3CLpro (PDB: 2Z3E) - Leu141(H), His163(H), Val186(H), 
Gln189(H), and Gln192(H), 

225 

Natural SARS-CoV 8.3 µM 3CLpro Not revealeda 226 

Synthetic SARS-CoV 1.0 µM 3CLpro Not revealeda 227 

Synthetic SARS-CoV 10.0 µM 3CLpro (PDB: 1UK4) - His41, Met49, Phe140, Gly143(H), 
Cys145(H), His163, Met165, Glu166(H), Pro168, and 
Gln189(H) 

228 

Synthetic SARS-CoV 1.7 µM 3CLpro Not revealeda 229 

Synthetic SARS-CoV 10.0 µM 3CLpro (PDB: 1WOF) - Cys145, Ser144(H), His163(H), His164(H), 
Glu166(H), and Gln189(H) 

230 

(continued on next page) 

L.R. Silva, et al.   Bioorganic & Medicinal Chemistry 28 (2020) 115745

7



Table 1 (continued)        

Structure Source Organism IC50 Target PDB - Interactions/(H-bond) Ref.  

Synthetic SARS-CoV 0.74 µM 3CLpro (PDB: 1WOF) - Cys145, Ser144(H), His163(H), His164(H), 
Glu166(H), and Gln189(H) 

231 

Synthetic SARS-CoV 5.0 µM 3CLpro (PDB: 1UK4) - Glu166(H), His163(H), Cys145(H), 
Ser144(H), Asn142(H), Phe140(H), Thr26(H), and His41 

232 

Synthetic SARS-CoV 0.5 µM 3CLpro Not revealeda 233 

Synthetic SARS-CoV 3.0 µM 3CLpro Not revealeda 234 

Natural SARS-CoV 10.0 µM 3CLpro Not revealeda 235 

Synthetic SARS-CoV 13.0 µM 3CLpro Not revealeda 236 

Synthetic SARS-CoV 8.9 µM 3CLpro Not revealeda 237 

SARS-CoV 2.5 µM 3CLpro Not revealeda 238 

Synthetic SARS-CoV 17.2 µM 3CLpro Not revealeda 239 

Synthetic SARS-CoV 1.5 µM 3CLpro Not revealeda 240 

Natural SARS-CoV 2.7 µM 3CLpro (PDB: 2ZU5) - Thr190(H), His163(H), Ser144(H), 
His41(H), and Cys145(H) 

241 

Synthetic SARS-CoV 13.9 µM 3CLpro Not revealeda 242 

Synthetic SARS-CoV 1.04 µM 3CLpro (PDB: 1UK4) - Met49, Leu141, Asn142, Gly143(H), Ser144, 
Cys145(H), Met165, Arg188, Gln189, and Gln192 

243 

(continued on next page) 
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Table 1 (continued)        

Structure Source Organism IC50 Target PDB - Interactions/(H-bond) Ref.  

Synthetic SARS-CoV 0.95 µM 3CLpro (PDB: 1UK4) - Gly143(H), Cys145(H), His41(H), His164, 
Phe140, His163, and Met165 

244 

Synthetic SARS-CoV 0.3 µM 3CLpro (PDB: 1UK4) - Met49, His41(H), Pro39, Leu27, Cys145, 
His164, Met165, Leu167, Gln192, and Gln189 

245 

Synthetic SARS-CoV 0.06 µM 3CLpro (PDB: 2A5A) - Glu189, Met49, His41, Cys145, Gly143(H), 
His163(H), Phe140, His172, and Glu166 

246 

Synthetic SARS-CoV 0.051 µM 3CLpro Not revealeda 247 

Synthetic SARS-CoV 0.098 µM 3CLpro (PDB: 3ATW) - Thr90(H), Glu166(H), His163(H), Phe140, 
Leu141, Asn142, His41, Met49, Met165, Asp187, and 
Cys145(H). 

248 

Natural SARS-CoV 27.5 µM 3CLpro (PDB: 4WY3) - Gln166(H), Leu167(H), Phe140(H), 
Gln189(H), Asn142(H), Thr26(H), and Thr24(H). 

249 

Natural SARS-CoV 11.4 µM 3CLpro (PDB: 2ZU5) - His163(H), Ser144(H), and Cys145(H) 250 

Synthetic MERS-CoV 5.8 µM 3CLpro (PDB: 4YLU) - His41, Ser147, Glu169(H), Leu170, Val193, 
and Gln195 

212 

Synthetic SARS-CoV2 0.67 µM 3CLpro (PDB: 6Y2F) - His41(H), Gly143(H), Cys145(H), 
Ser144(H), Phe140(H), Glu166(H), and His163(H) 

127 

SARS-CoV 0.90 µM 3CLpro Not revealeda 127 

MERS-CoV 0.58 µM 3CLpro Not revealeda 127 

Synthetic SARS-CoV 9.6 µM 3CLpro (PDB: 1UK4) - Glu166(H), Gly143, Gln192, Met49, Arg188, 
and Gln189 

251 

Papain-like protease (PLpro) 
Synthetic SARS-CoV (a) 0.46 µM 

and (b) 1.3 µM 
PLpro (PDB: 3E9S) - Tyr269, Gln270, and Asp165 252 

Synthetic SARS-CoV 14.2 µM PLpro (PDB: 4M0W) - Cys271 253 

(continued on next page) 
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Table 1 (continued)        

Structure Source Organism IC50 Target PDB - Interactions/(H-bond) Ref.  

MERS-CoV 22.7 µM PLpro Not revealeda 253 

SARS-CoV 5.0 µM PLpro Not revealeda 254 

Synthetic MERS-CoV 6.6 µM PLpro (PDB: 4RF1) - Tyr279(H), Ser167(H), Pro163, Asp164, 
Asp165, *Gly248, *Thr249, Pro250, *Phe269, Glu273, 
Ala275, Val276, Gly277, and Thr308 

255 

Natural SARS-CoV 0.8 µM PLpro Not revealeda 256 

Natural SARS-CoV 5.0 µM PLpro Not revealeda 257 

Synthetic SARS-CoV (a) 0.39 µM 
and (b) 
0.35 µM 

PLpro (PDB: 3 MJ5) - Cys112, *Leu163, Asp165, Pro248, Pro249, 
Tyr265, Tyr269, Gln270, Tyr274, Thr302, and Asp303 

258 

Natural SARS-CoV 1.2 µM PLpro (PDB: 3 MJ5) - His176(H) and His172(H) 250 

Synthetic SARS-CoV 8.45 µM PLpro (PDB: 2FE8) - His290, Asp287, His273, Ala289, Lys106(H), 
Cys112(Covalent), and Trp107(H). 

259 b 

SARS-CoV2 2.26 µM PLpro (PDB: 6W9C) - *Leu289, Ala288, Asp286, Lys105, Tyr268, 
*Trp106, His272, and *Cys111(Covalent). 

259 b 

NTPase/Helicase (nsP13) 
Synthetic SARS-CoV 6 µM nsP13 Not revealeda 260 

12 µM 
50 µM 
5.9 µM 

Y277AnsP13 
K508AnsP13 
WTnsP13 

(homology model) Tyr277, Arg507, and Lys508. 261 

Synthetic MERS-CoV 2.5 µM nsP13 (homology model) Tyr7, Tyr159, Arg163, and Tyr171. 261,262 

([Bi(L5) (H2O) (ClO4)3], L5 = 

Synthetic SARS-CoV 5.0 µM nsP13 Not revealeda 263 

Synthetic SARS-CoV 3.0 µM nsP13 Not revealeda 264 

Synthetic SARS-CoV 11.0 µM nsP13 Not revealeda 265 

Guanine-N7-Methyltransferase (also named as N7-MTase or nsP14) 
Synthetic SARS-CoV 0.6 µM nsP14 266 

(continued on next page) 
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associated with the proteolytic activity of 3CLpro.123,125,126 

5.3.1. 3CLpro inhibitors 
Ghosh et al. (2008)128 reported the design and biological evaluation 

of a series of 5-chloropyridine ester-derived inhibitors against chymo-
trypsin-like protease (3CLpro) from SARS-CoV. This protease is crucial 
for viral replication, along with papain-like protease (PLpro), con-
stituting important targets in the search for selective and effective an-
tiviral inhibitors.129–131 Deeming this information, 11 chloropyridine 
ester derivatives were synthesized and biologically evaluated. Then, the 
indole-derived (Fig. 5) was found to be a covalent inhibitor, confirmed 
by MALDI-TOF analysis. Thereafter, it demonstrated to be the most 
promising inhibitor against SARS-CoV 3CLpro, with an IC50 value of 
0.03 µM. Furthermore, it was verified that this compound presented 
activity against infected cells with the virus, exhibiting an EC50 value of 
6.9 µM.128 

Computational studies of molecular docking by using GOLD® v. 3.2 
software were carried out involving this target (PDB ID: 2HOB). It was 
suggested that the critical residues for the interaction between the in-
dole-derived inhibitor and the protease involve a carbonyl group at 

position 4. Finally, the authors described that the distance between the 
carbon dioxide and the sulfur atom from the Cys145 residue prior to the 
nucleophilic attack is about 2.8 Å. Also, the distance between the ni-
trogen from the chloropyridinyl ring (as a H-acceptor group) and His163 

residue is about 2.4 Å. Furthermore, the carbonyl oxygen atom is lo-
cated between three backbone nitrogens, forming three hydrogen- 
bonding interactions with Cys145 (NH···O, 2.3 Å), Ser144 (NH···O, 2.4 Å), 
and Gly143 (NH···O, 2.8 Å) residues, increasing the stability of the 
complex and favoring the nucleophilic attack by Cys145 residue (Fig. 5). 
In this context, Ghosh et al. (2008)128 reported that in the covalently 
modified state after the aforementioned nucleophilic attack (PDB ID: 
2V6N), the indole ring is placed into the S1 pocket, where the chlor-
opyridinyl ring was before the nucleophilic attack, suggesting a dy-
namic enzymatic reorganization. Still, heterocycles indole and imida-
zole (from the His41 residue) are within a distance of 4 Å, suggesting 
that these rings have their initial position modified by the covalent 
reaction progress, reinforcing the aforementioned enzymatic re-
organization. 

Finally, diverse 3CLpro inhibitors from CoV have been reported in 
the literature and they can be found in Table 1. 

5.4. Papain-like protease (also named as PLpro) 

The PLpro is a cysteine protease encoded by nsP3 protein that re-
cognizes the consensus cleavage sequence LXGG at the amino-terminal 
of replicase products in the cell cytosol during the virus replication. The 
tetrapeptide motif is found between nsP1/2, nsP2/3, and nsP3/4 pro-
teins releasing the nsP1-2-3 from the viral polyprotein.78,132 

Additionally, the PLpro enzymatic activity is also characterized as 
the deubiquitinating activity of cellular proteins, possibly providing a 
favoring environment for intracellular viral replication. PLpro molecular 
structure resembles deubiquitinating enzymes (DUBs) responsible for 
cleaving both Ubiquitin and UBL-ISG15, which are important cellular 
modifiers that are covalently attached to target proteins by a peptide 
bond. Like DUBs, PLpro acts on this isopeptide bond cleaving viral 
proteins during the viral replication process.132–134 

Also, it is known that due to the deubiquitinating activity, PLpro can 
inhibit the production of cytokines and chemokines having a significant 
role in the innate immune response against viral infection antagonizing 
IFN pathway.135 

The molecular structure and function of PLpro from SARS-CoV, 
MERS-CoV, and SARS-CoV-2 is very similar, with slight conformational 
differences. The monomer consists of four domains: ubiquitin-like 
(UBL), the thumb, the palm, and the fingers.136,137 Previously, some 
studies showed that PLpro domains are conserved in all coronaviruses, 
and the same was observed with SARS-CoV-2.138 The catalytic core has 
a Zn-ribbon domain with four cysteine residues, demonstrated in HCoV- 
229E to be important for enzyme activity.139 The PLpro hydrophobic 
domain, important to the processing of the nsP3/4 site, is glycosylated, 
mediating an intracellular membrane association. It is hypothesized 
that the anchoring of PLpro may be important to the assemble of 

Table 1 (continued)        

Structure Source Organism IC50 Target PDB - Interactions/(H-bond) Ref.  

(PDB: 5C8T) - Trp385, Phe401, Tyr420, Phe426, Phe506, 
Cys387, Pro335, Val290, Trp292, Ile332, Phe367, Ala353, 
Val389, Asn386 (H), Arg310 (H), Gly333 (H), Ile338 (H), 
Lys336 (H), His424 (H), and Asp352 (H). 

*: Divergent residue labeling due to the difference between the SARS-CoV, SARS-CoV-2, and MERS-CoV proteins’ structures. a: The authors have not performed in 
silico studies. b: Preprint study published online at BioRxiv, doi: 10.1101/2020.05.17.100768, available at: https://www.biorxiv.org/content/10.1101/2020.05.17. 
100768v1.  

Fig. 4. Hexamethylene amiloride (HMA) inhibitor of E protein from HCoV- 
229E. Hydrogen-bonding interactions are shown as blue dotted lines. 

Fig. 5. Promising covalent inhibitor of 3CLpro from SARS-CoV. Covalent and 
hydrogen-bonding interactions are shown as red and blue dotted lines, re-
spectively. 
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replication complex during the virus replication.78 

5.4.1. PLpro inhibitors 
Ghosh et al. (2010)140 developed a new lead compound belonging 

to the class of piperidine carboxamide from a chemical library using 
high-throughput screening (HTS). The compound 6577871 (Fig. 6) 
exhibited an IC50 value of 59 μM. Also, studies involving lead optimi-
zation and structure–activity relationship (SAR) analyses were per-
formed to provide improved inhibitors targeting PLpro and antiviral 
activity against infected Vero E6 cells with SARS-CoV. The (S)-Me (a) 
(IC50 = 0.56 μM for PLpro; and EC50 = 9.1 μM for antiviral assays) and 
(R)-Me (b) (IC50 = 0.32 μM for PLpro; and EC50 = 9.1 μM for antiviral 
assays) derivatives were the most potent compounds in this series 
(Fig. 6), showing equivalent enzymatic inhibition and antiviral activity. 
From the structure–activity relationship (SAR) analysis, the authors 
established that the introduction of a benzodioxolane ring led to more 
strong inhibitory activity than its precursor compound (6577871). 
Also, 1-(naphthyl)ethylamides are more potent than 2-naphthyl deri-
vatives, and it was observed a preference for (R)-methyl enantiomers. 
The X-ray structure of complex for b-PLpro from SARS-CoV was de-
termined in a 2.6 Å resolution and a model for a-PLpro complex revealed 
molecular features associated with interactions, in which it was shown 
a unique binding mode into the PLpro structure. In silico studies de-
monstrated that the activity of this series of compounds is not asso-
ciated with stereoisomerism, in contrast to other compounds already 
synthesized. Superposing the structure of compound a on the crystal 
structure of the b-PLpro complex, the authors observed that there is an 
inversion of the piperidine ring between compounds a and b binding 
modes, which allows the naphthyl rings of both isomers to be accom-
modated at the active site, in a very similar orientation. Finally, the 
flexible piperidine ring acts as a spacer (or linker) group that enables 
the carboxamide (CONH) from both a and b compounds to perform 
hydrogen-bonding interactions with the backbone carbonyl oxygen at 
the Tyr269 residue, thereby retaining the potency of both enantiomers. 

The crystal structure of the b-PLpro complex confirmed the presence 
of water molecules conserved between the apoenzyme and compound 
b. Water molecules conserved into the pocket, located between residues 
Asp165, Asp303, and Thr302, preventing naphthyl rings from occupying 
this pocket, while water nearby residues such as Leu163 and Lys158 

prevent the forthcoming of the benzodioxolane ring to residue Lys158. 
The naphthyl ring is placed into the hydrophobic pocket formed by 
Pro248, Pro249, Tyr265, Tyr269, and Thr302 amino acid residues. Based on 

these interactions, it was observed that a gem-dimethyl substitution at 
the same position of methyl from the a or b inhibitors decreases the 
freedom degree around the carbon atom and locks the compound in a 
conformation in which one methyl group exhibits a bumping collision 
with the side chain of Asp165 residue when compared to the (R)-Me 
substituted analog (b). Therefore, SAR analysis, systematic modifica-
tion guided by ligands-PLpro complex X-ray crystallography, and sub-
sequent molecular modeling resulted in a potent inhibitor (b), with an 
IC50 value of 320 nM and antiviral activity with an EC50 value of 9.1 μM 
upon SARS-CoV-infected Vero E6 cells.140 

Lastly, other PLpro inhibitors from CoV have been reported in the 
literature and these compounds are shown in Table 1. 

5.5. RNA-dependent RNA polymerase (also named as nsP12) 

The enzymatic complex of HCoVs presents an RNA-dependent RNA 
polymerase (RdRp, also named nsP12) as a catalytic subunit for the 
synthesis of a negative-sense RNA, gRNA and sgRNA being a central 
component of coronaviral replication and transcription machinery. This 
protein has two domains: the N-terminal with nidovirus RdRp-asso-
ciated nucleotidyltransferase (NiRAN) activity and the C-terminal ca-
nonic RdRp domain, connected by an interface domain.141–143 

The RdRp adopts the conserved structure of viral polymerase fa-
mily, of a cupped right hand composed of the fingers, palm and thumb 
subdomains in the C-terminal region, catalyzing the viral RNA during 
the replication and transcription cycle.144 The RdRp catalyzes the for-
mation of phosphodiester bonds between ribonucleotides from an RNA 
template in the presence of divalent metal ions and thus synthesizing 
the negative-sense RNA, gRNA, and sgRNA.143 

It was showed that SARS-coronavirus RdRp (nsP12) needs to in-
teract with nsP7 and nsP8 as a tripartite complex to activate its cap-
ability to replicate long RNA.145 Recently, the Cryo-EM structure of 
SARS-CoV-2 nsP12 in complex with the cofactors nsP7 and nsP8 and a 
newly β-hairpin domain at its N-terminal region was reported.146 For 
the MERS-CoV, it was demonstrated that nsP8 and nsP12 form an active 
complex.147 

5.5.1. RdRp (nsP12) promising inhibitors 
Since RdRp (nsP12) is involved in the replication-transcription 

process in CoV, as well as in the production of genomic RNA, this target 
represents an interesting alternative for the development of new drug 
candidates in search of an effective pharmacotherapy against SARS- 
CoV-2.148–151 Thus, recent researches have been developed, especially 
involving in silico methods, as well as drug repurposing,131,152,153 in 
order to inhibit the viral replication cycle and, consequently, reducing 
the infection.154,155 

Recently, in a study performed by Choudhury et al. (2020),156 

molecular docking was used to analyze 30 FDA-approved drugs at the 
active site of the RdRp enzyme (PDB ID: 6M71) from SARS-CoV-2. 
Then, the authors demonstrated that the drugs chlorhexidine and re-
mdesivir (Fig. 7) presented the best docking score values, being 
−132.84 and −114.46, respectively. Based on these values, the au-
thors conclude that chlorhexidine was considered as the best inhibitor 
in the study, while the remdesivir was found to be the best among the 
listed antiviral drugs. 

Posteriorly, Pokhrel et al. (2020)157 performed a virtual screening of 
1,930 FDA-approved drugs forward RdRp enzyme (PDB ID: 6M71) from 
SARS-CoV-2, utilizing the Chemoinformatic Tools and Databases, and 
also the AutoDock Vina to perform docking (by using ensemble, rigid, 
and flexible methods). In this study, the authors observed that quinu-
pristin (Fig. 8), an antimicrobial active against Gram-positive bacteria, 
was the most promising ligand in all three types of docking studies, 
exhibiting a docking score of −12.3 Kcal/mol. Moreover, dactinomycin 
and sirolimus antibiotics (Fig. 8) also demonstrated encouraging re-
sults, with scores of −12.2 Kcal/mol for both, where these results could 
be used as a basis for the search for RdRp from SARS-CoV-2 pandemic. 

Fig. 6. Chemical structures of piperidine carboxamide analogs with activity 
against PLpro from SARS-CoV. Hydrogen-bonding interaction is shown as a blue 
dotted line. Bumping collision is represented by a yellow-ray for the compound 
a. 
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Searching for repurposing drugs against RdRp, Beg et al. (2020)158 

performed a study based on molecular homology of RdRp from SARS- 
CoV-2 (PDB ID: 6NUR), using the SWISS-MODEL server, as well as 
molecular docking in the AutoDock Tools software. Then, the authors 
analyzed 74 different antiviral drugs, including HCV, HIV, human cy-
tomegalovirus (HCMV), herpes simplex virus (HSV), human papillo-
mavirus (HPV), varicella-zoster virus (VZV), and influenza virus. It was 
observed that the anti-HIV nelfinavir (−8.8 Kcal/mol), raltegravir 

(−8.7 Kcal/mol), and delavirdine (−8.5 Kcal/mol) drugs (Fig. 9), as 
well as anti-HCV paritaprevir (−10 Kcal/mol), beclabuvir (−10 Kcal/ 
mol), and ledipasvir (−10 Kcal/mol) (Fig. 9) drugs were to be the most 
promising molecules against SARS-CoV-2 RdRp. 

Among anti-HIV drugs, the main amino acid residues involved in 
hydrogen-bonding interactions were identified as Ala576, Asn582, and 
Ser650 for delavirdine; Arg444, Asp509, Asp514, and Arg515 for nelfinavir; 
and Asp343, Arg444, Asp514, Thr571, Ser573, and Asn582 for raltegravir. 
Concerning anti-HCV drugs, hydrogen-bonding interactions were ob-
served with Ser392, Asn398, and Asn434 for beclabuvir; Lys391, Arg446, 
Arg460, and Asp514 for ledipasvir; and Ser392, Asn398, and Lys402 for 
paritaprevir. 

Finally, the aforementioned studies reported the search for RdRp 
inhibitors by using techniques of drug repurposing, in which promising 
compounds have been identified that could be useful against SARS- 
CoV-2 in the future. Furthermore, this compilation will serve as a basis 
to accelerate the search for promising and effective compounds to in-
hibit RdRp from SARS-CoV-2. 

5.6. NTPase/Helicase (also named as nsP13) 

Helicases are classified into six superfamilies (SFs) and those from 
the Nidovirales order belong to the SF1 superfamily and the Upf1 family 
(SF1B), characterized by moving in the 5′ → 3′ direction along the 
nucleic acid chain.143,159 In coronaviruses, the SF1 helicase domain 
(HEL1) is located in the C-terminal region of the nsP13, from a cleavage 
product of pp1ab replicase. The N-terminal region of nsP13 contains a 
multinuclear zinc-binding domain (ZBD), which is one of the most 
conserved domains of the Nidovirales order. Structurally, the CoV HEL1 
domain is formed by two RecA-like domains, named 1A and 2A.143,160 

For the SARS-CoV nsP13, both RNA and DNA duplex-unwinding 
activities were detected allowing the efficient strand separation of ex-
tended regions of double-stranded RNA and DNA in a 5′-to-3′direction. 
Besides, both (deoxy)nucleoside triphosphatase (dNTPase) and RNA-5′- 
triphosphatase activities were also reported being the SARS-CoV nsP13. 
Subcellular localization showed nsP13 on membranes from the en-
doplasmic reticulum, apparently the site of SARS-CoV RNA synth-
esis.161 The biochemical characterization of MERS-CoV nsP13 showed a 
dsRNA-unwinding activity with the helicase requiring more ATP for the 
optimal unwinding of RNA substrates with short 5′ loading strands.162 

Recently, the NTPase and RNA helicase activities were reported for 
SARS-CoV-2 nsP13 and that bismuth salts can inhibit both these ac-
tivities in a dose-dependent manner.163 There is speculation that SARS- 
CoV nsP13 may has a function in RNA capping because of the de-
monstrated RNA triphosphatase TPase activity, although further studies 
are necessary.164 

5.6.1. NTPase/Helicase (nsP13) inhibitors 
Keum & Jeong (2012)165 evaluated the viral helicase as a potential 

target for developing chemical inhibitors against SARS-CoV. In this 
study, they analyzed the full genome sequence from SARS-CoV and 
verified that 2/3 of the SARS-CoV genome consists of viral replicase 
genes, which encode 16 non-structural proteins (nsP’s). Among these, 
RNA-dependent RNA-polymerase (named as nsP12 or RdRp) and 
NTPase/helicase (nsP13) are very important for viral replication. The 
SARS-CoV NTPase/helicase consists of 601 amino acids obtained from 
the replicase region,166,167 and analyses of the amino acid sequence 
suggest that the helicase is divided into two separate domains. The first 
is a metal-binding domain (MBD) located at the N-terminus and, the 
second, a helicase domain (Hel).168 The SARS-CoV helicase uses ATP 
and dATP as preferred energy sources.161,169 The authors conducted in 
vitro biochemical experiments to find natural compounds that might 
suppress either the DNA unwinding or the ATPase activity of the SARS- 
CoV NTPase/helicase. It was observed that none of the 64 compounds 
evaluated interfered with the DNA unwinding activity of the nsP13 
protein. However, the flavonoid myricetin (IC50 = 2.71 µM) and 

Fig. 7. Promising FDA-approved drugs virtually screened against RdRp from 
SARS-CoV-2. 

Fig. 8. Promising antibiotic inhibitors against RdRp from SARS-CoV-2.  

Fig. 9. Anti-HIV and -HCV promising drugs screened against SARS-CoV-2 
RdRp. 
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flavone scutellarein (IC50 = 0.86 µM) strongly inhibited the ATPase 
activity of nsP13 from the SARS-CoV (Fig. 10). Nevertheless, other in-
vestigations are still required since it is unclear how myricetin and 
scutellarein suppress the ATPase activity. 

Finally, other inhibitors of NTPase/helicase (nsP13) from CoV are 
displayed in Table 1. 

5.7. Guanine-N7-Methyltransferase (also named as N7-MTase or nsP14) 

The nsP14 has both exoribonuclease (ExoN) and guanine-N7-me-
thyltransferase (N7-MTase) activities and both roles are important for 
viral replication and transcription. Coronaviruses replicate in the cy-
toplasm and have evolved strategies to cap their RNAs, with several 
nsP’s involved in this process. The SARS-CoV nsP14 was identified as a 
cap guanine-N7-methyltransferase (N7-MTase) producing the cap-0 
structure (m7GpppN), from the family of S-adenosyl-L-methionine 
(SAM)-dependent methyltransferases.170 Several critical residues for 
the nsP14 methyltransferase activity on GTP were identified including 
F73, R84, W86, R310, D331, G333, P335, Y368, C414, and C416.171 

The SARS-CoV nsP14 C-terminal N7-MTase domain has a noncanonical 
MTase fold with a β-sheet insertion and a peripheral zinc finger.172 

Interestingly, the association of nsP10 with nsP14 stimulates the 
ExoN activity while does not affect the N7-MTase activity.164,173 In this 
way, one molecule of nsP10 interacts with N-terminal ExoN domain of 
nsP14 to stabilize it and stimulate its activity, and the presence of two 
zinc fingers are crucial for this nsP14 function.172 

In contrast with nsP14 MTase, SARS-CoV nsP16 also presented 
MTase methylation activity, in a sequence-specific manner to 
m7GpppA-RNA. Crystal structure showed an nsP16/nsP10 complex, 
where nsP16 binds to substrates m7GpppA-RNA and SAM cofactor with 
the assistance of nsP10.164 

5.7.1. N7-MTase (nsP14) inhibitors 
Natural products from plants, animals, and microorganisms have 

been used to treat diseases since the beginning of human life.174,175 

Among diverse bacteria of medicinal interest, Streptomyces species 
(Gram-positive bacteria) have been widely reported as chassis organ-
isms suitable for the development of bioactive molecules,176–178 con-
stituting the main resource of antibiotics for clinical use.179,180 

Sinefungin (Fig. 11) constitutes an important amino acid-containing 
nucleoside, obtained from Streptomyces griseolus and S. incarnatus 

species,181 structurally related to S-adenosyl-methionine (SAM) and S- 
adenosyl-L-homocysteine (SAH), thus constituting an anticancer agent 
against metastasis in lung and primary breast tumors.182–184 Recently, 
promising antiviral activity against the Zika virus (ZIKV),185,186 and 
Feline herpesvirus type 1 (FHV-1).187 In this context, Sun et al. 
(2014)188 described the activity of this natural product against SARS- 
CoV, exhibiting a promising activity at 1.68 µM concentration. More-
over, it acts as an inhibitor of the enzyme guanine-N7-methyl-
transferase, which has been identified as a promising target for the 
development of new antiviral drugs against SARS-CoV since it inhibits 
the RNA-processing enzyme. 

The aforementioned authors identified this inhibitor by developing 
a genetic system as a high-throughput enzymatic activity assay plat-
form, involving 3,000 natural product extracts as candidates for N7- 
MTases inhibitors. These extracts were obtained from the natural mi-
crobial product library at Hubei Biopesticide Engineering Research 
Center (HBERC), in which secondary metabolites were isolated using 
classical methods. Additionally, it was concluded that sinefungin re-
presents a broad-spectrum inhibitor, since it has shown activity upon 
N7-MTase enzymes from different CoV species, such as murine cor-
onavirus (MHV), transmissible gastroenteritis coronavirus (TGEV), and 
infectious bronchitis virus (IBV), with IC50 values of 1.89, 1.67, and 
1.9 µM, respectively. Unfortunately, it does not constitute an ideal viral 
inhibitor since it has a poor selectivity index (SI) of 0.32, due to its 
results towards human N7-MTase (IC50 = 0.55 nM) and SARS-CoV N7- 
MTase (IC50 = 1.68 µM). In contrast, it contributes as a potential 
scaffold for designing new selective N7-MTases inhibitors, in which it 
could be also used against SARS-CoV-2. 

In a study developed by Aouadi et al. (2017)189 was described a 
high-throughput N7-MTase assay based on Homogenous Time-Resolved 
Fluorescence (HTRF®), where they identified 20 potential compounds 
that inhibit SARS-CoV N7-MTase. Therefore, 2,000 compounds ob-
tained from the Prestwick Chemical Library®, including 1,280 small 
molecules (FDA- and EMA-approved drugs), 320 natural products, and 
400 pyridazine-derived compounds were also screened in this study. 
Among these compounds, 20 best molecules were identified as potential 
antiviral agents. Lastly, the natural product, a polyphenol, demon-
strated to be the most promising inhibitor targeting the SARS-CoV 
nsP14 (Fig. 12), with an IC50 value of 0.019 µM. 

Furthermore, the authors also reported that sinefungin has shown 
inhibition < 0.05 µM against human mRNA cap guanine-N7-methyl-
transferase (RNMT), which characterizes it has poor selectivity because 
of its low selectivity index (SI) value (< 2.63). This low SI value could 
be associated with the structural homology between the SARS-CoV N7- 
MTase and human RNMT forms, which limits the possibility of dis-
covering specific inhibitors for this viral target. 

Finally, another inhibitor of SARS-CoV N7-MTase is presented in  
Table 1. 

5.8. Nucleocapsid protein (also named as N protein) 

The nucleocapsid protein (N) is a multifunctional RNA-binding 
protein having pivotal roles in the viral replication cycle as viral core 
formation, viral assembly, virus budding/envelope formation, and 
mRNA replication/gRNA synthesis.190 This protein binds and packs the 
viral RNA genome into a helical nucleocapsid structure called ribonu-
cleoprotein (RNP) complex. Also, the coronavirus N protein has several 
roles in the cellular response including chaperone activity, cell cycle 
regulation, stress response, viral pathogenesis/immune system inter-
ference, and signal transduction.190 

N protein structure has an N-terminal RNA-binding domain (NTD) 
responsible for RNA binding, a central Ser/Arg(SR)-rich linker in-
trinsically disordered, and a C-terminal dimerization domain 
(CTD).190,191 The N-terminal domain of the SARS-CoV N protein has 
five-strand β-sheet and single-stranded RNAs bind to the protein surface 
at the junction between positively charged β-hairpin and the core 

Fig. 10. Natural compounds able to inhibit the NTPase/helicase from SARS- 
CoV. 

Fig. 11. Sinefungin, a pan-inhibitor against SAM-dependent methyl-
transferases. 
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structure.191 The crystallographic structure of the SARS-CoV N protein 
CTD showed a dimer with extensive interactions between the two 
subunits thus suggesting that the N protein is not stable in the mono-
meric form.192 

Recently, the crystallographic structure of the N-terminal RNA 
binding domain of SARS-CoV-2 N protein was determined and a unique 
potential hydrophobic RNA binding pocket alongside the β-sheet core 
was detected.193 Also, the biochemical characterization of expressed 
SARS-CoV-2 N protein detected the protein as a large dimer in solution 
by CTD-CTD interaction.194 

5.8.1. N Protein inhibitors 
Among the CoV structural proteins, the nucleocapsid (N) protein 

seems to be a promising target for designing therapeutic drugs with 
antiviral activity, since it plays essential function on the virus particle 
assembly.195 The mouse CoV N protein is a major pathological marker 
in the host cell, in which could lead to the upregulation of proin-
flammatory cytokines, block innate immune response, and also cause 
induce host cell apoptosis.196 Some studies have reported the utilization 
of polyphenolic compounds with therapeutic properties, acting as an-
tioxidants and anticancer, as well as antiviral and antimicrobial 
agents.197–200 Both flavonoids (−)-catechin gallate and (−)-galloca-
techin gallate demonstrate medicinal interest, due to their antioxidant 
effects with possible application for different disorders,201 including 
cancer.202 Also, (−)-catechin gallate has demonstrated promising ef-
fects in the treatment of HIV,203,204 as well as against prostatic,205 

brain,206 and other types of cancers.207 

Deeming these natural compounds, Roh et al. (2012)208 developed a 
new approach for the inhibitor screening forwards SARS-CoV N protein 
by using a quantum dots-conjugated oligonucleotide system with broad 
application in imaging analysis on a biochip. From a high-throughput 
screening (HTS) strategy using an optical nanoparticle-based RNA oli-
gonucleotide, it was identified the inhibitory effects of (−)-catechin 
gallate and (−)-gallocatechin gallate (Fig. 13) upon SARS-CoV N pro-
tein. The biological evaluation revealed that both flavonoids exhibit 
high inhibition activity in a concentrated manner against SARS-CoV N 
protein. These compounds, at 0.005 µg/mL or more, concentration- 

dependently attenuated the binding affinity as evidenced by quantum 
dots-RNA oligonucleotide on the biochip. This concentration was found 
to be the IC50 value for both natural products. Regarding this, the au-
thors have concluded that a new property for (−)-catechin gallate and 
(−)-gallocatechin gallate has been identified, and also their approach 
was found to be promising for drug discovery. Besides, no information 
about molecular interactions from in silico studies were provided by the 
authors. Finally, the authors’ technique could be mainly characterized 
by low-cost, high-sensibility, fast result, low labor-effort, compatibility 
for miniaturization, allowing which it could be applicable for dis-
covering inhibitors in screenings against other types of diseases. 

Based on Table 1, it is observed that Han et al. (2006)209 have de-
veloped a peptide sequence (containing 31 amino acids) capable of 
inhibiting the S protein from SARS-CoV, with an IC50 value of 0.1 µM. 
In general, it is possible to verify that 3CLpro inhibitors are more 
broadly studied in the medicinal chemistry of CoV, followed by PLpro 

inhibitors. In this context, we performed a complete analysis of the 
interactions associated with 3CLpro inhibitors found in the literature 
(IC50 values ranging from 97 to 0.051 µM). Then, it was revealed that 
hydrophobic contacts are present in 49.09% of all interactions. Ad-
ditionally, hydrogen-bonding interactions are observed for 49.54% of 
compounds, being the Cys145 (11.1%), His163 (12.96%), and Glu166 

(14.81%) residues most present in interactions between ligands and 
SARS-CoV 3CLpro. In some studies, the Glu166 residue has been replaced 
with His166 residue,216,219 because the authors have used MERS-CoV 
3CLpro (PDB ID: 4RSP) and SARS-like human β-Coronaviruses 2c EMC/ 
2012 (HCoV-EMC), respectively. In general, MERS-CoV 3CLpro is also a 
chymotrypsin-like cysteine protease that has a catalytic dyad con-
stituted of Cys148 and His41, along with an extended binding 
site.219,267–270 This target exhibits a rigorous primary substrate speci-
ficity for a P1 Gln residue.271 Also, a strong affinity for a P2 Leu residue 
has been identified. Finally, P3 residue side chain is oriented towards 
the hydrophobic P4 residue, such as Ala.216,271 In contrast, some studies 
have suggested that SARS-CoV 3CLpro has a catalytic dyad Cys145-His41, 
similarly to the SARS-CoV-2 (Cys145 and His41), HCoV 3CLpro (Cys144 

and His41), and TGEV 3CLpro (Cys145 and His41).125,272 Some works 
have suggested that cysteine residue from catalytic dyad could act as a 
nucleophile, being Cys145 from SARS-CoV221 and SARS-CoV-2 
3CLpro,273 and Cys148 from MERS-CoV 3CLpro.214,219 Then, considering 
all interactions reported for 3CLpro inhibitors into Table 1, it was built a 
graphic containing the frequency of residues (Fig. 14A). This type of 
graphic has been used by our research team to identify fingerprints of 
residues from a cysteine protease.274 Regarding the Fig. 14A, it is 
possible to observe that eight amino acids are more frequently asso-
ciated with higher than 30% of interactions between ligands and 3CLpro 

target, being His41 (51.4%), Met49 (31.4%), Phe140 (40%), Cys145 

(60%), His163 (51.4%), Met165 (34.2%), Glu166 (48.5%), and Gln189 

(40%) residues from protomer A. Moreover, the cysteine (Cys145-148) 
residue performs covalent bonding modes in only 1.37% of interactions. 
All these residues were used to build a tridimensional active site 
structure (Fig. 14B) in complex with the inhibitor N3 (Fig. 14C), con-
taining only the most important residues, as previously discussed. It 

Fig. 12. Most promising inhibitor against guanine-N7-methyltransferase from 
SARS-CoV. 

Fig. 13. Flavonoids with activity against SARS-CoV N protein.  
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was verified that all these amino acids are comprised into binding 
pocket 1 from SARS-CoV-2 3CLpro, as described by Shi et al. (2020).275 

Notwithstanding these observations, it is evident that most of the active 
compounds found in the literature preferably bind into the pocket 1. 
Recently, Harcourt et al. (2004)78 verified that the PLpro from SARS- 
CoV-2 is a crucial viral enzyme and a potential target for designing 
inhibitors. Additionally, SARS-CoV PLpro has a catalytic triad con-
stituted of Cys112, His273, and Asp287. Also, the side chain of Trp107 that 
is placed into the oxyanion hole participates in the stabilization of the 
negatively charged tetrahedral transition state from the intermediate 
structure.132,258,276 In the SARS-CoV-2 PLpro structure, the catalytic 
triad is composed of Cys111, His272, and Asp286 residues. Besides, the 
auxiliary amino acid for stabilization of the negatively charged inter-
mediate is Trp106 residue.259 However, this stabilizing function could 
be shared with other amino acids, such as Tyr268, Ala289, and Leu298 

residues.259 Lastly, these different residues labeling is associated with 
the X-ray crystallographic structure used by the authors (PDB ID: 
6W9C).277 Regarding the PLpro inhibitors (IC50 values ranging from 
24.4 to 0.35 µM) in Table 1, these compounds commonly interact with 
Asp165, Tyr269 (from SARS-CoV), Gln270, Cys111 (SARS-CoV-2), and 
Cys112 (from SARS-CoV). Helicases are proteins responsible for cata-
lyzing duplex oligonucleotides separation (double-stranded RNA- 
dsRNA) into single strands (ssRNA), using energy from ATP hydro-
lysis.278 Previously, a triazole-derived inhibitor, named SSYA10-001, 
was found to be capable of inhibiting nsP13 Y277A, nsP13 K508A, and 

WT SARS-CoV nsP13, exhibiting IC50 values of 12, 50, and 5.9 µM, 
respectively.261 Also, it was revealed that SSYA10-001 interacts with 
Tyr277, Arg507, and Lys208 residues from SARS- and MERS-CoV nsP13 
targets.260,261 Still, concerning NTPase/helicase (nsP13) inhibitors 
(IC50 values varying from 11 to 2.5 µM), a triazole derivative recently 
synthesized by Zaher et al. (2020)262 exhibited activity against MERS- 
CoV nsP13 (IC50 = 2.5 µM), where it was investigated by using in silico 
studies. As a result, it was observed that there are only hydrophobic 
interactions involving Tyr7, Arg163, Tyr159, and Tyr171 amino acid re-
sidues from MERS-CoV nsP13 (PDB ID: 5WWP).279 N7- and 2′-O-me-
thylation of the viral RNA cap are critical steps for viral infections since 
their inhibition leads to a decrease in the synthesis of viral proteins and 
helps the virus elimination by stimulation of the immune response.280 

Then, MTases are considered as attractive targets for drug design and 
discovery,188,189 where the Phe426 residue is considered as the largest 
influence in nsP14 activity.281 S-adenosyl methionine (SAM) and RNA 
binding sites of N7-MTase nsP14 present 95% sequence identity, when 
comparing SARS-CoV with SARS-CoV-2 organisms.282 In this context, 
nucleoside SAM analogs could target nsP14 from both viruses. A potent 
SARS-CoV nsP14 inhibitor was synthesized by Ahmed-Belkacem et al. 
(2020),266 in which it demonstrated an IC50 value of 0.6 µM. Ad-
ditionally, it was verified that this compound is able to perform seven 
hydrogen-bonding interactions, with Arg310, Gly333, Lys336, Ile338, 
Asp352, Asn386, and His424. 

Fig. 14. Frequency of residues present in ligand-3CLpro complexes (A) found in the literature and compound N3 in complex with eight most frequent amino acid 
residues of the pocket 1 (B) from SARS-CoV 3CLpro (PDB ID: 2HOB). In B), covalent Cys145 residue is shown as blue color, exhibiting its connectivity to Michael’s 
acceptor moiety. Finally, the most frequent amino acid residues from pocket 1 are demonstrated in a molecular surface overview (in orange color). In C), the 
Michael’s acceptor N3, a peptide-derived, which has been explored in different works, where it has been identified as a promising inhibitor of 3CLpro from MERS-CoV 
(IC50 = 0.28 µM),219 SARS-CoV-2 (EC50 = 16.77 µM),273 GS-WT12 (Ki = 9.0  ±  0.8 µM), WT-GPH6 (Ki = 2.3  ±  0.1 µM), and WT (Ki = 1.9  ±  0.1 µM) modified 
proteases.283. 
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6. Conclusion 

Concerning all aspects aforementioned in this manuscript, it is 
evident that coronaviruses are viruses which account for millions of 
human illness worldwide, being the SARS-, MERS-, and SARS-CoV-2 the 
main viruses of medical interest. Currently, there are no vaccines or 
FDA-approved drugs to specifically treat these viral infectious diseases. 
Then, the development of researches involving identification and/or 
synthesis of inhibitors emerges as an essential approach for drug dis-
covery, since selective antivirals targeting macromolecules from HCoVs 
are an unmet need. In this context, the medicinal chemistry provides 
tools for the development of more selective inhibitors by using com-
puter-aided drug design (CADD) approaches, such as structure-based 
drug design (SBDD), in which molecular characteristics from the mac-
romolecular target (including interactions with ligands) should be 
considered during the rational design of more potent and selective in-
hibitors. In this scenario, classical medicinal chemistry along with 
SBDD have resulted in promising new antiviral agents targeting HCoVs’ 
macromolecules, providing us important aspects about the current 
druggable targets from these viruses which could be used to design 
desirable inhibitors. 

In general, it was verified that natural products have demonstrated 
great results in different studies, such as hexamethylene amiloride 
targeting E protein from HCoV-229E (IC50 = 1.34 µM, and hydrogen- 
bonding interactions with Asp15 and Arg38 residues), flavone scu-
tellarein targeting nsP13 from SARS-CoV (IC50 = 0.86 µM), sinefungin 
targeting nsP14 from SARS-CoV (IC50 = 1.68 µM), and the flavonoids 
(or phenolic compounds) (−)-catechin gallate and (−)-gallocatechin 
gallate targeting N protein from SARS-CoV (both with IC50 = 0.005 µg/ 
mL). Additionally, small synthetic peptides have exhibited activity 
against the S protein from SARS-CoV, where the best peptide sequence 
(STSQKSIVAYTM) displayed an IC50 value of 1.8 nM, suggesting this 
compound as an excellent inhibitor. However, it was not provided in-
formation about the molecular interactions by using in silico methods. 
Concerning 3CLpro inhibitors, it was verified that the covalent interac-
tion between the cysteine residue from the catalytic dyad and ligands 
are frequently observed. The best 3CLpro, a synthetic indole analog, was 
able to covalently interact with Cys145 and, via hydrogen-bonding, with 
Gly143, Ser144, and His163 residues, at distances ranging from 2.3 to 
2.8 Å. In the SARS-CoV 3CLpro inhibition assay, it demonstrated an IC50 

value of 0.03 µM. Moreover, the best PLpro inhibitor, a synthetic pi-
peridine carboxamide analog, was not able to interact with Cys residues 
from the catalytic triad from this target. However, it presented an IC50 

value of 320 nM against SARS-CoV PLpro. Also, it was verified that this 
piperidine analog shows a bumping collision with the Asp165 amino 
acid residue when an S-methyl substituent is present. Finally, a drug 
repurposing study was capable of suggesting chlorhexidine (an anti-
microbial drug) and remdesivir (an antiviral drug) have been high-
lighted as promising agents targeting nsP12 from SARS-CoV-2. 
However, none inhibition assay was performed upon isolated nsP12. 
Still, anti-HIV and HCV drugs have been also suggested as promising 
candidates against SARS-CoV-2 nsP12, such as nelfinavir, raltegravir, 
delavirdine, beclabuvir, ledipasvir, and paritaprevir. 

3CLpro inhibitors have been broadly studied, allowing us to generate 
a %frequency graphic showing the most relevant residues observed 
during the ligand-target complex formation. From this, it was possible 
verified that these compounds preferably interact via hydrogen-bonding 
interactions (49.54%), where the Glu166 residue is the most frequent. 
Additionally, it was observed that Cys145 (from SARS-CoV) and Cys148 

(MERS-CoV) residues together are verified in only 1.37% of interac-
tions. In general, it was verified that the 3CLpro inhibitors are more 
frequently found into the pocket 1, being the residues His41 (51.4%), 
Met49 (31.4%), Phe140 (40%), Cys145 (60%), His163 (51.4%), Met165 

(34.2%), Glu166 (48.5%), and Gln189 (40%) more commonly found in 
interactions with this macromolecular target. 

Finally, we believe that the search for inhibitors targeting HCoVs 

macromolecular structures is in continuous development, where several 
studies have been released, mainly targeting 3CLpro and PLpro. 
However, the other targets should be considered in the drug design of 
new antiviral compounds. This manuscript represents a great collection 
of relevant studies targeting HCoV in order to develop new drugs, 
which could be used for guiding future studies focused on the devel-
opment of inhibitors to fight against coronaviruses, including SARS- 
CoV-2 (COVID-19). Furthermore, it is possible suggest that the classical 
medicinal chemistry strategies are insufficient to quickly discover new 
drugs against this virus. Thus, new methodologies and technologies 
should be exploited to identify novel anti-SARS-CoV-2 drug candidates 
in a time- and cost-effective manner. Then, it is time to review the 
various drug discovery methods involving computer-aided protocols to 
seek trends and identify promising new avenues of anti-SARS-CoV-2 
drug discovery. 
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